YES Problem: first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) from(X) -> cons(X,n__from(n__s(X))) first(X1,X2) -> n__first(X1,X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Proof: DP Processor: DPs: first#(s(X),cons(Y,Z)) -> activate#(Z) activate#(n__first(X1,X2)) -> activate#(X2) activate#(n__first(X1,X2)) -> activate#(X1) activate#(n__first(X1,X2)) -> first#(activate(X1),activate(X2)) activate#(n__from(X)) -> activate#(X) activate#(n__from(X)) -> from#(activate(X)) activate#(n__s(X)) -> activate#(X) activate#(n__s(X)) -> s#(activate(X)) TRS: first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) from(X) -> cons(X,n__from(n__s(X))) first(X1,X2) -> n__first(X1,X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Matrix Interpretation Processor: dim=1 usable rules: first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) from(X) -> cons(X,n__from(n__s(X))) first(X1,X2) -> n__first(X1,X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X interpretation: [s#](x0) = 0, [from#](x0) = 1, [activate#](x0) = 1/2x0, [first#](x0, x1) = x1, [n__from](x0) = x0 + 3, [n__s](x0) = x0 + 2, [from](x0) = x0 + 3, [n__first](x0, x1) = 2x0 + 2x1 + 1, [activate](x0) = x0, [cons](x0, x1) = 1/2x1 + 1/2, [s](x0) = x0 + 2, [nil] = 0, [first](x0, x1) = 2x0 + 2x1 + 1, [0] = 7/2 orientation: first#(s(X),cons(Y,Z)) = 1/2Z + 1/2 >= 1/2Z = activate#(Z) activate#(n__first(X1,X2)) = X1 + X2 + 1/2 >= 1/2X2 = activate#(X2) activate#(n__first(X1,X2)) = X1 + X2 + 1/2 >= 1/2X1 = activate#(X1) activate#(n__first(X1,X2)) = X1 + X2 + 1/2 >= X2 = first#(activate(X1),activate(X2)) activate#(n__from(X)) = 1/2X + 3/2 >= 1/2X = activate#(X) activate#(n__from(X)) = 1/2X + 3/2 >= 1 = from#(activate(X)) activate#(n__s(X)) = 1/2X + 1 >= 1/2X = activate#(X) activate#(n__s(X)) = 1/2X + 1 >= 0 = s#(activate(X)) first(0(),X) = 2X + 8 >= 0 = nil() first(s(X),cons(Y,Z)) = 2X + Z + 6 >= X + Z + 1 = cons(Y,n__first(X,activate(Z))) from(X) = X + 3 >= 1/2X + 3 = cons(X,n__from(n__s(X))) first(X1,X2) = 2X1 + 2X2 + 1 >= 2X1 + 2X2 + 1 = n__first(X1,X2) from(X) = X + 3 >= X + 3 = n__from(X) s(X) = X + 2 >= X + 2 = n__s(X) activate(n__first(X1,X2)) = 2X1 + 2X2 + 1 >= 2X1 + 2X2 + 1 = first(activate(X1),activate(X2)) activate(n__from(X)) = X + 3 >= X + 3 = from(activate(X)) activate(n__s(X)) = X + 2 >= X + 2 = s(activate(X)) activate(X) = X >= X = X problem: DPs: TRS: first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) from(X) -> cons(X,n__from(n__s(X))) first(X1,X2) -> n__first(X1,X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Qed