YES Problem: f(0()) -> cons(0(),n__f(n__s(n__0()))) f(s(0())) -> f(p(s(0()))) p(s(X)) -> X f(X) -> n__f(X) s(X) -> n__s(X) 0() -> n__0() activate(n__f(X)) -> f(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__0()) -> 0() activate(X) -> X Proof: DP Processor: DPs: f#(s(0())) -> p#(s(0())) f#(s(0())) -> f#(p(s(0()))) activate#(n__f(X)) -> activate#(X) activate#(n__f(X)) -> f#(activate(X)) activate#(n__s(X)) -> activate#(X) activate#(n__s(X)) -> s#(activate(X)) activate#(n__0()) -> 0#() TRS: f(0()) -> cons(0(),n__f(n__s(n__0()))) f(s(0())) -> f(p(s(0()))) p(s(X)) -> X f(X) -> n__f(X) s(X) -> n__s(X) 0() -> n__0() activate(n__f(X)) -> f(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__0()) -> 0() activate(X) -> X Matrix Interpretation Processor: dim=3 usable rules: f(0()) -> cons(0(),n__f(n__s(n__0()))) f(s(0())) -> f(p(s(0()))) p(s(X)) -> X f(X) -> n__f(X) s(X) -> n__s(X) 0() -> n__0() activate(n__f(X)) -> f(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__0()) -> 0() activate(X) -> X interpretation: [activate#](x0) = [1 1 1]x0, [0#] = 0, [s#](x0) = [0], [p#](x0) = [0], [f#](x0) = [0 1 0]x0, [1 0 1] [0] [activate](x0) = [0 1 1]x0 + [1] [0 0 1] [0], [0 1 0] [p](x0) = [1 0 0]x0 [1 0 0] , [0 1 1] [0] [s](x0) = [1 0 0]x0 + [0] [0 0 1] [1], [1 0 0] [cons](x0, x1) = [0 0 0]x0 [0 0 0] , [1 0 1] [1] [n__f](x0) = [0 1 0]x0 + [1] [0 0 1] [0], [0 1 1] [0] [n__s](x0) = [1 0 0]x0 + [0] [0 0 1] [1], [1] [n__0] = [0] [0], [1 0 1] [1] [f](x0) = [0 1 0]x0 + [1] [0 0 1] [0], [1] [0] = [0] [0] orientation: f#(s(0())) = 1 >= 0 = p#(s(0())) f#(s(0())) = 1 >= 0 = f#(p(s(0()))) activate#(n__f(X)) = [1 1 2]X + [2] >= [1 1 1]X = activate#(X) activate#(n__f(X)) = [1 1 2]X + [2] >= [0 1 1]X + [1] = f#(activate(X)) activate#(n__s(X)) = [1 1 2]X + [1] >= [1 1 1]X = activate#(X) activate#(n__s(X)) = [1 1 2]X + [1] >= [0] = s#(activate(X)) activate#(n__0()) = 1 >= 0 = 0#() [2] [1] f(0()) = [1] >= [0] = cons(0(),n__f(n__s(n__0()))) [0] [0] [2] [2] f(s(0())) = [2] >= [1] = f(p(s(0()))) [1] [0] [1 0 0] p(s(X)) = [0 1 1]X >= X = X [0 1 1] [1 0 1] [1] [1 0 1] [1] f(X) = [0 1 0]X + [1] >= [0 1 0]X + [1] = n__f(X) [0 0 1] [0] [0 0 1] [0] [0 1 1] [0] [0 1 1] [0] s(X) = [1 0 0]X + [0] >= [1 0 0]X + [0] = n__s(X) [0 0 1] [1] [0 0 1] [1] [1] [1] 0() = [0] >= [0] = n__0() [0] [0] [1 0 2] [1] [1 0 2] [1] activate(n__f(X)) = [0 1 1]X + [2] >= [0 1 1]X + [2] = f(activate(X)) [0 0 1] [0] [0 0 1] [0] [0 1 2] [1] [0 1 2] [1] activate(n__s(X)) = [1 0 1]X + [2] >= [1 0 1]X + [0] = s(activate(X)) [0 0 1] [1] [0 0 1] [1] [1] [1] activate(n__0()) = [1] >= [0] = 0() [0] [0] [1 0 1] [0] activate(X) = [0 1 1]X + [1] >= X = X [0 0 1] [0] problem: DPs: TRS: f(0()) -> cons(0(),n__f(n__s(n__0()))) f(s(0())) -> f(p(s(0()))) p(s(X)) -> X f(X) -> n__f(X) s(X) -> n__s(X) 0() -> n__0() activate(n__f(X)) -> f(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__0()) -> 0() activate(X) -> X Qed