Tool Bounds
Execution Time | 60.033443ms |
---|
Answer | TIMEOUT |
---|
Input | AG01 3.35 |
---|
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ g(0()) -> 0()
, f(s(x)) -> s(s(g(x)))
, f(0()) -> s(0())
, g(s(x)) -> f(x)}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool CDI
Execution Time | 1.6663878ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | AG01 3.35 |
---|
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
0(delta) = + 2 + 0*delta
s(delta, X0) = + 1*X0 + 1 + 0*X0*delta + 0*delta
g(delta, X0) = + 1*X0 + 0 + 1*X0*delta + 0*delta
f(delta, X0) = + 1*X0 + 1 + 1*X0*delta + 0*delta
s_tau_1(delta) = delta/(1 + 0 * delta)
g_tau_1(delta) = delta/(1 + 1 * delta)
f_tau_1(delta) = delta/(1 + 1 * delta)
Time: 1.628786 seconds
Statistics:
Number of monomials: 244
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
Execution Time | 0.35455298ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | AG01 3.35 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ g(0()) -> 0()
, f(s(x)) -> s(s(g(x)))
, f(0()) -> s(0())
, g(s(x)) -> f(x)}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
s(x1) = [1 0] x1 + [0]
[0 1] [1]
g(x1) = [1 1] x1 + [0]
[0 1] [0]
f(x1) = [1 1] x1 + [0]
[0 1] [1]
0() = [0]
[1]
Hurray, we answered YES(?,O(n^2))Tool IDA
Execution Time | 0.51830506ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | AG01 3.35 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ g(0()) -> 0()
, f(s(x)) -> s(s(g(x)))
, f(0()) -> s(0())
, g(s(x)) -> f(x)}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying and IDA(2)-non-satisfying matrix interpretation:
Interpretation Functions:
s(x1) = [1 0] x1 + [0]
[0 1] [1]
g(x1) = [1 1] x1 + [0]
[0 1] [2]
f(x1) = [1 1] x1 + [0]
[0 1] [3]
0() = [0]
[3]
Hurray, we answered YES(?,O(n^2))Tool TRI
Execution Time | 0.18090606ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | AG01 3.35 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ g(0()) -> 0()
, f(s(x)) -> s(s(g(x)))
, f(0()) -> s(0())
, g(s(x)) -> f(x)}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
s(x1) = [1 1] x1 + [1]
[0 1] [2]
g(x1) = [1 2] x1 + [1]
[0 1] [0]
f(x1) = [1 3] x1 + [1]
[0 1] [2]
0() = [0]
[1]
Hurray, we answered YES(?,O(n^2))Tool TRI2
Execution Time | 0.13794398ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | AG01 3.35 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ g(0()) -> 0()
, f(s(x)) -> s(s(g(x)))
, f(0()) -> s(0())
, g(s(x)) -> f(x)}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
s(x1) = [1 0] x1 + [0]
[0 1] [1]
g(x1) = [1 1] x1 + [0]
[0 1] [0]
f(x1) = [1 1] x1 + [0]
[0 1] [1]
0() = [0]
[1]
Hurray, we answered YES(?,O(n^2))