YES Problem: and(true(),X) -> activate(X) and(false(),Y) -> false() if(true(),X,Y) -> activate(X) if(false(),X,Y) -> activate(Y) add(0(),X) -> activate(X) add(s(X),Y) -> s(n__add(activate(X),activate(Y))) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) add(X1,X2) -> n__add(X1,X2) first(X1,X2) -> n__first(X1,X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X Proof: DP Processor: DPs: and#(true(),X) -> activate#(X) if#(true(),X,Y) -> activate#(X) if#(false(),X,Y) -> activate#(Y) add#(0(),X) -> activate#(X) add#(s(X),Y) -> activate#(Y) add#(s(X),Y) -> activate#(X) add#(s(X),Y) -> s#(n__add(activate(X),activate(Y))) first#(s(X),cons(Y,Z)) -> activate#(Z) first#(s(X),cons(Y,Z)) -> activate#(X) first#(s(X),cons(Y,Z)) -> activate#(Y) from#(X) -> activate#(X) activate#(n__add(X1,X2)) -> activate#(X1) activate#(n__add(X1,X2)) -> add#(activate(X1),X2) activate#(n__first(X1,X2)) -> activate#(X2) activate#(n__first(X1,X2)) -> activate#(X1) activate#(n__first(X1,X2)) -> first#(activate(X1),activate(X2)) activate#(n__from(X)) -> from#(X) activate#(n__s(X)) -> s#(X) TRS: and(true(),X) -> activate(X) and(false(),Y) -> false() if(true(),X,Y) -> activate(X) if(false(),X,Y) -> activate(Y) add(0(),X) -> activate(X) add(s(X),Y) -> s(n__add(activate(X),activate(Y))) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) add(X1,X2) -> n__add(X1,X2) first(X1,X2) -> n__first(X1,X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X Usable Rule Processor: DPs: and#(true(),X) -> activate#(X) if#(true(),X,Y) -> activate#(X) if#(false(),X,Y) -> activate#(Y) add#(0(),X) -> activate#(X) add#(s(X),Y) -> activate#(Y) add#(s(X),Y) -> activate#(X) add#(s(X),Y) -> s#(n__add(activate(X),activate(Y))) first#(s(X),cons(Y,Z)) -> activate#(Z) first#(s(X),cons(Y,Z)) -> activate#(X) first#(s(X),cons(Y,Z)) -> activate#(Y) from#(X) -> activate#(X) activate#(n__add(X1,X2)) -> activate#(X1) activate#(n__add(X1,X2)) -> add#(activate(X1),X2) activate#(n__first(X1,X2)) -> activate#(X2) activate#(n__first(X1,X2)) -> activate#(X1) activate#(n__first(X1,X2)) -> first#(activate(X1),activate(X2)) activate#(n__from(X)) -> from#(X) activate#(n__s(X)) -> s#(X) TRS: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(0(),X) -> activate(X) add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(X1,X2) -> n__add(X1,X2) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) s(X) -> n__s(X) Matrix Interpretation Processor: dim=1 usable rules: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(0(),X) -> activate(X) add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(X1,X2) -> n__add(X1,X2) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) s(X) -> n__s(X) interpretation: [from#](x0) = 2x0 + 2, [first#](x0, x1) = 2x0 + 2x1 + 2, [s#](x0) = 0, [add#](x0, x1) = 2x0 + 2x1 + 2, [if#](x0, x1, x2) = 1/2x0 + x1 + 2x2 + 7/2, [activate#](x0) = x0 + 3/2, [and#](x0, x1) = 2x0 + 3/2x1 + 1, [n__from](x0) = 2x0 + 3, [n__s](x0) = 1/2x0 + 1/2, [from](x0) = 2x0 + 3, [n__first](x0, x1) = 3x0 + 3x1 + 1, [cons](x0, x1) = x0 + 1/2x1, [nil] = 0, [first](x0, x1) = 3x0 + 3x1 + 1, [n__add](x0, x1) = 2x0 + 2x1 + 1, [s](x0) = 1/2x0 + 1/2, [add](x0, x1) = 2x0 + 2x1 + 1, [0] = 3/2, [false] = 1, [activate](x0) = x0, [true] = 2 orientation: and#(true(),X) = 3/2X + 5 >= X + 3/2 = activate#(X) if#(true(),X,Y) = X + 2Y + 9/2 >= X + 3/2 = activate#(X) if#(false(),X,Y) = X + 2Y + 4 >= Y + 3/2 = activate#(Y) add#(0(),X) = 2X + 5 >= X + 3/2 = activate#(X) add#(s(X),Y) = X + 2Y + 3 >= Y + 3/2 = activate#(Y) add#(s(X),Y) = X + 2Y + 3 >= X + 3/2 = activate#(X) add#(s(X),Y) = X + 2Y + 3 >= 0 = s#(n__add(activate(X),activate(Y))) first#(s(X),cons(Y,Z)) = X + 2Y + Z + 3 >= Z + 3/2 = activate#(Z) first#(s(X),cons(Y,Z)) = X + 2Y + Z + 3 >= X + 3/2 = activate#(X) first#(s(X),cons(Y,Z)) = X + 2Y + Z + 3 >= Y + 3/2 = activate#(Y) from#(X) = 2X + 2 >= X + 3/2 = activate#(X) activate#(n__add(X1,X2)) = 2X1 + 2X2 + 5/2 >= X1 + 3/2 = activate#(X1) activate#(n__add(X1,X2)) = 2X1 + 2X2 + 5/2 >= 2X1 + 2X2 + 2 = add#(activate(X1),X2) activate#(n__first(X1,X2)) = 3X1 + 3X2 + 5/2 >= X2 + 3/2 = activate#(X2) activate#(n__first(X1,X2)) = 3X1 + 3X2 + 5/2 >= X1 + 3/2 = activate#(X1) activate#(n__first(X1,X2)) = 3X1 + 3X2 + 5/2 >= 2X1 + 2X2 + 2 = first#(activate(X1),activate(X2)) activate#(n__from(X)) = 2X + 9/2 >= 2X + 2 = from#(X) activate#(n__s(X)) = 1/2X + 2 >= 0 = s#(X) activate(n__add(X1,X2)) = 2X1 + 2X2 + 1 >= 2X1 + 2X2 + 1 = add(activate(X1),X2) activate(n__first(X1,X2)) = 3X1 + 3X2 + 1 >= 3X1 + 3X2 + 1 = first(activate(X1),activate(X2)) activate(n__from(X)) = 2X + 3 >= 2X + 3 = from(X) activate(n__s(X)) = 1/2X + 1/2 >= 1/2X + 1/2 = s(X) activate(X) = X >= X = X add(0(),X) = 2X + 4 >= X = activate(X) add(s(X),Y) = X + 2Y + 2 >= X + Y + 1 = s(n__add(activate(X),activate(Y))) add(X1,X2) = 2X1 + 2X2 + 1 >= 2X1 + 2X2 + 1 = n__add(X1,X2) first(0(),X) = 3X + 11/2 >= 0 = nil() first(s(X),cons(Y,Z)) = 3/2X + 3Y + 3/2Z + 5/2 >= 3/2X + Y + 3/2Z + 1/2 = cons(activate(Y),n__first(activate(X),activate(Z))) first(X1,X2) = 3X1 + 3X2 + 1 >= 3X1 + 3X2 + 1 = n__first(X1,X2) from(X) = 2X + 3 >= 3/2X + 2 = cons(activate(X),n__from(n__s(activate(X)))) from(X) = 2X + 3 >= 2X + 3 = n__from(X) s(X) = 1/2X + 1/2 >= 1/2X + 1/2 = n__s(X) problem: DPs: TRS: activate(n__add(X1,X2)) -> add(activate(X1),X2) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(0(),X) -> activate(X) add(s(X),Y) -> s(n__add(activate(X),activate(Y))) add(X1,X2) -> n__add(X1,X2) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) first(X1,X2) -> n__first(X1,X2) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) from(X) -> n__from(X) s(X) -> n__s(X) Qed