Tool Bounds
Execution Time | 6.0949087e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | AG01 3.37 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ evenodd(s(x), s(0())) -> evenodd(x, 0())
, evenodd(0(), s(0())) -> false()
, evenodd(x, 0()) -> not(evenodd(x, s(0())))
, not(false()) -> true()
, not(true()) -> false()}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 3.
The enriched problem is compatible with the following automaton:
{ true_0() -> 1
, true_1() -> 1
, true_2() -> 1
, true_2() -> 3
, true_2() -> 5
, true_3() -> 1
, true_3() -> 3
, true_3() -> 5
, not_0(1) -> 1
, not_1(3) -> 1
, not_2(5) -> 1
, not_2(5) -> 3
, not_2(5) -> 5
, false_0() -> 1
, false_1() -> 1
, false_1() -> 3
, false_1() -> 5
, false_2() -> 1
, false_3() -> 1
, false_3() -> 3
, false_3() -> 5
, 0_0() -> 1
, 0_1() -> 2
, 0_2() -> 7
, evenodd_0(1, 1) -> 1
, evenodd_1(1, 2) -> 1
, evenodd_1(1, 2) -> 3
, evenodd_1(1, 2) -> 5
, evenodd_1(1, 4) -> 3
, evenodd_2(1, 6) -> 5
, s_0(1) -> 1
, s_1(2) -> 4
, s_2(7) -> 6}
Hurray, we answered YES(?,O(n^1))Tool CDI
Execution Time | 48.649017ms |
---|
Answer | MAYBE |
---|
Input | AG01 3.37 |
---|
stdout:
MAYBE
Statistics:
Number of monomials: 650
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
Execution Time | 2.043027ms |
---|
Answer | YES(?,O(n^3)) |
---|
Input | AG01 3.37 |
---|
stdout:
YES(?,O(n^3))
We consider the following Problem:
Strict Trs:
{ evenodd(s(x), s(0())) -> evenodd(x, 0())
, evenodd(0(), s(0())) -> false()
, evenodd(x, 0()) -> not(evenodd(x, s(0())))
, not(false()) -> true()
, not(true()) -> false()}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^3))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
true() = [0]
[0]
[0]
not(x1) = [1 0 0] x1 + [1]
[0 0 0] [0]
[0 0 0] [0]
false() = [0]
[0]
[0]
0() = [0]
[0]
[2]
evenodd(x1, x2) = [1 2 0] x1 + [1 0 2] x2 + [0]
[0 0 0] [0 1 2] [0]
[0 0 0] [0 0 0] [0]
s(x1) = [1 2 0] x1 + [1]
[0 0 1] [2]
[0 0 0] [0]
Hurray, we answered YES(?,O(n^3))Tool IDA
Execution Time | 4.008928ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | AG01 3.37 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ evenodd(s(x), s(0())) -> evenodd(x, 0())
, evenodd(0(), s(0())) -> false()
, evenodd(x, 0()) -> not(evenodd(x, s(0())))
, not(false()) -> true()
, not(true()) -> false()}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying and IDA(2)-non-satisfying matrix interpretation:
Interpretation Functions:
true() = [0]
[0]
[0]
not(x1) = [1 0 0] x1 + [2]
[0 0 0] [0]
[0 0 0] [0]
false() = [0]
[0]
[0]
0() = [0]
[2]
[1]
evenodd(x1, x2) = [1 0 3] x1 + [1 2 0] x2 + [0]
[0 0 2] [0 1 0] [2]
[0 0 0] [0 0 0] [0]
s(x1) = [1 0 0] x1 + [0]
[0 0 0] [0]
[0 0 1] [3]
Hurray, we answered YES(?,O(n^2))Tool TRI
Execution Time | 0.57444215ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | AG01 3.37 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ evenodd(s(x), s(0())) -> evenodd(x, 0())
, evenodd(0(), s(0())) -> false()
, evenodd(x, 0()) -> not(evenodd(x, s(0())))
, not(false()) -> true()
, not(true()) -> false()}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
true() = [0]
[0]
[0]
not(x1) = [1 0 0] x1 + [1]
[0 0 0] [0]
[0 0 0] [0]
false() = [0]
[0]
[0]
0() = [1]
[2]
[0]
evenodd(x1, x2) = [1 0 2] x1 + [1 1 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 1] [2]
s(x1) = [1 0 2] x1 + [0]
[0 0 0] [0]
[0 0 0] [2]
Hurray, we answered YES(?,O(n^2))Tool TRI2
Execution Time | 0.24655795ms |
---|
Answer | MAYBE |
---|
Input | AG01 3.37 |
---|
stdout:
MAYBE
We consider the following Problem:
Strict Trs:
{ evenodd(s(x), s(0())) -> evenodd(x, 0())
, evenodd(0(), s(0())) -> false()
, evenodd(x, 0()) -> not(evenodd(x, s(0())))
, not(false()) -> true()
, not(true()) -> false()}
StartTerms: all
Strategy: none
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..