Tool Bounds
Execution Time | 3.0771017e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | AG01 3.33 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ q(g(g(x))) -> p(g(f(x)))
, q(f(f(x))) -> p(f(g(x)))
, p(g(g(x))) -> q(g(f(x)))
, p(f(f(x))) -> q(f(g(x)))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ f_0(1) -> 1
, f_1(1) -> 3
, f_1(4) -> 2
, p_0(1) -> 1
, p_1(2) -> 1
, g_0(1) -> 1
, g_1(1) -> 4
, g_1(3) -> 2
, q_0(1) -> 1
, q_1(2) -> 1}
Hurray, we answered YES(?,O(n^1))Tool CDI
Execution Time | 60.038303ms |
---|
Answer | TIMEOUT |
---|
Input | AG01 3.33 |
---|
stdout:
TIMEOUT
Statistics:
Number of monomials: 1872
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
Execution Time | 0.930923ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | AG01 3.33 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ q(g(g(x))) -> p(g(f(x)))
, q(f(f(x))) -> p(f(g(x)))
, p(g(g(x))) -> q(g(f(x)))
, p(f(f(x))) -> q(f(g(x)))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1) = [1 0] x1 + [2]
[0 0] [0]
p(x1) = [1 2] x1 + [0]
[0 0] [0]
g(x1) = [1 0] x1 + [1]
[0 1] [1]
q(x1) = [1 2] x1 + [0]
[0 0] [0]
Hurray, we answered YES(?,O(n^2))Tool IDA
Execution Time | 1.149215ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | AG01 3.33 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ q(g(g(x))) -> p(g(f(x)))
, q(f(f(x))) -> p(f(g(x)))
, p(g(g(x))) -> q(g(f(x)))
, p(f(f(x))) -> q(f(g(x)))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying and IDA(2)-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1) = [1 0] x1 + [1]
[0 0] [0]
p(x1) = [1 2] x1 + [2]
[0 0] [0]
g(x1) = [1 0] x1 + [0]
[0 1] [1]
q(x1) = [1 2] x1 + [2]
[0 0] [0]
Hurray, we answered YES(?,O(n^2))Tool TRI
Execution Time | 0.32942295ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | AG01 3.33 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ q(g(g(x))) -> p(g(f(x)))
, q(f(f(x))) -> p(f(g(x)))
, p(g(g(x))) -> q(g(f(x)))
, p(f(f(x))) -> q(f(g(x)))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
f(x1) = [1 0] x1 + [1]
[0 0] [0]
p(x1) = [1 1] x1 + [0]
[0 1] [0]
g(x1) = [1 0] x1 + [0]
[0 1] [2]
q(x1) = [1 1] x1 + [0]
[0 1] [0]
Hurray, we answered YES(?,O(n^2))Tool TRI2
Execution Time | 0.33089495ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | AG01 3.33 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ q(g(g(x))) -> p(g(f(x)))
, q(f(f(x))) -> p(f(g(x)))
, p(g(g(x))) -> q(g(f(x)))
, p(f(f(x))) -> q(f(g(x)))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
f(x1) = [1 0] x1 + [2]
[0 0] [0]
p(x1) = [1 2] x1 + [0]
[0 0] [0]
g(x1) = [1 0] x1 + [0]
[0 1] [3]
q(x1) = [1 2] x1 + [0]
[0 0] [0]
Hurray, we answered YES(?,O(n^1))