YES Problem: f(n__f(n__a())) -> f(n__g(n__f(n__a()))) f(X) -> n__f(X) a() -> n__a() g(X) -> n__g(X) activate(n__f(X)) -> f(X) activate(n__a()) -> a() activate(n__g(X)) -> g(activate(X)) activate(X) -> X Proof: DP Processor: DPs: f#(n__f(n__a())) -> f#(n__g(n__f(n__a()))) activate#(n__f(X)) -> f#(X) activate#(n__a()) -> a#() activate#(n__g(X)) -> activate#(X) activate#(n__g(X)) -> g#(activate(X)) TRS: f(n__f(n__a())) -> f(n__g(n__f(n__a()))) f(X) -> n__f(X) a() -> n__a() g(X) -> n__g(X) activate(n__f(X)) -> f(X) activate(n__a()) -> a() activate(n__g(X)) -> g(activate(X)) activate(X) -> X Matrix Interpretation Processor: dim=3 usable rules: interpretation: [activate#](x0) = [0 0 1]x0 + [1], [g#](x0) = [0], [a#] = 0, [f#](x0) = [0 1 0]x0 + [1], [1 0 1] [1] [activate](x0) = [0 1 0]x0 + [0] [1 0 0] [0], [0 0 0] [g](x0) = [0 0 1]x0 [0 0 0] , [0] [a] = [0] [0], [0 0 0] [0] [n__g](x0) = [0 0 0]x0 + [0] [0 1 1] [1], [0 1 0] [f](x0) = [0 0 0]x0 [0 1 1] , [0 0 1] [0] [n__f](x0) = [1 1 0]x0 + [1] [0 1 1] [1], [1] [n__a] = [1] [0] orientation: f#(n__f(n__a())) = 4 >= 1 = f#(n__g(n__f(n__a()))) activate#(n__f(X)) = [0 1 1]X + [2] >= [0 1 0]X + [1] = f#(X) activate#(n__a()) = 1 >= 0 = a#() activate#(n__g(X)) = [0 1 1]X + [2] >= [0 0 1]X + [1] = activate#(X) activate#(n__g(X)) = [0 1 1]X + [2] >= [0] = g#(activate(X)) [3] [0] f(n__f(n__a())) = [0] >= [0] = f(n__g(n__f(n__a()))) [5] [6] [0 1 0] [0 0 1] [0] f(X) = [0 0 0]X >= [1 1 0]X + [1] = n__f(X) [0 1 1] [0 1 1] [1] [0] [1] a() = [0] >= [1] = n__a() [0] [0] [0 0 0] [0 0 0] [0] g(X) = [0 0 1]X >= [0 0 0]X + [0] = n__g(X) [0 0 0] [0 1 1] [1] [0 1 2] [2] [0 1 0] activate(n__f(X)) = [1 1 0]X + [1] >= [0 0 0]X = f(X) [0 0 1] [0] [0 1 1] [2] [0] activate(n__a()) = [1] >= [0] = a() [1] [0] [0 1 1] [2] [0 0 0] activate(n__g(X)) = [0 0 0]X + [0] >= [1 0 0]X = g(activate(X)) [0 0 0] [0] [0 0 0] [1 0 1] [1] activate(X) = [0 1 0]X + [0] >= X = X [1 0 0] [0] problem: DPs: TRS: f(n__f(n__a())) -> f(n__g(n__f(n__a()))) f(X) -> n__f(X) a() -> n__a() g(X) -> n__g(X) activate(n__f(X)) -> f(X) activate(n__a()) -> a() activate(n__g(X)) -> g(activate(X)) activate(X) -> X Qed