Tool Bounds
Execution Time | 2.214694e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | Der95 03 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs: {f(f(x)) -> g(f(x))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ f_0(1) -> 1
, f_1(1) -> 2
, g_0(1) -> 1
, g_1(2) -> 1
, g_1(2) -> 2}
Hurray, we answered YES(?,O(n^1))Tool CDI
Execution Time | 8.6587906e-2ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | Der95 03 |
---|
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
f(delta, X0) = + 0*X0 + 2 + 1*X0*delta + 0*delta
g(delta, X0) = + 1*X0 + 0 + 0*X0*delta + 0*delta
f_tau_1(delta) = delta/(0 + 1 * delta)
g_tau_1(delta) = delta/(1 + 0 * delta)
Time: 0.050622 seconds
Statistics:
Number of monomials: 54
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
Execution Time | 9.7540855e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | Der95 03 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs: {f(f(x)) -> g(f(x))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1) = [1] x1 + [3]
g(x1) = [1] x1 + [1]
Hurray, we answered YES(?,O(n^1))Tool IDA
Execution Time | 0.15153384ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | Der95 03 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs: {f(f(x)) -> g(f(x))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1) = [1] x1 + [3]
g(x1) = [1] x1 + [1]
Hurray, we answered YES(?,O(n^1))Tool TRI
Execution Time | 6.1422825e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | Der95 03 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs: {f(f(x)) -> g(f(x))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
f(x1) = [1] x1 + [3]
g(x1) = [1] x1 + [1]
Hurray, we answered YES(?,O(n^1))Tool TRI2
Execution Time | 7.747102e-2ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | Der95 03 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs: {f(f(x)) -> g(f(x))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
f(x1) = [1 0] x1 + [2]
[0 0] [0]
g(x1) = [1 3] x1 + [1]
[0 1] [0]
Hurray, we answered YES(?,O(n^2))