Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ h(X) -> c(d(X))
, c(X) -> d(X)
, f(f(X)) -> c(f(g(f(X))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ f_0(1) -> 1
, f_1(1) -> 4
, f_1(3) -> 2
, c_0(1) -> 1
, c_1(2) -> 1
, c_1(2) -> 4
, g_0(1) -> 1
, g_1(4) -> 3
, d_0(1) -> 1
, d_1(1) -> 1
, d_1(1) -> 2
, d_2(2) -> 1
, d_2(2) -> 4
, h_0(1) -> 1}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
h(delta, X0) = + 1*X0 + 2 + 0*X0*delta + 3*delta
d(delta, X0) = + 1*X0 + 0 + 0*X0*delta + 0*delta
g(delta, X0) = + 0*X0 + 0 + 1*X0*delta + 0*delta
f(delta, X0) = + 0*X0 + 1 + 3*X0*delta + 0*delta
c(delta, X0) = + 1*X0 + 0 + 0*X0*delta + 1*delta
h_tau_1(delta) = delta/(1 + 0 * delta)
d_tau_1(delta) = delta/(1 + 0 * delta)
g_tau_1(delta) = delta/(0 + 1 * delta)
f_tau_1(delta) = delta/(0 + 3 * delta)
c_tau_1(delta) = delta/(1 + 0 * delta)
Time: 5.764680 seconds
Statistics:
Number of monomials: 470
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ h(X) -> c(d(X))
, c(X) -> d(X)
, f(f(X)) -> c(f(g(f(X))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1) = [1 1] x1 + [1]
[0 0] [3]
c(x1) = [1 0] x1 + [1]
[0 0] [3]
g(x1) = [1 0] x1 + [0]
[0 0] [1]
d(x1) = [1 0] x1 + [0]
[0 0] [3]
h(x1) = [1 0] x1 + [3]
[0 0] [3]
Hurray, we answered YES(?,O(n^2))Tool IDA
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ h(X) -> c(d(X))
, c(X) -> d(X)
, f(f(X)) -> c(f(g(f(X))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying and IDA(2)-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1) = [1 1] x1 + [1]
[0 0] [3]
c(x1) = [1 0] x1 + [2]
[0 0] [3]
g(x1) = [1 0] x1 + [0]
[0 0] [0]
d(x1) = [1 0] x1 + [0]
[0 0] [3]
h(x1) = [1 0] x1 + [3]
[0 0] [3]
Hurray, we answered YES(?,O(n^2))Tool TRI
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ h(X) -> c(d(X))
, c(X) -> d(X)
, f(f(X)) -> c(f(g(f(X))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
f(x1) = [1 1] x1 + [0]
[0 0] [2]
c(x1) = [1 0] x1 + [1]
[0 0] [2]
g(x1) = [1 0] x1 + [0]
[0 0] [0]
d(x1) = [1 0] x1 + [0]
[0 0] [1]
h(x1) = [1 3] x1 + [3]
[0 1] [3]
Hurray, we answered YES(?,O(n^2))Tool TRI2
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ h(X) -> c(d(X))
, c(X) -> d(X)
, f(f(X)) -> c(f(g(f(X))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
f(x1) = [1 1] x1 + [0]
[0 0] [2]
c(x1) = [1 0] x1 + [1]
[0 0] [2]
g(x1) = [1 0] x1 + [0]
[0 0] [0]
d(x1) = [1 0] x1 + [0]
[0 0] [1]
h(x1) = [1 3] x1 + [3]
[0 1] [3]
Hurray, we answered YES(?,O(n^2))