Tool Bounds
Execution Time | 2.846694e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | AG01 3.24 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ f(s(s(x))) -> f(f(s(x)))
, f(s(0())) -> s(0())
, f(0()) -> s(0())}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 3.
The enriched problem is compatible with the following automaton:
{ 0_0() -> 1
, 0_1() -> 4
, 0_2() -> 7
, 0_3() -> 8
, f_0(1) -> 1
, f_1(2) -> 1
, f_1(2) -> 2
, f_1(3) -> 2
, f_2(2) -> 2
, f_2(5) -> 2
, f_2(6) -> 5
, s_0(1) -> 1
, s_1(1) -> 3
, s_1(4) -> 1
, s_1(4) -> 2
, s_1(7) -> 2
, s_2(4) -> 6
, s_2(7) -> 1
, s_2(7) -> 2
, s_2(7) -> 5
, s_3(8) -> 2}
Hurray, we answered YES(?,O(n^1))Tool CDI
Execution Time | 1.6217439ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | AG01 3.24 |
---|
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
f(delta, X0) = + 0*X0 + 0 + 2*X0*delta + 1*delta
0(delta) = + 2 + 0*delta
s(delta, X0) = + 0*X0 + 0 + 1*X0*delta + 2*delta
f_tau_1(delta) = delta/(0 + 2 * delta)
s_tau_1(delta) = delta/(0 + 1 * delta)
Time: 1.584324 seconds
Statistics:
Number of monomials: 247
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
Execution Time | 0.41037393ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | AG01 3.24 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ f(s(s(x))) -> f(f(s(x)))
, f(s(0())) -> s(0())
, f(0()) -> s(0())}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
0() = [0]
[0]
f(x1) = [1 2] x1 + [2]
[0 0] [1]
s(x1) = [1 3] x1 + [0]
[0 1] [1]
Hurray, we answered YES(?,O(n^2))Tool IDA
Execution Time | 0.45045805ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | AG01 3.24 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ f(s(s(x))) -> f(f(s(x)))
, f(s(0())) -> s(0())
, f(0()) -> s(0())}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying and IDA(2)-non-satisfying matrix interpretation:
Interpretation Functions:
0() = [0]
[0]
f(x1) = [1 2] x1 + [2]
[0 0] [1]
s(x1) = [1 3] x1 + [0]
[0 1] [1]
Hurray, we answered YES(?,O(n^2))Tool TRI
Execution Time | 0.17341995ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | AG01 3.24 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ f(s(s(x))) -> f(f(s(x)))
, f(s(0())) -> s(0())
, f(0()) -> s(0())}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
0() = [1]
[1]
f(x1) = [1 2] x1 + [1]
[0 0] [0]
s(x1) = [1 0] x1 + [2]
[0 0] [0]
Hurray, we answered YES(?,O(n^1))Tool TRI2
Execution Time | 0.1520729ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | AG01 3.24 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ f(s(s(x))) -> f(f(s(x)))
, f(s(0())) -> s(0())
, f(0()) -> s(0())}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
0() = [3]
[0]
f(x1) = [1 1] x1 + [1]
[0 0] [1]
s(x1) = [1 2] x1 + [0]
[0 1] [1]
Hurray, we answered YES(?,O(n^2))