YES

Problem:
 from(X) -> cons(X,n__from(n__s(X)))
 sel(0(),cons(X,Y)) -> X
 sel(s(X),cons(Y,Z)) -> sel(X,activate(Z))
 from(X) -> n__from(X)
 s(X) -> n__s(X)
 activate(n__from(X)) -> from(activate(X))
 activate(n__s(X)) -> s(activate(X))
 activate(X) -> X

Proof:
 DP Processor:
  DPs:
   sel#(s(X),cons(Y,Z)) -> activate#(Z)
   sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z))
   activate#(n__from(X)) -> activate#(X)
   activate#(n__from(X)) -> from#(activate(X))
   activate#(n__s(X)) -> activate#(X)
   activate#(n__s(X)) -> s#(activate(X))
  TRS:
   from(X) -> cons(X,n__from(n__s(X)))
   sel(0(),cons(X,Y)) -> X
   sel(s(X),cons(Y,Z)) -> sel(X,activate(Z))
   from(X) -> n__from(X)
   s(X) -> n__s(X)
   activate(n__from(X)) -> from(activate(X))
   activate(n__s(X)) -> s(activate(X))
   activate(X) -> X
  Usable Rule Processor:
   DPs:
    sel#(s(X),cons(Y,Z)) -> activate#(Z)
    sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z))
    activate#(n__from(X)) -> activate#(X)
    activate#(n__from(X)) -> from#(activate(X))
    activate#(n__s(X)) -> activate#(X)
    activate#(n__s(X)) -> s#(activate(X))
   TRS:
    activate(n__from(X)) -> from(activate(X))
    activate(n__s(X)) -> s(activate(X))
    activate(X) -> X
    from(X) -> cons(X,n__from(n__s(X)))
    from(X) -> n__from(X)
    s(X) -> n__s(X)
   Matrix Interpretation Processor: dim=2
    
    usable rules:
     activate(n__from(X)) -> from(activate(X))
     activate(n__s(X)) -> s(activate(X))
     activate(X) -> X
     from(X) -> cons(X,n__from(n__s(X)))
     from(X) -> n__from(X)
     s(X) -> n__s(X)
    interpretation:
     [s#](x0) = [1 0]x0,
     
     [activate#](x0) = [1 0]x0,
     
     [sel#](x0, x1) = [2 0]x0 + [0 1]x1 + [1],
     
     [from#](x0) = [1 0]x0,
     
                      [1 0]     [0]
     [activate](x0) = [1 3]x0 + [2],
     
               [1 0]     [1]
     [s](x0) = [2 0]x0 + [0],
     
                      [0 0]     [1]
     [cons](x0, x1) = [1 3]x1 + [1],
     
                     [1 0]     [1]
     [n__from](x0) = [0 0]x0 + [0],
     
                  [1 0]     [1]
     [n__s](x0) = [2 0]x0 + [0],
     
                  [1 0]     [1]
     [from](x0) = [1 0]x0 + [3]
    orientation:
     sel#(s(X),cons(Y,Z)) = [2 0]X + [1 3]Z + [4] >= [1 0]Z = activate#(Z)
     
     sel#(s(X),cons(Y,Z)) = [2 0]X + [1 3]Z + [4] >= [2 0]X + [1 3]Z + [3] = sel#(X,activate(Z))
     
     activate#(n__from(X)) = [1 0]X + [1] >= [1 0]X = activate#(X)
     
     activate#(n__from(X)) = [1 0]X + [1] >= [1 0]X = from#(activate(X))
     
     activate#(n__s(X)) = [1 0]X + [1] >= [1 0]X = activate#(X)
     
     activate#(n__s(X)) = [1 0]X + [1] >= [1 0]X = s#(activate(X))
     
                            [1 0]    [1]    [1 0]    [1]                    
     activate(n__from(X)) = [1 0]X + [3] >= [1 0]X + [3] = from(activate(X))
     
                         [1 0]    [1]    [1 0]    [1]                 
     activate(n__s(X)) = [7 0]X + [3] >= [2 0]X + [0] = s(activate(X))
     
                   [1 0]    [0]         
     activate(X) = [1 3]X + [2] >= X = X
     
               [1 0]    [1]    [0 0]    [1]                           
     from(X) = [1 0]X + [3] >= [1 0]X + [3] = cons(X,n__from(n__s(X)))
     
               [1 0]    [1]    [1 0]    [1]             
     from(X) = [1 0]X + [3] >= [0 0]X + [0] = n__from(X)
     
            [1 0]    [1]    [1 0]    [1]          
     s(X) = [2 0]X + [0] >= [2 0]X + [0] = n__s(X)
    problem:
     DPs:
      
     TRS:
      activate(n__from(X)) -> from(activate(X))
      activate(n__s(X)) -> s(activate(X))
      activate(X) -> X
      from(X) -> cons(X,n__from(n__s(X)))
      from(X) -> n__from(X)
      s(X) -> n__s(X)
    Qed