Tool Bounds
Execution Time | 60.03079ms |
---|
Answer | TIMEOUT |
---|
Input | AG01 3.7 |
---|
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ log(s(s(x))) -> s(log(s(half(x))))
, log(s(0())) -> 0()
, half(s(s(x))) -> s(half(x))
, half(0()) -> 0()}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool CDI
Execution Time | 22.511307ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | AG01 3.7 |
---|
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
log(delta, X0) = + 1*X0 + 0 + 1*X0*delta + 0*delta
s(delta, X0) = + 1*X0 + 3 + 0*X0*delta + 1*delta
half(delta, X0) = + 1*X0 + 0 + 0*X0*delta + 2*delta
0(delta) = + 0 + 0*delta
log_tau_1(delta) = delta/(1 + 1 * delta)
s_tau_1(delta) = delta/(1 + 0 * delta)
half_tau_1(delta) = delta/(1 + 0 * delta)
Time: 22.475070 seconds
Statistics:
Number of monomials: 999
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
Execution Time | 0.70837903ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | AG01 3.7 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ log(s(s(x))) -> s(log(s(half(x))))
, log(s(0())) -> 0()
, half(s(s(x))) -> s(half(x))
, half(0()) -> 0()}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
0() = [0]
[0]
half(x1) = [1 0] x1 + [1]
[0 1] [0]
s(x1) = [1 2] x1 + [0]
[0 1] [1]
log(x1) = [1 2] x1 + [0]
[0 1] [0]
Hurray, we answered YES(?,O(n^2))Tool IDA
Execution Time | 0.89274096ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | AG01 3.7 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ log(s(s(x))) -> s(log(s(half(x))))
, log(s(0())) -> 0()
, half(s(s(x))) -> s(half(x))
, half(0()) -> 0()}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying and IDA(2)-non-satisfying matrix interpretation:
Interpretation Functions:
0() = [0]
[0]
half(x1) = [1 0] x1 + [1]
[0 1] [0]
s(x1) = [1 1] x1 + [0]
[0 1] [1]
log(x1) = [1 2] x1 + [3]
[0 1] [0]
Hurray, we answered YES(?,O(n^2))Tool TRI
Execution Time | 0.2518239ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | AG01 3.7 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ log(s(s(x))) -> s(log(s(half(x))))
, log(s(0())) -> 0()
, half(s(s(x))) -> s(half(x))
, half(0()) -> 0()}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
0() = [0]
[2]
half(x1) = [1 0] x1 + [1]
[0 1] [0]
s(x1) = [1 1] x1 + [0]
[0 1] [1]
log(x1) = [1 2] x1 + [3]
[0 1] [0]
Hurray, we answered YES(?,O(n^2))Tool TRI2
Execution Time | 0.28032804ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | AG01 3.7 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ log(s(s(x))) -> s(log(s(half(x))))
, log(s(0())) -> 0()
, half(s(s(x))) -> s(half(x))
, half(0()) -> 0()}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
0() = [0]
[1]
half(x1) = [1 0] x1 + [2]
[0 1] [0]
s(x1) = [1 2] x1 + [0]
[0 1] [2]
log(x1) = [1 3] x1 + [0]
[0 1] [0]
Hurray, we answered YES(?,O(n^2))