Problem HirokawaMiddeldorp 04 t007

Tool Bounds

Execution Time60.027122ms
Answer
TIMEOUT
InputHirokawaMiddeldorp 04 t007

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  f(x) -> g(x)
     , g(b()) -> g(a())
     , f(a()) -> f(b())}
  StartTerms: all
  Strategy: none

Certificate: TIMEOUT

Proof:
  Computation stopped due to timeout after 60.0 seconds.

Arrrr..

Tool CDI

Execution Time7.3029995e-2ms
Answer
MAYBE
InputHirokawaMiddeldorp 04 t007

stdout:

MAYBE

Statistics:
Number of monomials: 43
Last formula building started for bound 3
Last SAT solving started for bound 3

Tool EDA

Execution Time0.19712496ms
Answer
YES(?,O(n^2))
InputHirokawaMiddeldorp 04 t007

stdout:

YES(?,O(n^2))

We consider the following Problem:

  Strict Trs:
    {  f(x) -> g(x)
     , g(b()) -> g(a())
     , f(a()) -> f(b())}
  StartTerms: all
  Strategy: none

Certificate: YES(?,O(n^2))

Proof:
  We have the following EDA-non-satisfying matrix interpretation:
  Interpretation Functions:
   a() = [0]
         [2]
   f(x1) = [1 3] x1 + [3]
           [0 0]      [0]
   b() = [2]
         [1]
   g(x1) = [1 1] x1 + [2]
           [0 0]      [0]

Hurray, we answered YES(?,O(n^2))

Tool IDA

Execution Time0.29623604ms
Answer
YES(?,O(n^1))
InputHirokawaMiddeldorp 04 t007

stdout:

YES(?,O(n^1))

We consider the following Problem:

  Strict Trs:
    {  f(x) -> g(x)
     , g(b()) -> g(a())
     , f(a()) -> f(b())}
  StartTerms: all
  Strategy: none

Certificate: YES(?,O(n^1))

Proof:
  We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
  Interpretation Functions:
   a() = [0]
         [2]
   f(x1) = [1 3] x1 + [3]
           [0 0]      [0]
   b() = [2]
         [1]
   g(x1) = [1 1] x1 + [2]
           [0 0]      [0]

Hurray, we answered YES(?,O(n^1))

Tool TRI

Execution Time7.8063965e-2ms
Answer
YES(?,O(n^1))
InputHirokawaMiddeldorp 04 t007

stdout:

YES(?,O(n^1))

We consider the following Problem:

  Strict Trs:
    {  f(x) -> g(x)
     , g(b()) -> g(a())
     , f(a()) -> f(b())}
  StartTerms: all
  Strategy: none

Certificate: YES(?,O(n^1))

Proof:
  We have the following triangular matrix interpretation:
  Interpretation Functions:
   a() = [0]
         [2]
   f(x1) = [1 3] x1 + [3]
           [0 0]      [0]
   b() = [2]
         [1]
   g(x1) = [1 1] x1 + [2]
           [0 0]      [0]

Hurray, we answered YES(?,O(n^1))

Tool TRI2

Execution Time6.479287e-2ms
Answer
YES(?,O(n^1))
InputHirokawaMiddeldorp 04 t007

stdout:

YES(?,O(n^1))

We consider the following Problem:

  Strict Trs:
    {  f(x) -> g(x)
     , g(b()) -> g(a())
     , f(a()) -> f(b())}
  StartTerms: all
  Strategy: none

Certificate: YES(?,O(n^1))

Proof:
  We have the following triangular matrix interpretation:
  Interpretation Functions:
   a() = [0]
         [2]
   f(x1) = [1 3] x1 + [3]
           [0 0]      [0]
   b() = [2]
         [1]
   g(x1) = [1 1] x1 + [2]
           [0 0]      [0]

Hurray, we answered YES(?,O(n^1))