Tool Bounds
Execution Time | 60.022713ms |
---|
Answer | TIMEOUT |
---|
Input | Der95 04 |
---|
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ g(g(x)) -> f(x)
, f(f(x)) -> g(f(x))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool CDI
Execution Time | 9.6097946e-2ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | Der95 04 |
---|
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
f(delta, X0) = + 0*X0 + 0 + 1*X0*delta + 3*delta
g(delta, X0) = + 0*X0 + 0 + 1*X0*delta + 2*delta
f_tau_1(delta) = delta/(0 + 1 * delta)
g_tau_1(delta) = delta/(0 + 1 * delta)
Time: 0.058733 seconds
Statistics:
Number of monomials: 81
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
Execution Time | 8.855295e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | Der95 04 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ g(g(x)) -> f(x)
, f(f(x)) -> g(f(x))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1) = [1] x1 + [3]
g(x1) = [1] x1 + [2]
Hurray, we answered YES(?,O(n^1))Tool IDA
Execution Time | 0.17649102ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | Der95 04 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ g(g(x)) -> f(x)
, f(f(x)) -> g(f(x))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1) = [1] x1 + [3]
g(x1) = [1] x1 + [2]
Hurray, we answered YES(?,O(n^1))Tool TRI
Execution Time | 6.853008e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | Der95 04 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ g(g(x)) -> f(x)
, f(f(x)) -> g(f(x))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
f(x1) = [1] x1 + [3]
g(x1) = [1] x1 + [2]
Hurray, we answered YES(?,O(n^1))Tool TRI2
Execution Time | 5.863309e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | Der95 04 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ g(g(x)) -> f(x)
, f(f(x)) -> g(f(x))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
f(x1) = [1 1] x1 + [3]
[0 0] [3]
g(x1) = [1 1] x1 + [1]
[0 0] [3]
Hurray, we answered YES(?,O(n^1))