Problem ICFP 2010 138194

Tool Bounds

Execution Time6.981597ms
Answer
YES(?,O(n^1))
InputICFP 2010 138194

stdout:

YES(?,O(n^1))

We consider the following Problem:

  Strict Trs:
    {  5(5(4(1(2(1(2(3(2(3(5(0(x1)))))))))))) ->
       0(1(2(0(0(2(0(5(1(3(4(4(1(2(1(x1)))))))))))))))
     , 5(5(2(3(3(3(1(5(4(1(3(3(x1)))))))))))) ->
       4(2(0(1(1(1(0(5(3(4(0(2(2(0(x1))))))))))))))
     , 5(5(1(3(3(2(5(4(5(5(4(3(x1)))))))))))) ->
       1(4(5(5(3(4(0(1(2(2(0(0(5(3(2(x1)))))))))))))))
     , 5(4(5(5(3(3(3(2(2(3(4(4(x1)))))))))))) ->
       0(5(2(5(2(4(1(0(2(4(2(5(1(1(x1))))))))))))))
     , 5(4(5(3(3(3(1(2(1(5(4(5(x1)))))))))))) ->
       5(0(2(0(0(3(0(1(2(4(2(0(2(4(4(4(5(x1)))))))))))))))))
     , 5(4(4(2(5(4(1(1(3(2(5(4(x1)))))))))))) ->
       0(0(3(3(2(4(0(0(4(2(3(0(4(3(2(1(0(0(x1))))))))))))))))))
     , 5(4(3(5(2(4(3(0(5(3(2(3(x1)))))))))))) ->
       3(4(0(0(1(3(0(1(1(2(4(0(0(2(2(2(x1))))))))))))))))
     , 5(4(3(1(3(5(4(3(0(4(5(2(x1)))))))))))) ->
       0(2(4(0(5(3(0(0(0(4(0(5(5(2(4(0(x1))))))))))))))))
     , 5(4(2(5(3(1(2(3(5(2(4(4(x1)))))))))))) ->
       1(0(0(3(5(2(0(2(1(3(5(5(1(1(3(0(x1))))))))))))))))
     , 5(3(5(3(4(3(2(5(5(5(4(4(x1)))))))))))) ->
       2(0(2(3(0(0(1(3(2(2(3(0(4(5(x1))))))))))))))
     , 5(3(3(5(5(1(2(2(3(4(3(2(x1)))))))))))) ->
       1(1(4(3(1(0(5(1(1(0(0(2(4(3(3(0(x1))))))))))))))))
     , 5(3(3(2(5(3(5(4(4(5(3(1(x1)))))))))))) ->
       0(1(2(4(1(3(3(5(1(3(1(5(0(1(5(0(5(x1)))))))))))))))))
     , 5(3(2(2(0(5(4(2(2(1(1(4(x1)))))))))))) ->
       3(0(2(0(1(0(0(1(4(0(2(2(0(4(5(4(x1))))))))))))))))
     , 5(2(4(2(4(4(4(5(3(5(4(0(x1)))))))))))) ->
       5(0(1(3(4(1(5(5(0(5(5(2(3(0(4(x1)))))))))))))))
     , 5(1(3(2(5(2(3(4(1(5(3(1(x1)))))))))))) ->
       0(0(3(1(3(2(0(0(0(4(0(0(2(5(5(1(x1))))))))))))))))
     , 5(1(0(3(2(2(3(2(3(5(5(4(x1)))))))))))) ->
       5(0(1(1(3(2(0(3(2(1(2(2(3(1(x1))))))))))))))
     , 5(1(0(2(4(5(3(4(4(5(4(2(x1)))))))))))) ->
       0(3(4(0(4(0(2(3(4(3(0(3(3(0(0(x1)))))))))))))))
     , 5(0(1(5(2(5(4(2(2(2(5(0(x1)))))))))))) ->
       0(0(0(4(3(0(2(0(1(1(0(2(1(3(0(1(4(x1)))))))))))))))))
     , 4(5(5(4(2(3(5(3(3(3(2(2(x1)))))))))))) ->
       1(2(0(5(4(3(4(2(3(2(0(1(3(0(4(2(x1))))))))))))))))
     , 4(5(4(3(3(1(5(2(5(3(4(4(x1)))))))))))) ->
       0(0(3(0(5(1(0(1(4(2(0(0(3(4(1(3(0(x1)))))))))))))))))
     , 4(5(2(3(3(0(5(4(4(2(1(0(x1)))))))))))) ->
       5(0(5(5(2(0(0(0(2(0(0(3(0(1(5(1(1(x1)))))))))))))))))
     , 4(5(2(1(2(0(2(3(4(1(5(4(x1)))))))))))) ->
       0(4(2(4(4(1(2(0(2(0(0(0(1(2(0(0(1(x1)))))))))))))))))
     , 4(4(5(4(1(0(2(5(0(3(0(1(x1)))))))))))) ->
       2(0(1(0(2(0(5(0(0(1(2(5(0(3(x1))))))))))))))
     , 4(4(4(4(4(3(5(2(4(5(3(4(x1)))))))))))) ->
       4(0(4(0(2(4(0(4(5(0(1(0(5(0(0(0(0(3(x1))))))))))))))))))
     , 4(4(4(1(0(5(4(5(2(3(4(4(x1)))))))))))) ->
       0(1(5(3(4(4(5(1(4(0(1(3(0(5(x1))))))))))))))
     , 4(4(3(3(4(4(3(3(4(1(4(4(x1)))))))))))) ->
       3(0(1(1(1(5(1(1(3(1(0(0(3(4(3(4(x1))))))))))))))))
     , 4(4(1(1(0(1(2(5(1(5(4(3(x1)))))))))))) ->
       0(1(4(1(0(0(4(2(0(0(1(0(3(4(x1))))))))))))))
     , 4(3(5(0(5(5(4(5(4(3(3(1(x1)))))))))))) ->
       0(0(0(4(4(1(0(0(2(5(0(5(1(3(x1))))))))))))))
     , 4(3(2(5(4(2(5(4(1(1(0(2(x1)))))))))))) ->
       3(1(0(1(0(0(4(1(2(4(0(1(2(4(2(3(0(x1)))))))))))))))))
     , 4(3(0(5(5(3(2(3(5(1(4(4(x1)))))))))))) ->
       4(3(0(1(0(1(0(0(1(0(4(5(3(4(4(x1)))))))))))))))
     , 4(2(5(4(3(0(3(3(5(4(5(4(x1)))))))))))) ->
       4(2(4(3(4(1(1(4(3(4(2(2(4(5(5(x1)))))))))))))))
     , 4(2(5(1(5(4(4(5(4(3(2(4(x1)))))))))))) ->
       1(4(2(1(1(5(1(4(0(2(1(1(4(5(0(x1)))))))))))))))
     , 4(2(5(1(0(5(2(2(2(1(5(0(x1)))))))))))) ->
       3(2(1(3(0(5(0(0(1(4(1(2(0(0(0(1(x1))))))))))))))))
     , 4(0(3(3(5(3(4(1(5(3(5(3(x1)))))))))))) ->
       2(1(3(4(0(0(0(2(2(2(0(0(4(1(0(0(0(x1)))))))))))))))))
     , 3(5(5(4(2(5(3(2(4(5(4(4(x1)))))))))))) ->
       4(3(0(4(2(0(1(5(0(3(2(4(1(1(x1))))))))))))))
     , 3(5(4(5(0(4(4(2(5(2(5(3(x1)))))))))))) ->
       1(3(1(5(2(0(0(5(4(3(3(0(0(4(0(x1)))))))))))))))
     , 3(5(4(3(5(5(4(4(5(5(2(1(x1)))))))))))) ->
       2(2(5(0(2(1(1(1(1(4(0(0(2(3(0(0(4(x1)))))))))))))))))
     , 3(5(4(3(5(4(3(0(5(4(4(1(x1)))))))))))) ->
       2(5(0(0(3(1(0(0(1(2(1(3(0(1(2(2(1(x1)))))))))))))))))
     , 3(5(3(2(5(3(2(1(4(5(4(2(x1)))))))))))) ->
       1(1(5(2(0(2(4(5(2(3(0(1(0(0(1(0(2(x1)))))))))))))))))
     , 3(5(3(2(2(1(2(0(3(3(5(3(x1)))))))))))) ->
       3(3(5(5(3(4(0(0(5(2(2(0(2(0(4(x1)))))))))))))))
     , 3(5(2(3(3(5(4(3(5(0(1(4(x1)))))))))))) ->
       4(0(0(3(4(4(5(5(2(1(1(2(1(0(x1))))))))))))))
     , 3(5(1(5(1(1(5(5(4(4(0(2(x1)))))))))))) ->
       3(1(0(0(3(4(1(1(1(5(4(2(5(2(5(2(x1))))))))))))))))
     , 3(5(1(1(5(4(4(4(2(3(5(4(x1)))))))))))) ->
       1(3(3(3(2(0(0(5(3(5(0(1(2(4(5(0(x1))))))))))))))))
     , 3(3(5(4(4(0(4(2(1(4(2(3(x1)))))))))))) ->
       2(1(1(2(0(2(2(2(0(5(2(1(5(0(3(x1)))))))))))))))
     , 3(3(5(4(3(2(5(0(2(2(3(4(x1)))))))))))) ->
       1(1(3(3(5(0(1(0(4(2(4(0(3(2(x1))))))))))))))
     , 3(3(3(3(3(3(5(0(4(5(0(4(x1)))))))))))) ->
       1(0(5(1(4(1(0(1(3(3(0(4(4(2(2(4(x1))))))))))))))))
     , 3(3(3(1(4(2(5(4(4(4(1(4(x1)))))))))))) ->
       1(0(0(4(0(5(2(3(0(2(0(0(1(0(5(5(3(1(x1))))))))))))))))))
     , 3(2(5(4(5(2(4(0(0(0(5(4(x1)))))))))))) ->
       3(1(1(3(1(3(4(5(3(1(0(0(1(2(x1))))))))))))))
     , 3(2(4(5(4(3(1(5(2(3(3(2(x1)))))))))))) ->
       1(0(1(3(1(2(5(5(0(4(2(1(2(0(0(4(2(x1)))))))))))))))))
     , 3(2(2(0(4(3(5(0(5(4(0(4(x1)))))))))))) ->
       3(4(0(1(2(3(1(2(1(0(0(2(2(5(x1))))))))))))))
     , 3(0(4(3(2(1(0(4(5(2(1(2(x1)))))))))))) ->
       5(1(4(0(2(4(2(1(0(2(4(2(0(0(x1))))))))))))))
     , 3(0(2(1(5(4(2(5(3(5(1(1(x1)))))))))))) ->
       2(0(5(0(1(2(3(0(1(4(3(1(3(3(x1))))))))))))))
     , 2(5(5(2(2(0(5(3(2(3(2(1(x1)))))))))))) ->
       1(3(1(3(5(0(2(0(0(0(0(1(2(4(4(1(1(0(x1))))))))))))))))))
     , 2(4(5(3(1(2(1(4(4(5(5(3(x1)))))))))))) ->
       0(0(3(0(0(4(4(3(5(0(0(2(2(4(0(x1)))))))))))))))
     , 2(4(4(4(3(1(3(5(1(3(3(1(x1)))))))))))) ->
       0(1(4(3(0(4(0(0(2(1(5(4(4(0(x1))))))))))))))
     , 2(4(3(1(4(1(5(3(1(3(3(3(x1)))))))))))) ->
       2(3(1(1(1(0(0(0(0(0(3(0(4(5(5(5(x1))))))))))))))))
     , 2(4(1(5(5(4(1(2(5(3(2(3(x1)))))))))))) ->
       4(2(2(1(2(0(0(5(0(2(3(2(0(0(5(x1)))))))))))))))
     , 2(3(5(5(5(4(4(1(4(5(3(0(x1)))))))))))) ->
       1(1(5(5(2(3(0(0(0(0(0(2(0(2(0(3(0(3(x1))))))))))))))))))
     , 2(3(5(4(5(1(4(4(4(0(3(5(x1)))))))))))) ->
       0(1(0(4(2(2(4(0(3(4(3(0(1(3(0(0(5(x1)))))))))))))))))
     , 2(3(5(2(3(3(3(2(5(4(4(1(x1)))))))))))) ->
       4(3(2(1(2(5(0(2(0(0(4(2(0(0(5(1(x1))))))))))))))))
     , 2(3(1(5(1(2(2(3(5(3(1(5(x1)))))))))))) ->
       1(1(1(1(5(0(0(3(0(4(3(0(0(4(1(1(5(x1)))))))))))))))))
     , 2(3(0(2(3(1(2(2(3(3(5(0(x1)))))))))))) ->
       1(3(1(5(2(4(0(1(4(5(4(3(4(0(0(x1)))))))))))))))
     , 2(2(5(4(4(4(3(4(2(3(4(3(x1)))))))))))) ->
       3(4(0(3(4(0(1(1(3(4(3(4(5(4(3(x1)))))))))))))))
     , 2(2(4(2(4(5(3(2(2(2(5(4(x1)))))))))))) ->
       0(1(3(0(4(1(1(3(1(1(1(4(1(4(0(2(0(0(x1))))))))))))))))))
     , 2(1(5(2(3(2(2(2(5(5(5(2(x1)))))))))))) ->
       2(4(3(5(2(4(0(2(0(0(0(2(2(0(4(x1)))))))))))))))
     , 2(1(4(5(5(4(4(5(4(4(3(1(x1)))))))))))) ->
       0(2(0(0(0(3(3(1(5(0(2(2(0(1(0(2(0(2(x1))))))))))))))))))
     , 2(1(2(4(4(2(2(3(5(4(4(3(x1)))))))))))) ->
       0(4(1(2(0(5(0(0(3(3(0(0(4(5(1(x1)))))))))))))))
     , 2(1(2(2(5(4(1(4(4(0(4(3(x1)))))))))))) ->
       0(0(3(1(4(0(0(0(3(0(5(3(0(0(0(3(2(x1)))))))))))))))))
     , 2(1(2(2(3(2(1(1(5(2(5(4(x1)))))))))))) ->
       3(0(1(1(0(3(1(5(0(0(2(4(1(3(3(0(x1))))))))))))))))
     , 2(1(1(2(3(5(4(2(4(4(4(4(x1)))))))))))) ->
       2(4(2(1(0(1(0(3(1(1(3(3(2(1(x1))))))))))))))
     , 2(0(4(4(2(4(3(5(3(0(5(3(x1)))))))))))) ->
       2(4(3(0(3(4(3(4(3(0(1(0(2(3(x1))))))))))))))
     , 1(5(5(3(3(2(3(2(5(4(1(0(x1)))))))))))) ->
       4(3(0(0(1(0(4(0(5(0(0(0(2(0(1(2(4(x1)))))))))))))))))
     , 1(5(4(3(1(4(4(5(0(2(2(2(x1)))))))))))) ->
       3(4(5(5(0(1(3(0(1(5(5(2(0(3(x1))))))))))))))
     , 1(5(4(1(5(2(1(2(4(4(4(4(x1)))))))))))) ->
       2(0(2(0(1(3(0(4(4(0(0(2(0(2(4(5(2(4(x1))))))))))))))))))
     , 1(5(3(1(1(1(5(4(2(2(5(4(x1)))))))))))) ->
       1(1(4(5(2(1(5(2(1(5(2(0(0(4(5(x1)))))))))))))))
     , 1(5(2(1(5(2(1(4(2(2(4(2(x1)))))))))))) ->
       4(4(4(0(2(3(4(3(0(0(0(0(0(2(1(1(x1))))))))))))))))
     , 1(5(1(2(3(2(5(2(1(5(4(1(x1)))))))))))) ->
       2(0(0(5(3(3(0(1(2(0(4(3(4(2(x1))))))))))))))
     , 1(4(4(5(3(2(0(5(1(4(5(3(x1)))))))))))) ->
       1(0(0(5(2(0(4(0(0(2(0(0(3(3(0(5(0(x1)))))))))))))))))
     , 1(4(4(2(4(0(5(4(0(3(3(4(x1)))))))))))) ->
       3(4(0(3(2(0(0(4(0(1(4(0(3(2(x1))))))))))))))
     , 1(4(3(3(2(2(5(2(5(3(3(1(x1)))))))))))) ->
       3(0(3(0(1(0(0(0(1(5(4(3(0(5(1(x1)))))))))))))))
     , 1(3(5(1(3(0(5(4(3(1(3(2(x1)))))))))))) ->
       0(0(2(4(1(1(1(1(4(4(0(0(0(4(x1))))))))))))))
     , 1(3(4(3(5(3(2(4(4(2(1(3(x1)))))))))))) ->
       0(2(0(1(2(1(2(0(3(0(1(2(1(0(0(3(3(x1)))))))))))))))))
     , 1(3(3(5(4(4(0(1(3(3(5(4(x1)))))))))))) ->
       5(5(3(0(0(2(3(1(0(4(2(0(0(3(1(5(x1))))))))))))))))
     , 1(3(3(2(3(2(3(2(1(4(4(4(x1)))))))))))) ->
       5(1(4(0(5(0(1(5(3(5(0(4(1(1(x1))))))))))))))
     , 1(3(1(1(5(3(5(4(3(3(4(2(x1)))))))))))) ->
       0(5(1(2(3(1(3(4(3(4(0(0(3(1(1(x1)))))))))))))))
     , 1(3(0(5(1(2(3(5(4(4(5(4(x1)))))))))))) ->
       1(0(3(1(0(0(0(4(0(0(4(5(1(5(0(2(x1))))))))))))))))
     , 1(2(3(3(4(4(4(5(3(3(5(4(x1)))))))))))) ->
       1(1(5(1(1(1(0(1(4(3(0(1(3(1(2(0(1(4(x1))))))))))))))))))
     , 1(1(2(5(1(5(4(3(3(3(2(4(x1)))))))))))) ->
       0(0(1(0(1(2(5(0(1(4(3(5(1(3(0(x1)))))))))))))))
     , 1(1(2(3(4(3(3(3(3(1(4(4(x1)))))))))))) ->
       1(2(0(4(0(5(0(1(2(1(3(3(1(0(2(5(x1))))))))))))))))
     , 0(5(4(4(2(5(4(5(2(2(3(4(x1)))))))))))) ->
       2(3(0(3(3(4(1(1(1(0(2(1(0(1(3(0(1(1(x1))))))))))))))))))
     , 0(5(2(5(3(2(5(4(1(3(2(3(x1)))))))))))) ->
       3(2(2(0(1(0(4(0(2(0(0(1(1(1(3(0(x1))))))))))))))))
     , 0(4(4(2(3(2(2(5(5(4(5(1(x1)))))))))))) ->
       1(0(4(0(2(0(0(5(5(0(2(1(3(0(3(3(x1))))))))))))))))
     , 0(2(5(5(4(4(4(2(2(3(5(3(x1)))))))))))) ->
       5(1(5(0(0(1(4(5(0(5(4(0(0(0(5(2(x1))))))))))))))))
     , 0(2(2(4(4(5(4(3(1(0(0(4(x1)))))))))))) ->
       3(0(0(2(4(0(1(1(0(4(1(0(0(0(x1))))))))))))))
     , 0(2(2(4(1(1(3(2(3(5(0(4(x1)))))))))))) ->
       0(1(4(0(5(0(1(1(3(1(3(3(1(4(x1))))))))))))))
     , 0(2(0(4(2(3(2(2(5(5(4(4(x1)))))))))))) ->
       1(0(5(2(0(0(3(0(1(1(0(1(3(2(3(0(x1))))))))))))))))}
  StartTerms: all
  Strategy: none

Certificate: YES(?,O(n^1))

Proof:
  The problem is match-bounded by 1.
  The enriched problem is compatible with the following automaton:
  {  4_0(1) -> 1
   , 4_1(1) -> 173
   , 4_1(2) -> 173
   , 4_1(12) -> 11
   , 4_1(13) -> 12
   , 4_1(16) -> 1
   , 4_1(16) -> 15
   , 4_1(16) -> 42
   , 4_1(16) -> 69
   , 4_1(16) -> 173
   , 4_1(16) -> 180
   , 4_1(16) -> 194
   , 4_1(16) -> 241
   , 4_1(16) -> 287
   , 4_1(16) -> 364
   , 4_1(16) -> 538
   , 4_1(16) -> 696
   , 4_1(16) -> 713
   , 4_1(16) -> 793
   , 4_1(16) -> 878
   , 4_1(25) -> 24
   , 4_1(28) -> 111
   , 4_1(29) -> 173
   , 4_1(30) -> 29
   , 4_1(34) -> 33
   , 4_1(42) -> 241
   , 4_1(47) -> 46
   , 4_1(51) -> 50
   , 4_1(53) -> 417
   , 4_1(55) -> 173
   , 4_1(63) -> 62
   , 4_1(67) -> 66
   , 4_1(68) -> 67
   , 4_1(69) -> 68
   , 4_1(74) -> 73
   , 4_1(77) -> 76
   , 4_1(81) -> 80
   , 4_1(83) -> 407
   , 4_1(84) -> 703
   , 4_1(85) -> 173
   , 4_1(86) -> 85
   , 4_1(95) -> 94
   , 4_1(98) -> 536
   , 4_1(100) -> 99
   , 4_1(107) -> 106
   , 4_1(111) -> 627
   , 4_1(112) -> 2
   , 4_1(123) -> 251
   , 4_1(125) -> 173
   , 4_1(137) -> 136
   , 4_1(147) -> 146
   , 4_1(148) -> 4
   , 4_1(167) -> 166
   , 4_1(172) -> 171
   , 4_1(173) -> 364
   , 4_1(176) -> 175
   , 4_1(191) -> 190
   , 4_1(194) -> 374
   , 4_1(195) -> 758
   , 4_1(206) -> 205
   , 4_1(208) -> 207
   , 4_1(212) -> 211
   , 4_1(217) -> 216
   , 4_1(232) -> 231
   , 4_1(234) -> 233
   , 4_1(247) -> 246
   , 4_1(263) -> 2
   , 4_1(265) -> 264
   , 4_1(266) -> 265
   , 4_1(287) -> 713
   , 4_1(288) -> 2
   , 4_1(289) -> 288
   , 4_1(292) -> 291
   , 4_1(294) -> 293
   , 4_1(304) -> 303
   , 4_1(305) -> 304
   , 4_1(308) -> 307
   , 4_1(310) -> 878
   , 4_1(322) -> 321
   , 4_1(323) -> 3
   , 4_1(327) -> 326
   , 4_1(332) -> 217
   , 4_1(339) -> 774
   , 4_1(345) -> 344
   , 4_1(348) -> 347
   , 4_1(352) -> 351
   , 4_1(353) -> 173
   , 4_1(362) -> 361
   , 4_1(365) -> 17
   , 4_1(367) -> 366
   , 4_1(370) -> 369
   , 4_1(372) -> 371
   , 4_1(380) -> 379
   , 4_1(385) -> 384
   , 4_1(386) -> 173
   , 4_1(394) -> 393
   , 4_1(397) -> 173
   , 4_1(399) -> 398
   , 4_1(408) -> 407
   , 4_1(410) -> 354
   , 4_1(425) -> 424
   , 4_1(429) -> 384
   , 4_1(431) -> 1
   , 4_1(437) -> 436
   , 4_1(443) -> 1
   , 4_1(444) -> 2
   , 4_1(459) -> 458
   , 4_1(472) -> 471
   , 4_1(481) -> 480
   , 4_1(482) -> 481
   , 4_1(490) -> 489
   , 4_1(495) -> 494
   , 4_1(498) -> 824
   , 4_1(524) -> 523
   , 4_1(526) -> 525
   , 4_1(529) -> 528
   , 4_1(536) -> 535
   , 4_1(537) -> 536
   , 4_1(539) -> 113
   , 4_1(555) -> 554
   , 4_1(568) -> 567
   , 4_1(582) -> 581
   , 4_1(585) -> 584
   , 4_1(590) -> 589
   , 4_1(598) -> 597
   , 4_1(611) -> 610
   , 4_1(612) -> 611
   , 4_1(614) -> 613
   , 4_1(615) -> 614
   , 4_1(622) -> 621
   , 4_1(639) -> 638
   , 4_1(648) -> 680
   , 4_1(663) -> 662
   , 4_1(666) -> 665
   , 4_1(669) -> 668
   , 4_1(681) -> 680
   , 4_1(691) -> 690
   , 4_1(695) -> 694
   , 4_1(697) -> 421
   , 4_1(700) -> 699
   , 4_1(702) -> 701
   , 4_1(705) -> 704
   , 4_1(710) -> 709
   , 4_1(712) -> 711
   , 4_1(716) -> 715
   , 4_1(723) -> 722
   , 4_1(725) -> 724
   , 4_1(726) -> 125
   , 4_1(730) -> 729
   , 4_1(759) -> 185
   , 4_1(775) -> 774
   , 4_1(787) -> 786
   , 4_1(789) -> 788
   , 4_1(797) -> 796
   , 4_1(818) -> 817
   , 4_1(819) -> 818
   , 4_1(825) -> 824
   , 4_1(834) -> 16
   , 4_1(835) -> 834
   , 4_1(839) -> 838
   , 4_1(854) -> 853
   , 4_1(858) -> 857
   , 4_1(869) -> 868
   , 4_1(879) -> 878
   , 4_1(881) -> 880
   , 4_1(886) -> 885
   , 4_1(887) -> 886
   , 4_1(907) -> 906
   , 4_1(922) -> 921
   , 4_1(924) -> 923
   , 4_1(932) -> 931
   , 4_1(935) -> 934
   , 4_1(943) -> 942
   , 4_1(956) -> 955
   , 4_1(958) -> 230
   , 4_1(971) -> 970
   , 4_1(985) -> 984
   , 4_1(990) -> 112
   , 4_1(1004) -> 1003
   , 4_1(1008) -> 1007
   , 4_1(1013) -> 1012
   , 5_0(1) -> 1
   , 5_1(1) -> 69
   , 5_1(2) -> 498
   , 5_1(9) -> 8
   , 5_1(15) -> 195
   , 5_1(16) -> 69
   , 5_1(23) -> 22
   , 5_1(28) -> 385
   , 5_1(29) -> 69
   , 5_1(31) -> 30
   , 5_1(32) -> 31
   , 5_1(41) -> 40
   , 5_1(42) -> 498
   , 5_1(43) -> 2
   , 5_1(45) -> 44
   , 5_1(53) -> 52
   , 5_1(54) -> 1
   , 5_1(54) -> 15
   , 5_1(54) -> 28
   , 5_1(54) -> 68
   , 5_1(54) -> 69
   , 5_1(54) -> 124
   , 5_1(54) -> 172
   , 5_1(54) -> 173
   , 5_1(54) -> 183
   , 5_1(54) -> 192
   , 5_1(54) -> 195
   , 5_1(54) -> 287
   , 5_1(54) -> 339
   , 5_1(54) -> 467
   , 5_1(54) -> 498
   , 5_1(54) -> 599
   , 5_1(54) -> 824
   , 5_1(54) -> 825
   , 5_1(54) -> 967
   , 5_1(69) -> 194
   , 5_1(85) -> 69
   , 5_1(102) -> 101
   , 5_1(109) -> 108
   , 5_1(110) -> 109
   , 5_1(112) -> 69
   , 5_1(115) -> 114
   , 5_1(121) -> 120
   , 5_1(122) -> 121
   , 5_1(123) -> 957
   , 5_1(136) -> 69
   , 5_1(141) -> 140
   , 5_1(152) -> 151
   , 5_1(156) -> 155
   , 5_1(159) -> 158
   , 5_1(173) -> 172
   , 5_1(178) -> 177
   , 5_1(179) -> 178
   , 5_1(181) -> 180
   , 5_1(182) -> 181
   , 5_1(193) -> 496
   , 5_1(194) -> 639
   , 5_1(195) -> 194
   , 5_1(204) -> 550
   , 5_1(231) -> 230
   , 5_1(243) -> 242
   , 5_1(252) -> 55
   , 5_1(253) -> 252
   , 5_1(263) -> 69
   , 5_1(281) -> 280
   , 5_1(286) -> 285
   , 5_1(288) -> 69
   , 5_1(289) -> 69
   , 5_1(295) -> 294
   , 5_1(299) -> 298
   , 5_1(302) -> 3
   , 5_1(306) -> 305
   , 5_1(314) -> 313
   , 5_1(322) -> 362
   , 5_1(337) -> 336
   , 5_1(339) -> 338
   , 5_1(340) -> 69
   , 5_1(363) -> 362
   , 5_1(378) -> 377
   , 5_1(390) -> 389
   , 5_1(414) -> 413
   , 5_1(420) -> 419
   , 5_1(424) -> 423
   , 5_1(430) -> 429
   , 5_1(431) -> 69
   , 5_1(442) -> 125
   , 5_1(443) -> 69
   , 5_1(444) -> 69
   , 5_1(455) -> 136
   , 5_1(460) -> 459
   , 5_1(467) -> 937
   , 5_1(468) -> 69
   , 5_1(469) -> 468
   , 5_1(470) -> 469
   , 5_1(475) -> 474
   , 5_1(483) -> 482
   , 5_1(484) -> 483
   , 5_1(494) -> 493
   , 5_1(497) -> 496
   , 5_1(500) -> 69
   , 5_1(504) -> 503
   , 5_1(506) -> 505
   , 5_1(516) -> 515
   , 5_1(520) -> 519
   , 5_1(527) -> 112
   , 5_1(538) -> 825
   , 5_1(541) -> 540
   , 5_1(550) -> 549
   , 5_1(556) -> 555
   , 5_1(565) -> 564
   , 5_1(566) -> 565
   , 5_1(580) -> 496
   , 5_1(591) -> 126
   , 5_1(602) -> 601
   , 5_1(617) -> 616
   , 5_1(627) -> 626
   , 5_1(628) -> 69
   , 5_1(645) -> 644
   , 5_1(650) -> 455
   , 5_1(676) -> 675
   , 5_1(686) -> 685
   , 5_1(701) -> 700
   , 5_1(713) -> 712
   , 5_1(728) -> 727
   , 5_1(742) -> 741
   , 5_1(752) -> 751
   , 5_1(765) -> 764
   , 5_1(771) -> 770
   , 5_1(793) -> 181
   , 5_1(799) -> 798
   , 5_1(803) -> 505
   , 5_1(805) -> 86
   , 5_1(806) -> 805
   , 5_1(812) -> 811
   , 5_1(813) -> 812
   , 5_1(826) -> 137
   , 5_1(829) -> 828
   , 5_1(832) -> 831
   , 5_1(834) -> 69
   , 5_1(847) -> 846
   , 5_1(855) -> 113
   , 5_1(878) -> 877
   , 5_1(899) -> 54
   , 5_1(911) -> 583
   , 5_1(914) -> 913
   , 5_1(916) -> 915
   , 5_1(936) -> 935
   , 5_1(953) -> 952
   , 5_1(960) -> 959
   , 5_1(995) -> 994
   , 5_1(996) -> 995
   , 5_1(1000) -> 581
   , 5_1(1005) -> 1004
   , 5_1(1007) -> 1006
   , 5_1(1017) -> 1016
   , 2_0(1) -> 1
   , 2_1(1) -> 42
   , 2_1(2) -> 538
   , 2_1(4) -> 3
   , 2_1(7) -> 6
   , 2_1(14) -> 454
   , 2_1(15) -> 14
   , 2_1(16) -> 42
   , 2_1(17) -> 16
   , 2_1(27) -> 26
   , 2_1(28) -> 27
   , 2_1(29) -> 42
   , 2_1(37) -> 36
   , 2_1(38) -> 37
   , 2_1(42) -> 98
   , 2_1(44) -> 43
   , 2_1(46) -> 45
   , 2_1(50) -> 49
   , 2_1(52) -> 51
   , 2_1(53) -> 845
   , 2_1(56) -> 55
   , 2_1(62) -> 61
   , 2_1(64) -> 63
   , 2_1(66) -> 65
   , 2_1(69) -> 580
   , 2_1(73) -> 72
   , 2_1(78) -> 77
   , 2_1(83) -> 82
   , 2_1(84) -> 590
   , 2_1(85) -> 42
   , 2_1(86) -> 42
   , 2_1(94) -> 93
   , 2_1(98) -> 97
   , 2_1(99) -> 2
   , 2_1(110) -> 619
   , 2_1(111) -> 110
   , 2_1(113) -> 538
   , 2_1(116) -> 115
   , 2_1(118) -> 117
   , 2_1(124) -> 352
   , 2_1(125) -> 1
   , 2_1(125) -> 14
   , 2_1(125) -> 15
   , 2_1(125) -> 27
   , 2_1(125) -> 28
   , 2_1(125) -> 42
   , 2_1(125) -> 67
   , 2_1(125) -> 69
   , 2_1(125) -> 111
   , 2_1(125) -> 124
   , 2_1(125) -> 159
   , 2_1(125) -> 173
   , 2_1(125) -> 287
   , 2_1(125) -> 364
   , 2_1(125) -> 478
   , 2_1(125) -> 538
   , 2_1(125) -> 600
   , 2_1(125) -> 696
   , 2_1(125) -> 845
   , 2_1(127) -> 126
   , 2_1(133) -> 132
   , 2_1(134) -> 133
   , 2_1(135) -> 169
   , 2_1(146) -> 145
   , 2_1(161) -> 160
   , 2_1(169) -> 168
   , 2_1(170) -> 169
   , 2_1(173) -> 538
   , 2_1(183) -> 182
   , 2_1(184) -> 478
   , 2_1(187) -> 186
   , 2_1(194) -> 193
   , 2_1(198) -> 197
   , 2_1(201) -> 200
   , 2_1(203) -> 202
   , 2_1(204) -> 203
   , 2_1(210) -> 209
   , 2_1(220) -> 219
   , 2_1(225) -> 224
   , 2_1(227) -> 948
   , 2_1(229) -> 29
   , 2_1(235) -> 234
   , 2_1(237) -> 236
   , 2_1(248) -> 247
   , 2_1(254) -> 253
   , 2_1(258) -> 257
   , 2_1(264) -> 263
   , 2_1(268) -> 267
   , 2_1(270) -> 269
   , 2_1(275) -> 274
   , 2_1(276) -> 948
   , 2_1(279) -> 278
   , 2_1(285) -> 284
   , 2_1(286) -> 813
   , 2_1(287) -> 793
   , 2_1(291) -> 290
   , 2_1(328) -> 327
   , 2_1(336) -> 335
   , 2_1(340) -> 42
   , 2_1(347) -> 346
   , 2_1(351) -> 350
   , 2_1(353) -> 42
   , 2_1(373) -> 372
   , 2_1(374) -> 373
   , 2_1(375) -> 30
   , 2_1(382) -> 381
   , 2_1(384) -> 508
   , 2_1(386) -> 85
   , 2_1(396) -> 395
   , 2_1(403) -> 402
   , 2_1(404) -> 403
   , 2_1(405) -> 404
   , 2_1(411) -> 410
   , 2_1(417) -> 416
   , 2_1(421) -> 420
   , 2_1(429) -> 125
   , 2_1(431) -> 42
   , 2_1(432) -> 431
   , 2_1(440) -> 439
   , 2_1(441) -> 570
   , 2_1(443) -> 42
   , 2_1(445) -> 42
   , 2_1(450) -> 449
   , 2_1(456) -> 455
   , 2_1(458) -> 457
   , 2_1(461) -> 460
   , 2_1(466) -> 487
   , 2_1(467) -> 748
   , 2_1(476) -> 475
   , 2_1(477) -> 476
   , 2_1(478) -> 735
   , 2_1(485) -> 484
   , 2_1(496) -> 495
   , 2_1(498) -> 497
   , 2_1(501) -> 500
   , 2_1(510) -> 509
   , 2_1(512) -> 511
   , 2_1(513) -> 512
   , 2_1(514) -> 513
   , 2_1(517) -> 516
   , 2_1(525) -> 524
   , 2_1(538) -> 537
   , 2_1(542) -> 541
   , 2_1(545) -> 544
   , 2_1(564) -> 563
   , 2_1(569) -> 568
   , 2_1(571) -> 570
   , 2_1(573) -> 572
   , 2_1(576) -> 575
   , 2_1(580) -> 579
   , 2_1(584) -> 583
   , 2_1(586) -> 585
   , 2_1(589) -> 588
   , 2_1(594) -> 593
   , 2_1(604) -> 603
   , 2_1(610) -> 609
   , 2_1(625) -> 624
   , 2_1(628) -> 42
   , 2_1(640) -> 17
   , 2_1(642) -> 641
   , 2_1(647) -> 646
   , 2_1(649) -> 648
   , 2_1(651) -> 650
   , 2_1(658) -> 657
   , 2_1(660) -> 659
   , 2_1(664) -> 663
   , 2_1(665) -> 664
   , 2_1(673) -> 353
   , 2_1(675) -> 674
   , 2_1(678) -> 677
   , 2_1(682) -> 681
   , 2_1(729) -> 728
   , 2_1(732) -> 731
   , 2_1(744) -> 743
   , 2_1(745) -> 744
   , 2_1(750) -> 749
   , 2_1(774) -> 773
   , 2_1(776) -> 726
   , 2_1(803) -> 802
   , 2_1(822) -> 821
   , 2_1(824) -> 823
   , 2_1(827) -> 826
   , 2_1(830) -> 829
   , 2_1(833) -> 832
   , 2_1(834) -> 2
   , 2_1(837) -> 836
   , 2_1(852) -> 851
   , 2_1(856) -> 855
   , 2_1(861) -> 860
   , 2_1(866) -> 704
   , 2_1(880) -> 70
   , 2_1(889) -> 888
   , 2_1(891) -> 890
   , 2_1(896) -> 895
   , 2_1(903) -> 902
   , 2_1(908) -> 907
   , 2_1(918) -> 917
   , 2_1(927) -> 42
   , 2_1(952) -> 951
   , 2_1(963) -> 962
   , 2_1(976) -> 975
   , 2_1(981) -> 386
   , 2_1(987) -> 986
   , 2_1(992) -> 991
   , 2_1(998) -> 997
   , 2_1(1012) -> 1011
   , 2_1(1060) -> 527
   , 3_0(1) -> 1
   , 3_1(1) -> 287
   , 3_1(2) -> 287
   , 3_1(3) -> 287
   , 3_1(11) -> 10
   , 3_1(14) -> 784
   , 3_1(15) -> 204
   , 3_1(16) -> 287
   , 3_1(24) -> 23
   , 3_1(28) -> 124
   , 3_1(29) -> 287
   , 3_1(33) -> 32
   , 3_1(42) -> 41
   , 3_1(53) -> 926
   , 3_1(59) -> 58
   , 3_1(71) -> 70
   , 3_1(72) -> 71
   , 3_1(79) -> 78
   , 3_1(82) -> 81
   , 3_1(84) -> 215
   , 3_1(85) -> 1
   , 3_1(85) -> 14
   , 3_1(85) -> 15
   , 3_1(85) -> 28
   , 3_1(85) -> 40
   , 3_1(85) -> 41
   , 3_1(85) -> 42
   , 3_1(85) -> 69
   , 3_1(85) -> 98
   , 3_1(85) -> 159
   , 3_1(85) -> 172
   , 3_1(85) -> 173
   , 3_1(85) -> 228
   , 3_1(85) -> 241
   , 3_1(85) -> 287
   , 3_1(85) -> 364
   , 3_1(85) -> 467
   , 3_1(85) -> 579
   , 3_1(85) -> 696
   , 3_1(85) -> 712
   , 3_1(85) -> 713
   , 3_1(85) -> 1010
   , 3_1(86) -> 287
   , 3_1(90) -> 89
   , 3_1(103) -> 102
   , 3_1(111) -> 702
   , 3_1(112) -> 183
   , 3_1(114) -> 113
   , 3_1(120) -> 119
   , 3_1(124) -> 147
   , 3_1(125) -> 287
   , 3_1(128) -> 127
   , 3_1(132) -> 131
   , 3_1(135) -> 134
   , 3_1(136) -> 287
   , 3_1(138) -> 137
   , 3_1(150) -> 149
   , 3_1(151) -> 150
   , 3_1(154) -> 153
   , 3_1(159) -> 310
   , 3_1(160) -> 287
   , 3_1(171) -> 710
   , 3_1(173) -> 322
   , 3_1(175) -> 174
   , 3_1(184) -> 183
   , 3_1(186) -> 185
   , 3_1(197) -> 196
   , 3_1(200) -> 199
   , 3_1(204) -> 1031
   , 3_1(205) -> 2
   , 3_1(211) -> 210
   , 3_1(213) -> 212
   , 3_1(215) -> 214
   , 3_1(218) -> 217
   , 3_1(227) -> 226
   , 3_1(228) -> 1032
   , 3_1(233) -> 232
   , 3_1(236) -> 235
   , 3_1(240) -> 239
   , 3_1(241) -> 854
   , 3_1(251) -> 250
   , 3_1(261) -> 260
   , 3_1(263) -> 287
   , 3_1(276) -> 226
   , 3_1(286) -> 661
   , 3_1(287) -> 600
   , 3_1(303) -> 302
   , 3_1(311) -> 287
   , 3_1(317) -> 316
   , 3_1(321) -> 320
   , 3_1(340) -> 29
   , 3_1(352) -> 1068
   , 3_1(353) -> 16
   , 3_1(364) -> 363
   , 3_1(366) -> 365
   , 3_1(371) -> 370
   , 3_1(388) -> 387
   , 3_1(397) -> 600
   , 3_1(398) -> 397
   , 3_1(416) -> 415
   , 3_1(418) -> 29
   , 3_1(426) -> 425
   , 3_1(427) -> 426
   , 3_1(429) -> 287
   , 3_1(430) -> 29
   , 3_1(431) -> 287
   , 3_1(441) -> 440
   , 3_1(442) -> 29
   , 3_1(443) -> 287
   , 3_1(445) -> 444
   , 3_1(452) -> 451
   , 3_1(462) -> 461
   , 3_1(468) -> 85
   , 3_1(471) -> 470
   , 3_1(480) -> 479
   , 3_1(489) -> 488
   , 3_1(499) -> 418
   , 3_1(500) -> 499
   , 3_1(505) -> 504
   , 3_1(518) -> 136
   , 3_1(519) -> 518
   , 3_1(533) -> 532
   , 3_1(534) -> 533
   , 3_1(539) -> 287
   , 3_1(543) -> 542
   , 3_1(552) -> 551
   , 3_1(554) -> 553
   , 3_1(557) -> 556
   , 3_1(562) -> 561
   , 3_1(574) -> 573
   , 3_1(581) -> 287
   , 3_1(595) -> 594
   , 3_1(599) -> 598
   , 3_1(601) -> 419
   , 3_1(616) -> 615
   , 3_1(620) -> 323
   , 3_1(628) -> 125
   , 3_1(637) -> 636
   , 3_1(648) -> 647
   , 3_1(649) -> 672
   , 3_1(652) -> 651
   , 3_1(668) -> 667
   , 3_1(670) -> 669
   , 3_1(683) -> 879
   , 3_1(689) -> 688
   , 3_1(692) -> 691
   , 3_1(696) -> 910
   , 3_1(703) -> 702
   , 3_1(704) -> 87
   , 3_1(709) -> 708
   , 3_1(711) -> 710
   , 3_1(713) -> 320
   , 3_1(714) -> 3
   , 3_1(719) -> 718
   , 3_1(727) -> 726
   , 3_1(739) -> 738
   , 3_1(740) -> 739
   , 3_1(749) -> 287
   , 3_1(755) -> 754
   , 3_1(756) -> 755
   , 3_1(763) -> 762
   , 3_1(766) -> 765
   , 3_1(769) -> 768
   , 3_1(781) -> 780
   , 3_1(784) -> 783
   , 3_1(786) -> 785
   , 3_1(788) -> 787
   , 3_1(790) -> 789
   , 3_1(809) -> 808
   , 3_1(816) -> 815
   , 3_1(838) -> 837
   , 3_1(840) -> 839
   , 3_1(848) -> 847
   , 3_1(849) -> 848
   , 3_1(864) -> 863
   , 3_1(865) -> 864
   , 3_1(871) -> 160
   , 3_1(893) -> 892
   , 3_1(898) -> 999
   , 3_1(900) -> 899
   , 3_1(904) -> 903
   , 3_1(915) -> 914
   , 3_1(919) -> 918
   , 3_1(921) -> 920
   , 3_1(923) -> 922
   , 3_1(927) -> 112
   , 3_1(944) -> 943
   , 3_1(947) -> 946
   , 3_1(957) -> 956
   , 3_1(965) -> 964
   , 3_1(966) -> 965
   , 3_1(969) -> 968
   , 3_1(970) -> 969
   , 3_1(980) -> 979
   , 3_1(1030) -> 1029
   , 3_1(1032) -> 1031
   , 3_1(1063) -> 1062
   , 0_0(1) -> 1
   , 0_1(1) -> 28
   , 0_1(2) -> 1
   , 0_1(2) -> 14
   , 0_1(2) -> 15
   , 0_1(2) -> 28
   , 0_1(2) -> 42
   , 0_1(2) -> 53
   , 0_1(2) -> 68
   , 0_1(2) -> 69
   , 0_1(2) -> 98
   , 0_1(2) -> 171
   , 0_1(2) -> 172
   , 0_1(2) -> 173
   , 0_1(2) -> 194
   , 0_1(2) -> 195
   , 0_1(2) -> 338
   , 0_1(2) -> 339
   , 0_1(2) -> 364
   , 0_1(2) -> 385
   , 0_1(2) -> 467
   , 0_1(2) -> 537
   , 0_1(2) -> 538
   , 0_1(2) -> 610
   , 0_1(2) -> 711
   , 0_1(2) -> 712
   , 0_1(2) -> 713
   , 0_1(2) -> 793
   , 0_1(2) -> 824
   , 0_1(5) -> 4
   , 0_1(6) -> 5
   , 0_1(8) -> 7
   , 0_1(15) -> 276
   , 0_1(16) -> 28
   , 0_1(17) -> 28
   , 0_1(18) -> 17
   , 0_1(22) -> 21
   , 0_1(26) -> 25
   , 0_1(28) -> 84
   , 0_1(29) -> 28
   , 0_1(30) -> 28
   , 0_1(35) -> 34
   , 0_1(39) -> 38
   , 0_1(40) -> 39
   , 0_1(41) -> 526
   , 0_1(42) -> 467
   , 0_1(49) -> 48
   , 0_1(53) -> 980
   , 0_1(54) -> 28
   , 0_1(55) -> 54
   , 0_1(57) -> 56
   , 0_1(58) -> 57
   , 0_1(60) -> 59
   , 0_1(65) -> 64
   , 0_1(68) -> 135
   , 0_1(69) -> 159
   , 0_1(70) -> 2
   , 0_1(75) -> 74
   , 0_1(76) -> 75
   , 0_1(80) -> 79
   , 0_1(84) -> 409
   , 0_1(85) -> 28
   , 0_1(87) -> 86
   , 0_1(88) -> 87
   , 0_1(91) -> 90
   , 0_1(96) -> 95
   , 0_1(97) -> 96
   , 0_1(99) -> 28
   , 0_1(101) -> 100
   , 0_1(104) -> 103
   , 0_1(105) -> 104
   , 0_1(106) -> 105
   , 0_1(108) -> 107
   , 0_1(111) -> 428
   , 0_1(112) -> 29
   , 0_1(113) -> 112
   , 0_1(117) -> 116
   , 0_1(125) -> 28
   , 0_1(126) -> 125
   , 0_1(129) -> 128
   , 0_1(130) -> 129
   , 0_1(135) -> 833
   , 0_1(140) -> 139
   , 0_1(144) -> 143
   , 0_1(145) -> 144
   , 0_1(157) -> 156
   , 0_1(159) -> 649
   , 0_1(160) -> 85
   , 0_1(162) -> 161
   , 0_1(164) -> 163
   , 0_1(165) -> 164
   , 0_1(168) -> 167
   , 0_1(171) -> 170
   , 0_1(173) -> 184
   , 0_1(180) -> 179
   , 0_1(184) -> 441
   , 0_1(188) -> 187
   , 0_1(189) -> 188
   , 0_1(190) -> 189
   , 0_1(192) -> 191
   , 0_1(193) -> 192
   , 0_1(195) -> 683
   , 0_1(199) -> 198
   , 0_1(207) -> 206
   , 0_1(209) -> 208
   , 0_1(214) -> 213
   , 0_1(216) -> 70
   , 0_1(219) -> 218
   , 0_1(221) -> 220
   , 0_1(224) -> 223
   , 0_1(228) -> 227
   , 0_1(229) -> 28
   , 0_1(230) -> 229
   , 0_1(238) -> 237
   , 0_1(240) -> 571
   , 0_1(241) -> 240
   , 0_1(242) -> 71
   , 0_1(245) -> 244
   , 0_1(249) -> 248
   , 0_1(250) -> 249
   , 0_1(255) -> 254
   , 0_1(256) -> 255
   , 0_1(257) -> 256
   , 0_1(259) -> 258
   , 0_1(260) -> 259
   , 0_1(262) -> 261
   , 0_1(263) -> 1
   , 0_1(264) -> 28
   , 0_1(269) -> 268
   , 0_1(271) -> 270
   , 0_1(272) -> 271
   , 0_1(273) -> 272
   , 0_1(275) -> 396
   , 0_1(276) -> 275
   , 0_1(278) -> 277
   , 0_1(280) -> 279
   , 0_1(282) -> 281
   , 0_1(283) -> 282
   , 0_1(286) -> 301
   , 0_1(287) -> 286
   , 0_1(288) -> 16
   , 0_1(290) -> 289
   , 0_1(293) -> 292
   , 0_1(296) -> 295
   , 0_1(298) -> 297
   , 0_1(300) -> 299
   , 0_1(301) -> 300
   , 0_1(309) -> 308
   , 0_1(319) -> 318
   , 0_1(320) -> 319
   , 0_1(322) -> 331
   , 0_1(323) -> 28
   , 0_1(325) -> 324
   , 0_1(326) -> 325
   , 0_1(329) -> 328
   , 0_1(330) -> 329
   , 0_1(334) -> 333
   , 0_1(335) -> 334
   , 0_1(338) -> 337
   , 0_1(340) -> 28
   , 0_1(341) -> 340
   , 0_1(343) -> 342
   , 0_1(344) -> 343
   , 0_1(349) -> 348
   , 0_1(354) -> 353
   , 0_1(356) -> 355
   , 0_1(358) -> 357
   , 0_1(359) -> 358
   , 0_1(361) -> 360
   , 0_1(381) -> 380
   , 0_1(385) -> 865
   , 0_1(386) -> 28
   , 0_1(387) -> 28
   , 0_1(389) -> 388
   , 0_1(391) -> 390
   , 0_1(392) -> 391
   , 0_1(397) -> 28
   , 0_1(400) -> 399
   , 0_1(401) -> 400
   , 0_1(402) -> 401
   , 0_1(406) -> 405
   , 0_1(407) -> 406
   , 0_1(412) -> 411
   , 0_1(415) -> 414
   , 0_1(417) -> 916
   , 0_1(422) -> 421
   , 0_1(423) -> 422
   , 0_1(428) -> 427
   , 0_1(430) -> 84
   , 0_1(431) -> 430
   , 0_1(432) -> 28
   , 0_1(438) -> 437
   , 0_1(439) -> 438
   , 0_1(441) -> 887
   , 0_1(442) -> 84
   , 0_1(443) -> 442
   , 0_1(444) -> 443
   , 0_1(447) -> 446
   , 0_1(448) -> 447
   , 0_1(453) -> 452
   , 0_1(457) -> 456
   , 0_1(463) -> 462
   , 0_1(465) -> 464
   , 0_1(466) -> 465
   , 0_1(468) -> 28
   , 0_1(473) -> 472
   , 0_1(474) -> 473
   , 0_1(478) -> 477
   , 0_1(479) -> 288
   , 0_1(488) -> 341
   , 0_1(498) -> 1010
   , 0_1(499) -> 28
   , 0_1(502) -> 501
   , 0_1(503) -> 502
   , 0_1(507) -> 506
   , 0_1(511) -> 510
   , 0_1(515) -> 514
   , 0_1(521) -> 520
   , 0_1(523) -> 522
   , 0_1(526) -> 767
   , 0_1(531) -> 530
   , 0_1(535) -> 534
   , 0_1(539) -> 1
   , 0_1(540) -> 539
   , 0_1(544) -> 543
   , 0_1(546) -> 545
   , 0_1(547) -> 546
   , 0_1(549) -> 548
   , 0_1(559) -> 558
   , 0_1(560) -> 559
   , 0_1(567) -> 566
   , 0_1(578) -> 577
   , 0_1(579) -> 578
   , 0_1(580) -> 967
   , 0_1(583) -> 582
   , 0_1(588) -> 587
   , 0_1(590) -> 725
   , 0_1(592) -> 591
   , 0_1(596) -> 595
   , 0_1(600) -> 898
   , 0_1(603) -> 602
   , 0_1(605) -> 604
   , 0_1(606) -> 605
   , 0_1(607) -> 606
   , 0_1(608) -> 607
   , 0_1(613) -> 242
   , 0_1(618) -> 617
   , 0_1(619) -> 618
   , 0_1(621) -> 620
   , 0_1(623) -> 622
   , 0_1(624) -> 623
   , 0_1(628) -> 28
   , 0_1(632) -> 631
   , 0_1(633) -> 632
   , 0_1(634) -> 633
   , 0_1(635) -> 634
   , 0_1(636) -> 635
   , 0_1(638) -> 637
   , 0_1(643) -> 642
   , 0_1(644) -> 643
   , 0_1(646) -> 645
   , 0_1(653) -> 652
   , 0_1(654) -> 653
   , 0_1(655) -> 654
   , 0_1(656) -> 655
   , 0_1(657) -> 656
   , 0_1(659) -> 658
   , 0_1(661) -> 660
   , 0_1(662) -> 3
   , 0_1(667) -> 666
   , 0_1(671) -> 670
   , 0_1(673) -> 28
   , 0_1(677) -> 676
   , 0_1(679) -> 678
   , 0_1(680) -> 679
   , 0_1(683) -> 682
   , 0_1(687) -> 686
   , 0_1(688) -> 687
   , 0_1(690) -> 689
   , 0_1(693) -> 692
   , 0_1(694) -> 693
   , 0_1(698) -> 697
   , 0_1(706) -> 705
   , 0_1(715) -> 714
   , 0_1(726) -> 28
   , 0_1(731) -> 730
   , 0_1(733) -> 732
   , 0_1(734) -> 733
   , 0_1(735) -> 734
   , 0_1(736) -> 99
   , 0_1(737) -> 736
   , 0_1(738) -> 737
   , 0_1(743) -> 742
   , 0_1(746) -> 745
   , 0_1(748) -> 747
   , 0_1(751) -> 750
   , 0_1(753) -> 752
   , 0_1(754) -> 753
   , 0_1(757) -> 756
   , 0_1(758) -> 757
   , 0_1(760) -> 759
   , 0_1(761) -> 760
   , 0_1(762) -> 761
   , 0_1(764) -> 763
   , 0_1(767) -> 766
   , 0_1(768) -> 312
   , 0_1(772) -> 771
   , 0_1(773) -> 772
   , 0_1(778) -> 777
   , 0_1(780) -> 779
   , 0_1(785) -> 727
   , 0_1(791) -> 790
   , 0_1(793) -> 792
   , 0_1(794) -> 354
   , 0_1(796) -> 795
   , 0_1(798) -> 797
   , 0_1(800) -> 799
   , 0_1(801) -> 800
   , 0_1(802) -> 801
   , 0_1(804) -> 803
   , 0_1(807) -> 806
   , 0_1(810) -> 809
   , 0_1(814) -> 127
   , 0_1(817) -> 816
   , 0_1(820) -> 819
   , 0_1(821) -> 820
   , 0_1(823) -> 822
   , 0_1(834) -> 28
   , 0_1(836) -> 835
   , 0_1(841) -> 840
   , 0_1(842) -> 841
   , 0_1(843) -> 842
   , 0_1(844) -> 843
   , 0_1(845) -> 844
   , 0_1(846) -> 126
   , 0_1(850) -> 849
   , 0_1(853) -> 852
   , 0_1(857) -> 856
   , 0_1(859) -> 858
   , 0_1(860) -> 859
   , 0_1(862) -> 861
   , 0_1(863) -> 862
   , 0_1(867) -> 866
   , 0_1(868) -> 867
   , 0_1(870) -> 869
   , 0_1(872) -> 871
   , 0_1(874) -> 873
   , 0_1(875) -> 874
   , 0_1(876) -> 875
   , 0_1(892) -> 891
   , 0_1(894) -> 893
   , 0_1(898) -> 897
   , 0_1(900) -> 28
   , 0_1(901) -> 900
   , 0_1(902) -> 901
   , 0_1(906) -> 905
   , 0_1(909) -> 908
   , 0_1(910) -> 909
   , 0_1(912) -> 911
   , 0_1(925) -> 924
   , 0_1(926) -> 925
   , 0_1(929) -> 928
   , 0_1(930) -> 929
   , 0_1(931) -> 930
   , 0_1(933) -> 932
   , 0_1(934) -> 933
   , 0_1(941) -> 940
   , 0_1(945) -> 944
   , 0_1(950) -> 949
   , 0_1(954) -> 953
   , 0_1(959) -> 958
   , 0_1(961) -> 960
   , 0_1(968) -> 628
   , 0_1(975) -> 974
   , 0_1(978) -> 977
   , 0_1(982) -> 981
   , 0_1(984) -> 983
   , 0_1(986) -> 985
   , 0_1(988) -> 987
   , 0_1(989) -> 988
   , 0_1(991) -> 990
   , 0_1(993) -> 992
   , 0_1(994) -> 993
   , 0_1(997) -> 996
   , 0_1(1001) -> 1000
   , 0_1(1002) -> 1001
   , 0_1(1006) -> 1005
   , 0_1(1009) -> 1008
   , 0_1(1010) -> 1009
   , 0_1(1011) -> 160
   , 0_1(1014) -> 1013
   , 0_1(1016) -> 323
   , 0_1(1018) -> 1017
   , 0_1(1060) -> 28
   , 0_1(1061) -> 1060
   , 0_1(1062) -> 1061
   , 0_1(1064) -> 1063
   , 0_1(1067) -> 1066
   , 1_0(1) -> 1
   , 1_1(1) -> 15
   , 1_1(2) -> 15
   , 1_1(3) -> 2
   , 1_1(10) -> 9
   , 1_1(14) -> 13
   , 1_1(15) -> 53
   , 1_1(16) -> 15
   , 1_1(17) -> 15
   , 1_1(19) -> 18
   , 1_1(20) -> 19
   , 1_1(21) -> 20
   , 1_1(28) -> 466
   , 1_1(29) -> 1
   , 1_1(29) -> 15
   , 1_1(29) -> 28
   , 1_1(29) -> 41
   , 1_1(29) -> 42
   , 1_1(29) -> 53
   , 1_1(29) -> 68
   , 1_1(29) -> 69
   , 1_1(29) -> 123
   , 1_1(29) -> 172
   , 1_1(29) -> 173
   , 1_1(29) -> 184
   , 1_1(29) -> 193
   , 1_1(29) -> 194
   , 1_1(29) -> 203
   , 1_1(29) -> 228
   , 1_1(29) -> 241
   , 1_1(29) -> 287
   , 1_1(29) -> 309
   , 1_1(29) -> 339
   , 1_1(29) -> 352
   , 1_1(29) -> 374
   , 1_1(29) -> 467
   , 1_1(29) -> 477
   , 1_1(29) -> 560
   , 1_1(29) -> 580
   , 1_1(29) -> 600
   , 1_1(29) -> 696
   , 1_1(29) -> 793
   , 1_1(30) -> 15
   , 1_1(36) -> 35
   , 1_1(41) -> 1067
   , 1_1(42) -> 560
   , 1_1(48) -> 47
   , 1_1(52) -> 262
   , 1_1(55) -> 15
   , 1_1(61) -> 60
   , 1_1(69) -> 696
   , 1_1(84) -> 83
   , 1_1(85) -> 15
   , 1_1(86) -> 15
   , 1_1(89) -> 88
   , 1_1(92) -> 91
   , 1_1(93) -> 92
   , 1_1(98) -> 453
   , 1_1(112) -> 15
   , 1_1(113) -> 15
   , 1_1(119) -> 118
   , 1_1(122) -> 989
   , 1_1(123) -> 122
   , 1_1(124) -> 123
   , 1_1(125) -> 15
   , 1_1(131) -> 130
   , 1_1(136) -> 29
   , 1_1(139) -> 138
   , 1_1(142) -> 141
   , 1_1(143) -> 142
   , 1_1(147) -> 775
   , 1_1(149) -> 148
   , 1_1(153) -> 152
   , 1_1(155) -> 154
   , 1_1(158) -> 157
   , 1_1(163) -> 162
   , 1_1(166) -> 165
   , 1_1(173) -> 228
   , 1_1(174) -> 55
   , 1_1(177) -> 176
   , 1_1(183) -> 238
   , 1_1(185) -> 71
   , 1_1(196) -> 174
   , 1_1(202) -> 201
   , 1_1(222) -> 221
   , 1_1(223) -> 222
   , 1_1(226) -> 225
   , 1_1(228) -> 382
   , 1_1(239) -> 238
   , 1_1(244) -> 243
   , 1_1(246) -> 245
   , 1_1(263) -> 15
   , 1_1(267) -> 266
   , 1_1(274) -> 273
   , 1_1(277) -> 126
   , 1_1(284) -> 283
   , 1_1(285) -> 517
   , 1_1(287) -> 339
   , 1_1(297) -> 296
   , 1_1(301) -> 896
   , 1_1(307) -> 306
   , 1_1(310) -> 309
   , 1_1(311) -> 160
   , 1_1(312) -> 311
   , 1_1(313) -> 312
   , 1_1(315) -> 314
   , 1_1(316) -> 315
   , 1_1(318) -> 317
   , 1_1(324) -> 323
   , 1_1(331) -> 330
   , 1_1(333) -> 332
   , 1_1(340) -> 85
   , 1_1(342) -> 341
   , 1_1(346) -> 345
   , 1_1(350) -> 349
   , 1_1(353) -> 15
   , 1_1(355) -> 354
   , 1_1(357) -> 356
   , 1_1(360) -> 359
   , 1_1(368) -> 367
   , 1_1(369) -> 368
   , 1_1(376) -> 375
   , 1_1(377) -> 376
   , 1_1(379) -> 378
   , 1_1(383) -> 382
   , 1_1(384) -> 383
   , 1_1(385) -> 517
   , 1_1(387) -> 386
   , 1_1(393) -> 392
   , 1_1(395) -> 394
   , 1_1(397) -> 125
   , 1_1(406) -> 1015
   , 1_1(409) -> 408
   , 1_1(413) -> 412
   , 1_1(419) -> 418
   , 1_1(430) -> 466
   , 1_1(431) -> 15
   , 1_1(432) -> 15
   , 1_1(433) -> 432
   , 1_1(434) -> 433
   , 1_1(435) -> 434
   , 1_1(436) -> 435
   , 1_1(442) -> 466
   , 1_1(443) -> 15
   , 1_1(446) -> 445
   , 1_1(449) -> 448
   , 1_1(451) -> 450
   , 1_1(454) -> 453
   , 1_1(464) -> 463
   , 1_1(466) -> 612
   , 1_1(467) -> 466
   , 1_1(486) -> 485
   , 1_1(487) -> 486
   , 1_1(491) -> 490
   , 1_1(492) -> 491
   , 1_1(493) -> 492
   , 1_1(508) -> 507
   , 1_1(509) -> 397
   , 1_1(522) -> 521
   , 1_1(525) -> 870
   , 1_1(528) -> 527
   , 1_1(530) -> 529
   , 1_1(532) -> 531
   , 1_1(538) -> 804
   , 1_1(539) -> 15
   , 1_1(548) -> 547
   , 1_1(551) -> 340
   , 1_1(553) -> 552
   , 1_1(558) -> 557
   , 1_1(561) -> 112
   , 1_1(563) -> 562
   , 1_1(570) -> 569
   , 1_1(572) -> 87
   , 1_1(575) -> 574
   , 1_1(577) -> 576
   , 1_1(581) -> 54
   , 1_1(587) -> 586
   , 1_1(593) -> 592
   , 1_1(597) -> 596
   , 1_1(600) -> 599
   , 1_1(609) -> 608
   , 1_1(626) -> 625
   , 1_1(629) -> 628
   , 1_1(630) -> 629
   , 1_1(631) -> 630
   , 1_1(641) -> 640
   , 1_1(672) -> 671
   , 1_1(674) -> 673
   , 1_1(684) -> 136
   , 1_1(685) -> 684
   , 1_1(696) -> 695
   , 1_1(699) -> 698
   , 1_1(707) -> 706
   , 1_1(708) -> 707
   , 1_1(717) -> 716
   , 1_1(718) -> 717
   , 1_1(720) -> 719
   , 1_1(721) -> 720
   , 1_1(722) -> 721
   , 1_1(724) -> 723
   , 1_1(741) -> 740
   , 1_1(747) -> 746
   , 1_1(749) -> 263
   , 1_1(770) -> 769
   , 1_1(776) -> 15
   , 1_1(777) -> 776
   , 1_1(779) -> 778
   , 1_1(782) -> 781
   , 1_1(783) -> 782
   , 1_1(792) -> 791
   , 1_1(795) -> 794
   , 1_1(808) -> 807
   , 1_1(811) -> 810
   , 1_1(815) -> 814
   , 1_1(828) -> 827
   , 1_1(831) -> 830
   , 1_1(834) -> 15
   , 1_1(835) -> 15
   , 1_1(851) -> 850
   , 1_1(873) -> 872
   , 1_1(877) -> 876
   , 1_1(882) -> 881
   , 1_1(883) -> 882
   , 1_1(884) -> 883
   , 1_1(885) -> 884
   , 1_1(888) -> 736
   , 1_1(890) -> 889
   , 1_1(895) -> 894
   , 1_1(897) -> 896
   , 1_1(905) -> 904
   , 1_1(913) -> 912
   , 1_1(917) -> 43
   , 1_1(920) -> 919
   , 1_1(928) -> 927
   , 1_1(937) -> 936
   , 1_1(938) -> 455
   , 1_1(939) -> 938
   , 1_1(940) -> 939
   , 1_1(942) -> 941
   , 1_1(946) -> 945
   , 1_1(948) -> 947
   , 1_1(949) -> 70
   , 1_1(951) -> 950
   , 1_1(955) -> 954
   , 1_1(962) -> 961
   , 1_1(964) -> 963
   , 1_1(967) -> 966
   , 1_1(972) -> 971
   , 1_1(973) -> 972
   , 1_1(974) -> 973
   , 1_1(977) -> 976
   , 1_1(979) -> 978
   , 1_1(983) -> 982
   , 1_1(999) -> 998
   , 1_1(1003) -> 1002
   , 1_1(1015) -> 1014
   , 1_1(1028) -> 1018
   , 1_1(1029) -> 1028
   , 1_1(1031) -> 1030
   , 1_1(1065) -> 1064
   , 1_1(1066) -> 1065
   , 1_1(1068) -> 1067}

Hurray, we answered YES(?,O(n^1))

Tool CDI

Execution Time60.077454ms
Answer
TIMEOUT
InputICFP 2010 138194

stdout:

TIMEOUT

Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0

Tool EDA

Execution Time60.556667ms
Answer
TIMEOUT
InputICFP 2010 138194

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  5(5(4(1(2(1(2(3(2(3(5(0(x1)))))))))))) ->
       0(1(2(0(0(2(0(5(1(3(4(4(1(2(1(x1)))))))))))))))
     , 5(5(2(3(3(3(1(5(4(1(3(3(x1)))))))))))) ->
       4(2(0(1(1(1(0(5(3(4(0(2(2(0(x1))))))))))))))
     , 5(5(1(3(3(2(5(4(5(5(4(3(x1)))))))))))) ->
       1(4(5(5(3(4(0(1(2(2(0(0(5(3(2(x1)))))))))))))))
     , 5(4(5(5(3(3(3(2(2(3(4(4(x1)))))))))))) ->
       0(5(2(5(2(4(1(0(2(4(2(5(1(1(x1))))))))))))))
     , 5(4(5(3(3(3(1(2(1(5(4(5(x1)))))))))))) ->
       5(0(2(0(0(3(0(1(2(4(2(0(2(4(4(4(5(x1)))))))))))))))))
     , 5(4(4(2(5(4(1(1(3(2(5(4(x1)))))))))))) ->
       0(0(3(3(2(4(0(0(4(2(3(0(4(3(2(1(0(0(x1))))))))))))))))))
     , 5(4(3(5(2(4(3(0(5(3(2(3(x1)))))))))))) ->
       3(4(0(0(1(3(0(1(1(2(4(0(0(2(2(2(x1))))))))))))))))
     , 5(4(3(1(3(5(4(3(0(4(5(2(x1)))))))))))) ->
       0(2(4(0(5(3(0(0(0(4(0(5(5(2(4(0(x1))))))))))))))))
     , 5(4(2(5(3(1(2(3(5(2(4(4(x1)))))))))))) ->
       1(0(0(3(5(2(0(2(1(3(5(5(1(1(3(0(x1))))))))))))))))
     , 5(3(5(3(4(3(2(5(5(5(4(4(x1)))))))))))) ->
       2(0(2(3(0(0(1(3(2(2(3(0(4(5(x1))))))))))))))
     , 5(3(3(5(5(1(2(2(3(4(3(2(x1)))))))))))) ->
       1(1(4(3(1(0(5(1(1(0(0(2(4(3(3(0(x1))))))))))))))))
     , 5(3(3(2(5(3(5(4(4(5(3(1(x1)))))))))))) ->
       0(1(2(4(1(3(3(5(1(3(1(5(0(1(5(0(5(x1)))))))))))))))))
     , 5(3(2(2(0(5(4(2(2(1(1(4(x1)))))))))))) ->
       3(0(2(0(1(0(0(1(4(0(2(2(0(4(5(4(x1))))))))))))))))
     , 5(2(4(2(4(4(4(5(3(5(4(0(x1)))))))))))) ->
       5(0(1(3(4(1(5(5(0(5(5(2(3(0(4(x1)))))))))))))))
     , 5(1(3(2(5(2(3(4(1(5(3(1(x1)))))))))))) ->
       0(0(3(1(3(2(0(0(0(4(0(0(2(5(5(1(x1))))))))))))))))
     , 5(1(0(3(2(2(3(2(3(5(5(4(x1)))))))))))) ->
       5(0(1(1(3(2(0(3(2(1(2(2(3(1(x1))))))))))))))
     , 5(1(0(2(4(5(3(4(4(5(4(2(x1)))))))))))) ->
       0(3(4(0(4(0(2(3(4(3(0(3(3(0(0(x1)))))))))))))))
     , 5(0(1(5(2(5(4(2(2(2(5(0(x1)))))))))))) ->
       0(0(0(4(3(0(2(0(1(1(0(2(1(3(0(1(4(x1)))))))))))))))))
     , 4(5(5(4(2(3(5(3(3(3(2(2(x1)))))))))))) ->
       1(2(0(5(4(3(4(2(3(2(0(1(3(0(4(2(x1))))))))))))))))
     , 4(5(4(3(3(1(5(2(5(3(4(4(x1)))))))))))) ->
       0(0(3(0(5(1(0(1(4(2(0(0(3(4(1(3(0(x1)))))))))))))))))
     , 4(5(2(3(3(0(5(4(4(2(1(0(x1)))))))))))) ->
       5(0(5(5(2(0(0(0(2(0(0(3(0(1(5(1(1(x1)))))))))))))))))
     , 4(5(2(1(2(0(2(3(4(1(5(4(x1)))))))))))) ->
       0(4(2(4(4(1(2(0(2(0(0(0(1(2(0(0(1(x1)))))))))))))))))
     , 4(4(5(4(1(0(2(5(0(3(0(1(x1)))))))))))) ->
       2(0(1(0(2(0(5(0(0(1(2(5(0(3(x1))))))))))))))
     , 4(4(4(4(4(3(5(2(4(5(3(4(x1)))))))))))) ->
       4(0(4(0(2(4(0(4(5(0(1(0(5(0(0(0(0(3(x1))))))))))))))))))
     , 4(4(4(1(0(5(4(5(2(3(4(4(x1)))))))))))) ->
       0(1(5(3(4(4(5(1(4(0(1(3(0(5(x1))))))))))))))
     , 4(4(3(3(4(4(3(3(4(1(4(4(x1)))))))))))) ->
       3(0(1(1(1(5(1(1(3(1(0(0(3(4(3(4(x1))))))))))))))))
     , 4(4(1(1(0(1(2(5(1(5(4(3(x1)))))))))))) ->
       0(1(4(1(0(0(4(2(0(0(1(0(3(4(x1))))))))))))))
     , 4(3(5(0(5(5(4(5(4(3(3(1(x1)))))))))))) ->
       0(0(0(4(4(1(0(0(2(5(0(5(1(3(x1))))))))))))))
     , 4(3(2(5(4(2(5(4(1(1(0(2(x1)))))))))))) ->
       3(1(0(1(0(0(4(1(2(4(0(1(2(4(2(3(0(x1)))))))))))))))))
     , 4(3(0(5(5(3(2(3(5(1(4(4(x1)))))))))))) ->
       4(3(0(1(0(1(0(0(1(0(4(5(3(4(4(x1)))))))))))))))
     , 4(2(5(4(3(0(3(3(5(4(5(4(x1)))))))))))) ->
       4(2(4(3(4(1(1(4(3(4(2(2(4(5(5(x1)))))))))))))))
     , 4(2(5(1(5(4(4(5(4(3(2(4(x1)))))))))))) ->
       1(4(2(1(1(5(1(4(0(2(1(1(4(5(0(x1)))))))))))))))
     , 4(2(5(1(0(5(2(2(2(1(5(0(x1)))))))))))) ->
       3(2(1(3(0(5(0(0(1(4(1(2(0(0(0(1(x1))))))))))))))))
     , 4(0(3(3(5(3(4(1(5(3(5(3(x1)))))))))))) ->
       2(1(3(4(0(0(0(2(2(2(0(0(4(1(0(0(0(x1)))))))))))))))))
     , 3(5(5(4(2(5(3(2(4(5(4(4(x1)))))))))))) ->
       4(3(0(4(2(0(1(5(0(3(2(4(1(1(x1))))))))))))))
     , 3(5(4(5(0(4(4(2(5(2(5(3(x1)))))))))))) ->
       1(3(1(5(2(0(0(5(4(3(3(0(0(4(0(x1)))))))))))))))
     , 3(5(4(3(5(5(4(4(5(5(2(1(x1)))))))))))) ->
       2(2(5(0(2(1(1(1(1(4(0(0(2(3(0(0(4(x1)))))))))))))))))
     , 3(5(4(3(5(4(3(0(5(4(4(1(x1)))))))))))) ->
       2(5(0(0(3(1(0(0(1(2(1(3(0(1(2(2(1(x1)))))))))))))))))
     , 3(5(3(2(5(3(2(1(4(5(4(2(x1)))))))))))) ->
       1(1(5(2(0(2(4(5(2(3(0(1(0(0(1(0(2(x1)))))))))))))))))
     , 3(5(3(2(2(1(2(0(3(3(5(3(x1)))))))))))) ->
       3(3(5(5(3(4(0(0(5(2(2(0(2(0(4(x1)))))))))))))))
     , 3(5(2(3(3(5(4(3(5(0(1(4(x1)))))))))))) ->
       4(0(0(3(4(4(5(5(2(1(1(2(1(0(x1))))))))))))))
     , 3(5(1(5(1(1(5(5(4(4(0(2(x1)))))))))))) ->
       3(1(0(0(3(4(1(1(1(5(4(2(5(2(5(2(x1))))))))))))))))
     , 3(5(1(1(5(4(4(4(2(3(5(4(x1)))))))))))) ->
       1(3(3(3(2(0(0(5(3(5(0(1(2(4(5(0(x1))))))))))))))))
     , 3(3(5(4(4(0(4(2(1(4(2(3(x1)))))))))))) ->
       2(1(1(2(0(2(2(2(0(5(2(1(5(0(3(x1)))))))))))))))
     , 3(3(5(4(3(2(5(0(2(2(3(4(x1)))))))))))) ->
       1(1(3(3(5(0(1(0(4(2(4(0(3(2(x1))))))))))))))
     , 3(3(3(3(3(3(5(0(4(5(0(4(x1)))))))))))) ->
       1(0(5(1(4(1(0(1(3(3(0(4(4(2(2(4(x1))))))))))))))))
     , 3(3(3(1(4(2(5(4(4(4(1(4(x1)))))))))))) ->
       1(0(0(4(0(5(2(3(0(2(0(0(1(0(5(5(3(1(x1))))))))))))))))))
     , 3(2(5(4(5(2(4(0(0(0(5(4(x1)))))))))))) ->
       3(1(1(3(1(3(4(5(3(1(0(0(1(2(x1))))))))))))))
     , 3(2(4(5(4(3(1(5(2(3(3(2(x1)))))))))))) ->
       1(0(1(3(1(2(5(5(0(4(2(1(2(0(0(4(2(x1)))))))))))))))))
     , 3(2(2(0(4(3(5(0(5(4(0(4(x1)))))))))))) ->
       3(4(0(1(2(3(1(2(1(0(0(2(2(5(x1))))))))))))))
     , 3(0(4(3(2(1(0(4(5(2(1(2(x1)))))))))))) ->
       5(1(4(0(2(4(2(1(0(2(4(2(0(0(x1))))))))))))))
     , 3(0(2(1(5(4(2(5(3(5(1(1(x1)))))))))))) ->
       2(0(5(0(1(2(3(0(1(4(3(1(3(3(x1))))))))))))))
     , 2(5(5(2(2(0(5(3(2(3(2(1(x1)))))))))))) ->
       1(3(1(3(5(0(2(0(0(0(0(1(2(4(4(1(1(0(x1))))))))))))))))))
     , 2(4(5(3(1(2(1(4(4(5(5(3(x1)))))))))))) ->
       0(0(3(0(0(4(4(3(5(0(0(2(2(4(0(x1)))))))))))))))
     , 2(4(4(4(3(1(3(5(1(3(3(1(x1)))))))))))) ->
       0(1(4(3(0(4(0(0(2(1(5(4(4(0(x1))))))))))))))
     , 2(4(3(1(4(1(5(3(1(3(3(3(x1)))))))))))) ->
       2(3(1(1(1(0(0(0(0(0(3(0(4(5(5(5(x1))))))))))))))))
     , 2(4(1(5(5(4(1(2(5(3(2(3(x1)))))))))))) ->
       4(2(2(1(2(0(0(5(0(2(3(2(0(0(5(x1)))))))))))))))
     , 2(3(5(5(5(4(4(1(4(5(3(0(x1)))))))))))) ->
       1(1(5(5(2(3(0(0(0(0(0(2(0(2(0(3(0(3(x1))))))))))))))))))
     , 2(3(5(4(5(1(4(4(4(0(3(5(x1)))))))))))) ->
       0(1(0(4(2(2(4(0(3(4(3(0(1(3(0(0(5(x1)))))))))))))))))
     , 2(3(5(2(3(3(3(2(5(4(4(1(x1)))))))))))) ->
       4(3(2(1(2(5(0(2(0(0(4(2(0(0(5(1(x1))))))))))))))))
     , 2(3(1(5(1(2(2(3(5(3(1(5(x1)))))))))))) ->
       1(1(1(1(5(0(0(3(0(4(3(0(0(4(1(1(5(x1)))))))))))))))))
     , 2(3(0(2(3(1(2(2(3(3(5(0(x1)))))))))))) ->
       1(3(1(5(2(4(0(1(4(5(4(3(4(0(0(x1)))))))))))))))
     , 2(2(5(4(4(4(3(4(2(3(4(3(x1)))))))))))) ->
       3(4(0(3(4(0(1(1(3(4(3(4(5(4(3(x1)))))))))))))))
     , 2(2(4(2(4(5(3(2(2(2(5(4(x1)))))))))))) ->
       0(1(3(0(4(1(1(3(1(1(1(4(1(4(0(2(0(0(x1))))))))))))))))))
     , 2(1(5(2(3(2(2(2(5(5(5(2(x1)))))))))))) ->
       2(4(3(5(2(4(0(2(0(0(0(2(2(0(4(x1)))))))))))))))
     , 2(1(4(5(5(4(4(5(4(4(3(1(x1)))))))))))) ->
       0(2(0(0(0(3(3(1(5(0(2(2(0(1(0(2(0(2(x1))))))))))))))))))
     , 2(1(2(4(4(2(2(3(5(4(4(3(x1)))))))))))) ->
       0(4(1(2(0(5(0(0(3(3(0(0(4(5(1(x1)))))))))))))))
     , 2(1(2(2(5(4(1(4(4(0(4(3(x1)))))))))))) ->
       0(0(3(1(4(0(0(0(3(0(5(3(0(0(0(3(2(x1)))))))))))))))))
     , 2(1(2(2(3(2(1(1(5(2(5(4(x1)))))))))))) ->
       3(0(1(1(0(3(1(5(0(0(2(4(1(3(3(0(x1))))))))))))))))
     , 2(1(1(2(3(5(4(2(4(4(4(4(x1)))))))))))) ->
       2(4(2(1(0(1(0(3(1(1(3(3(2(1(x1))))))))))))))
     , 2(0(4(4(2(4(3(5(3(0(5(3(x1)))))))))))) ->
       2(4(3(0(3(4(3(4(3(0(1(0(2(3(x1))))))))))))))
     , 1(5(5(3(3(2(3(2(5(4(1(0(x1)))))))))))) ->
       4(3(0(0(1(0(4(0(5(0(0(0(2(0(1(2(4(x1)))))))))))))))))
     , 1(5(4(3(1(4(4(5(0(2(2(2(x1)))))))))))) ->
       3(4(5(5(0(1(3(0(1(5(5(2(0(3(x1))))))))))))))
     , 1(5(4(1(5(2(1(2(4(4(4(4(x1)))))))))))) ->
       2(0(2(0(1(3(0(4(4(0(0(2(0(2(4(5(2(4(x1))))))))))))))))))
     , 1(5(3(1(1(1(5(4(2(2(5(4(x1)))))))))))) ->
       1(1(4(5(2(1(5(2(1(5(2(0(0(4(5(x1)))))))))))))))
     , 1(5(2(1(5(2(1(4(2(2(4(2(x1)))))))))))) ->
       4(4(4(0(2(3(4(3(0(0(0(0(0(2(1(1(x1))))))))))))))))
     , 1(5(1(2(3(2(5(2(1(5(4(1(x1)))))))))))) ->
       2(0(0(5(3(3(0(1(2(0(4(3(4(2(x1))))))))))))))
     , 1(4(4(5(3(2(0(5(1(4(5(3(x1)))))))))))) ->
       1(0(0(5(2(0(4(0(0(2(0(0(3(3(0(5(0(x1)))))))))))))))))
     , 1(4(4(2(4(0(5(4(0(3(3(4(x1)))))))))))) ->
       3(4(0(3(2(0(0(4(0(1(4(0(3(2(x1))))))))))))))
     , 1(4(3(3(2(2(5(2(5(3(3(1(x1)))))))))))) ->
       3(0(3(0(1(0(0(0(1(5(4(3(0(5(1(x1)))))))))))))))
     , 1(3(5(1(3(0(5(4(3(1(3(2(x1)))))))))))) ->
       0(0(2(4(1(1(1(1(4(4(0(0(0(4(x1))))))))))))))
     , 1(3(4(3(5(3(2(4(4(2(1(3(x1)))))))))))) ->
       0(2(0(1(2(1(2(0(3(0(1(2(1(0(0(3(3(x1)))))))))))))))))
     , 1(3(3(5(4(4(0(1(3(3(5(4(x1)))))))))))) ->
       5(5(3(0(0(2(3(1(0(4(2(0(0(3(1(5(x1))))))))))))))))
     , 1(3(3(2(3(2(3(2(1(4(4(4(x1)))))))))))) ->
       5(1(4(0(5(0(1(5(3(5(0(4(1(1(x1))))))))))))))
     , 1(3(1(1(5(3(5(4(3(3(4(2(x1)))))))))))) ->
       0(5(1(2(3(1(3(4(3(4(0(0(3(1(1(x1)))))))))))))))
     , 1(3(0(5(1(2(3(5(4(4(5(4(x1)))))))))))) ->
       1(0(3(1(0(0(0(4(0(0(4(5(1(5(0(2(x1))))))))))))))))
     , 1(2(3(3(4(4(4(5(3(3(5(4(x1)))))))))))) ->
       1(1(5(1(1(1(0(1(4(3(0(1(3(1(2(0(1(4(x1))))))))))))))))))
     , 1(1(2(5(1(5(4(3(3(3(2(4(x1)))))))))))) ->
       0(0(1(0(1(2(5(0(1(4(3(5(1(3(0(x1)))))))))))))))
     , 1(1(2(3(4(3(3(3(3(1(4(4(x1)))))))))))) ->
       1(2(0(4(0(5(0(1(2(1(3(3(1(0(2(5(x1))))))))))))))))
     , 0(5(4(4(2(5(4(5(2(2(3(4(x1)))))))))))) ->
       2(3(0(3(3(4(1(1(1(0(2(1(0(1(3(0(1(1(x1))))))))))))))))))
     , 0(5(2(5(3(2(5(4(1(3(2(3(x1)))))))))))) ->
       3(2(2(0(1(0(4(0(2(0(0(1(1(1(3(0(x1))))))))))))))))
     , 0(4(4(2(3(2(2(5(5(4(5(1(x1)))))))))))) ->
       1(0(4(0(2(0(0(5(5(0(2(1(3(0(3(3(x1))))))))))))))))
     , 0(2(5(5(4(4(4(2(2(3(5(3(x1)))))))))))) ->
       5(1(5(0(0(1(4(5(0(5(4(0(0(0(5(2(x1))))))))))))))))
     , 0(2(2(4(4(5(4(3(1(0(0(4(x1)))))))))))) ->
       3(0(0(2(4(0(1(1(0(4(1(0(0(0(x1))))))))))))))
     , 0(2(2(4(1(1(3(2(3(5(0(4(x1)))))))))))) ->
       0(1(4(0(5(0(1(1(3(1(3(3(1(4(x1))))))))))))))
     , 0(2(0(4(2(3(2(2(5(5(4(4(x1)))))))))))) ->
       1(0(5(2(0(0(3(0(1(1(0(1(3(2(3(0(x1))))))))))))))))}
  StartTerms: all
  Strategy: none

Certificate: TIMEOUT

Proof:
  Computation stopped due to timeout after 60.0 seconds.

Arrrr..

Tool IDA

Execution Time60.812527ms
Answer
TIMEOUT
InputICFP 2010 138194

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  5(5(4(1(2(1(2(3(2(3(5(0(x1)))))))))))) ->
       0(1(2(0(0(2(0(5(1(3(4(4(1(2(1(x1)))))))))))))))
     , 5(5(2(3(3(3(1(5(4(1(3(3(x1)))))))))))) ->
       4(2(0(1(1(1(0(5(3(4(0(2(2(0(x1))))))))))))))
     , 5(5(1(3(3(2(5(4(5(5(4(3(x1)))))))))))) ->
       1(4(5(5(3(4(0(1(2(2(0(0(5(3(2(x1)))))))))))))))
     , 5(4(5(5(3(3(3(2(2(3(4(4(x1)))))))))))) ->
       0(5(2(5(2(4(1(0(2(4(2(5(1(1(x1))))))))))))))
     , 5(4(5(3(3(3(1(2(1(5(4(5(x1)))))))))))) ->
       5(0(2(0(0(3(0(1(2(4(2(0(2(4(4(4(5(x1)))))))))))))))))
     , 5(4(4(2(5(4(1(1(3(2(5(4(x1)))))))))))) ->
       0(0(3(3(2(4(0(0(4(2(3(0(4(3(2(1(0(0(x1))))))))))))))))))
     , 5(4(3(5(2(4(3(0(5(3(2(3(x1)))))))))))) ->
       3(4(0(0(1(3(0(1(1(2(4(0(0(2(2(2(x1))))))))))))))))
     , 5(4(3(1(3(5(4(3(0(4(5(2(x1)))))))))))) ->
       0(2(4(0(5(3(0(0(0(4(0(5(5(2(4(0(x1))))))))))))))))
     , 5(4(2(5(3(1(2(3(5(2(4(4(x1)))))))))))) ->
       1(0(0(3(5(2(0(2(1(3(5(5(1(1(3(0(x1))))))))))))))))
     , 5(3(5(3(4(3(2(5(5(5(4(4(x1)))))))))))) ->
       2(0(2(3(0(0(1(3(2(2(3(0(4(5(x1))))))))))))))
     , 5(3(3(5(5(1(2(2(3(4(3(2(x1)))))))))))) ->
       1(1(4(3(1(0(5(1(1(0(0(2(4(3(3(0(x1))))))))))))))))
     , 5(3(3(2(5(3(5(4(4(5(3(1(x1)))))))))))) ->
       0(1(2(4(1(3(3(5(1(3(1(5(0(1(5(0(5(x1)))))))))))))))))
     , 5(3(2(2(0(5(4(2(2(1(1(4(x1)))))))))))) ->
       3(0(2(0(1(0(0(1(4(0(2(2(0(4(5(4(x1))))))))))))))))
     , 5(2(4(2(4(4(4(5(3(5(4(0(x1)))))))))))) ->
       5(0(1(3(4(1(5(5(0(5(5(2(3(0(4(x1)))))))))))))))
     , 5(1(3(2(5(2(3(4(1(5(3(1(x1)))))))))))) ->
       0(0(3(1(3(2(0(0(0(4(0(0(2(5(5(1(x1))))))))))))))))
     , 5(1(0(3(2(2(3(2(3(5(5(4(x1)))))))))))) ->
       5(0(1(1(3(2(0(3(2(1(2(2(3(1(x1))))))))))))))
     , 5(1(0(2(4(5(3(4(4(5(4(2(x1)))))))))))) ->
       0(3(4(0(4(0(2(3(4(3(0(3(3(0(0(x1)))))))))))))))
     , 5(0(1(5(2(5(4(2(2(2(5(0(x1)))))))))))) ->
       0(0(0(4(3(0(2(0(1(1(0(2(1(3(0(1(4(x1)))))))))))))))))
     , 4(5(5(4(2(3(5(3(3(3(2(2(x1)))))))))))) ->
       1(2(0(5(4(3(4(2(3(2(0(1(3(0(4(2(x1))))))))))))))))
     , 4(5(4(3(3(1(5(2(5(3(4(4(x1)))))))))))) ->
       0(0(3(0(5(1(0(1(4(2(0(0(3(4(1(3(0(x1)))))))))))))))))
     , 4(5(2(3(3(0(5(4(4(2(1(0(x1)))))))))))) ->
       5(0(5(5(2(0(0(0(2(0(0(3(0(1(5(1(1(x1)))))))))))))))))
     , 4(5(2(1(2(0(2(3(4(1(5(4(x1)))))))))))) ->
       0(4(2(4(4(1(2(0(2(0(0(0(1(2(0(0(1(x1)))))))))))))))))
     , 4(4(5(4(1(0(2(5(0(3(0(1(x1)))))))))))) ->
       2(0(1(0(2(0(5(0(0(1(2(5(0(3(x1))))))))))))))
     , 4(4(4(4(4(3(5(2(4(5(3(4(x1)))))))))))) ->
       4(0(4(0(2(4(0(4(5(0(1(0(5(0(0(0(0(3(x1))))))))))))))))))
     , 4(4(4(1(0(5(4(5(2(3(4(4(x1)))))))))))) ->
       0(1(5(3(4(4(5(1(4(0(1(3(0(5(x1))))))))))))))
     , 4(4(3(3(4(4(3(3(4(1(4(4(x1)))))))))))) ->
       3(0(1(1(1(5(1(1(3(1(0(0(3(4(3(4(x1))))))))))))))))
     , 4(4(1(1(0(1(2(5(1(5(4(3(x1)))))))))))) ->
       0(1(4(1(0(0(4(2(0(0(1(0(3(4(x1))))))))))))))
     , 4(3(5(0(5(5(4(5(4(3(3(1(x1)))))))))))) ->
       0(0(0(4(4(1(0(0(2(5(0(5(1(3(x1))))))))))))))
     , 4(3(2(5(4(2(5(4(1(1(0(2(x1)))))))))))) ->
       3(1(0(1(0(0(4(1(2(4(0(1(2(4(2(3(0(x1)))))))))))))))))
     , 4(3(0(5(5(3(2(3(5(1(4(4(x1)))))))))))) ->
       4(3(0(1(0(1(0(0(1(0(4(5(3(4(4(x1)))))))))))))))
     , 4(2(5(4(3(0(3(3(5(4(5(4(x1)))))))))))) ->
       4(2(4(3(4(1(1(4(3(4(2(2(4(5(5(x1)))))))))))))))
     , 4(2(5(1(5(4(4(5(4(3(2(4(x1)))))))))))) ->
       1(4(2(1(1(5(1(4(0(2(1(1(4(5(0(x1)))))))))))))))
     , 4(2(5(1(0(5(2(2(2(1(5(0(x1)))))))))))) ->
       3(2(1(3(0(5(0(0(1(4(1(2(0(0(0(1(x1))))))))))))))))
     , 4(0(3(3(5(3(4(1(5(3(5(3(x1)))))))))))) ->
       2(1(3(4(0(0(0(2(2(2(0(0(4(1(0(0(0(x1)))))))))))))))))
     , 3(5(5(4(2(5(3(2(4(5(4(4(x1)))))))))))) ->
       4(3(0(4(2(0(1(5(0(3(2(4(1(1(x1))))))))))))))
     , 3(5(4(5(0(4(4(2(5(2(5(3(x1)))))))))))) ->
       1(3(1(5(2(0(0(5(4(3(3(0(0(4(0(x1)))))))))))))))
     , 3(5(4(3(5(5(4(4(5(5(2(1(x1)))))))))))) ->
       2(2(5(0(2(1(1(1(1(4(0(0(2(3(0(0(4(x1)))))))))))))))))
     , 3(5(4(3(5(4(3(0(5(4(4(1(x1)))))))))))) ->
       2(5(0(0(3(1(0(0(1(2(1(3(0(1(2(2(1(x1)))))))))))))))))
     , 3(5(3(2(5(3(2(1(4(5(4(2(x1)))))))))))) ->
       1(1(5(2(0(2(4(5(2(3(0(1(0(0(1(0(2(x1)))))))))))))))))
     , 3(5(3(2(2(1(2(0(3(3(5(3(x1)))))))))))) ->
       3(3(5(5(3(4(0(0(5(2(2(0(2(0(4(x1)))))))))))))))
     , 3(5(2(3(3(5(4(3(5(0(1(4(x1)))))))))))) ->
       4(0(0(3(4(4(5(5(2(1(1(2(1(0(x1))))))))))))))
     , 3(5(1(5(1(1(5(5(4(4(0(2(x1)))))))))))) ->
       3(1(0(0(3(4(1(1(1(5(4(2(5(2(5(2(x1))))))))))))))))
     , 3(5(1(1(5(4(4(4(2(3(5(4(x1)))))))))))) ->
       1(3(3(3(2(0(0(5(3(5(0(1(2(4(5(0(x1))))))))))))))))
     , 3(3(5(4(4(0(4(2(1(4(2(3(x1)))))))))))) ->
       2(1(1(2(0(2(2(2(0(5(2(1(5(0(3(x1)))))))))))))))
     , 3(3(5(4(3(2(5(0(2(2(3(4(x1)))))))))))) ->
       1(1(3(3(5(0(1(0(4(2(4(0(3(2(x1))))))))))))))
     , 3(3(3(3(3(3(5(0(4(5(0(4(x1)))))))))))) ->
       1(0(5(1(4(1(0(1(3(3(0(4(4(2(2(4(x1))))))))))))))))
     , 3(3(3(1(4(2(5(4(4(4(1(4(x1)))))))))))) ->
       1(0(0(4(0(5(2(3(0(2(0(0(1(0(5(5(3(1(x1))))))))))))))))))
     , 3(2(5(4(5(2(4(0(0(0(5(4(x1)))))))))))) ->
       3(1(1(3(1(3(4(5(3(1(0(0(1(2(x1))))))))))))))
     , 3(2(4(5(4(3(1(5(2(3(3(2(x1)))))))))))) ->
       1(0(1(3(1(2(5(5(0(4(2(1(2(0(0(4(2(x1)))))))))))))))))
     , 3(2(2(0(4(3(5(0(5(4(0(4(x1)))))))))))) ->
       3(4(0(1(2(3(1(2(1(0(0(2(2(5(x1))))))))))))))
     , 3(0(4(3(2(1(0(4(5(2(1(2(x1)))))))))))) ->
       5(1(4(0(2(4(2(1(0(2(4(2(0(0(x1))))))))))))))
     , 3(0(2(1(5(4(2(5(3(5(1(1(x1)))))))))))) ->
       2(0(5(0(1(2(3(0(1(4(3(1(3(3(x1))))))))))))))
     , 2(5(5(2(2(0(5(3(2(3(2(1(x1)))))))))))) ->
       1(3(1(3(5(0(2(0(0(0(0(1(2(4(4(1(1(0(x1))))))))))))))))))
     , 2(4(5(3(1(2(1(4(4(5(5(3(x1)))))))))))) ->
       0(0(3(0(0(4(4(3(5(0(0(2(2(4(0(x1)))))))))))))))
     , 2(4(4(4(3(1(3(5(1(3(3(1(x1)))))))))))) ->
       0(1(4(3(0(4(0(0(2(1(5(4(4(0(x1))))))))))))))
     , 2(4(3(1(4(1(5(3(1(3(3(3(x1)))))))))))) ->
       2(3(1(1(1(0(0(0(0(0(3(0(4(5(5(5(x1))))))))))))))))
     , 2(4(1(5(5(4(1(2(5(3(2(3(x1)))))))))))) ->
       4(2(2(1(2(0(0(5(0(2(3(2(0(0(5(x1)))))))))))))))
     , 2(3(5(5(5(4(4(1(4(5(3(0(x1)))))))))))) ->
       1(1(5(5(2(3(0(0(0(0(0(2(0(2(0(3(0(3(x1))))))))))))))))))
     , 2(3(5(4(5(1(4(4(4(0(3(5(x1)))))))))))) ->
       0(1(0(4(2(2(4(0(3(4(3(0(1(3(0(0(5(x1)))))))))))))))))
     , 2(3(5(2(3(3(3(2(5(4(4(1(x1)))))))))))) ->
       4(3(2(1(2(5(0(2(0(0(4(2(0(0(5(1(x1))))))))))))))))
     , 2(3(1(5(1(2(2(3(5(3(1(5(x1)))))))))))) ->
       1(1(1(1(5(0(0(3(0(4(3(0(0(4(1(1(5(x1)))))))))))))))))
     , 2(3(0(2(3(1(2(2(3(3(5(0(x1)))))))))))) ->
       1(3(1(5(2(4(0(1(4(5(4(3(4(0(0(x1)))))))))))))))
     , 2(2(5(4(4(4(3(4(2(3(4(3(x1)))))))))))) ->
       3(4(0(3(4(0(1(1(3(4(3(4(5(4(3(x1)))))))))))))))
     , 2(2(4(2(4(5(3(2(2(2(5(4(x1)))))))))))) ->
       0(1(3(0(4(1(1(3(1(1(1(4(1(4(0(2(0(0(x1))))))))))))))))))
     , 2(1(5(2(3(2(2(2(5(5(5(2(x1)))))))))))) ->
       2(4(3(5(2(4(0(2(0(0(0(2(2(0(4(x1)))))))))))))))
     , 2(1(4(5(5(4(4(5(4(4(3(1(x1)))))))))))) ->
       0(2(0(0(0(3(3(1(5(0(2(2(0(1(0(2(0(2(x1))))))))))))))))))
     , 2(1(2(4(4(2(2(3(5(4(4(3(x1)))))))))))) ->
       0(4(1(2(0(5(0(0(3(3(0(0(4(5(1(x1)))))))))))))))
     , 2(1(2(2(5(4(1(4(4(0(4(3(x1)))))))))))) ->
       0(0(3(1(4(0(0(0(3(0(5(3(0(0(0(3(2(x1)))))))))))))))))
     , 2(1(2(2(3(2(1(1(5(2(5(4(x1)))))))))))) ->
       3(0(1(1(0(3(1(5(0(0(2(4(1(3(3(0(x1))))))))))))))))
     , 2(1(1(2(3(5(4(2(4(4(4(4(x1)))))))))))) ->
       2(4(2(1(0(1(0(3(1(1(3(3(2(1(x1))))))))))))))
     , 2(0(4(4(2(4(3(5(3(0(5(3(x1)))))))))))) ->
       2(4(3(0(3(4(3(4(3(0(1(0(2(3(x1))))))))))))))
     , 1(5(5(3(3(2(3(2(5(4(1(0(x1)))))))))))) ->
       4(3(0(0(1(0(4(0(5(0(0(0(2(0(1(2(4(x1)))))))))))))))))
     , 1(5(4(3(1(4(4(5(0(2(2(2(x1)))))))))))) ->
       3(4(5(5(0(1(3(0(1(5(5(2(0(3(x1))))))))))))))
     , 1(5(4(1(5(2(1(2(4(4(4(4(x1)))))))))))) ->
       2(0(2(0(1(3(0(4(4(0(0(2(0(2(4(5(2(4(x1))))))))))))))))))
     , 1(5(3(1(1(1(5(4(2(2(5(4(x1)))))))))))) ->
       1(1(4(5(2(1(5(2(1(5(2(0(0(4(5(x1)))))))))))))))
     , 1(5(2(1(5(2(1(4(2(2(4(2(x1)))))))))))) ->
       4(4(4(0(2(3(4(3(0(0(0(0(0(2(1(1(x1))))))))))))))))
     , 1(5(1(2(3(2(5(2(1(5(4(1(x1)))))))))))) ->
       2(0(0(5(3(3(0(1(2(0(4(3(4(2(x1))))))))))))))
     , 1(4(4(5(3(2(0(5(1(4(5(3(x1)))))))))))) ->
       1(0(0(5(2(0(4(0(0(2(0(0(3(3(0(5(0(x1)))))))))))))))))
     , 1(4(4(2(4(0(5(4(0(3(3(4(x1)))))))))))) ->
       3(4(0(3(2(0(0(4(0(1(4(0(3(2(x1))))))))))))))
     , 1(4(3(3(2(2(5(2(5(3(3(1(x1)))))))))))) ->
       3(0(3(0(1(0(0(0(1(5(4(3(0(5(1(x1)))))))))))))))
     , 1(3(5(1(3(0(5(4(3(1(3(2(x1)))))))))))) ->
       0(0(2(4(1(1(1(1(4(4(0(0(0(4(x1))))))))))))))
     , 1(3(4(3(5(3(2(4(4(2(1(3(x1)))))))))))) ->
       0(2(0(1(2(1(2(0(3(0(1(2(1(0(0(3(3(x1)))))))))))))))))
     , 1(3(3(5(4(4(0(1(3(3(5(4(x1)))))))))))) ->
       5(5(3(0(0(2(3(1(0(4(2(0(0(3(1(5(x1))))))))))))))))
     , 1(3(3(2(3(2(3(2(1(4(4(4(x1)))))))))))) ->
       5(1(4(0(5(0(1(5(3(5(0(4(1(1(x1))))))))))))))
     , 1(3(1(1(5(3(5(4(3(3(4(2(x1)))))))))))) ->
       0(5(1(2(3(1(3(4(3(4(0(0(3(1(1(x1)))))))))))))))
     , 1(3(0(5(1(2(3(5(4(4(5(4(x1)))))))))))) ->
       1(0(3(1(0(0(0(4(0(0(4(5(1(5(0(2(x1))))))))))))))))
     , 1(2(3(3(4(4(4(5(3(3(5(4(x1)))))))))))) ->
       1(1(5(1(1(1(0(1(4(3(0(1(3(1(2(0(1(4(x1))))))))))))))))))
     , 1(1(2(5(1(5(4(3(3(3(2(4(x1)))))))))))) ->
       0(0(1(0(1(2(5(0(1(4(3(5(1(3(0(x1)))))))))))))))
     , 1(1(2(3(4(3(3(3(3(1(4(4(x1)))))))))))) ->
       1(2(0(4(0(5(0(1(2(1(3(3(1(0(2(5(x1))))))))))))))))
     , 0(5(4(4(2(5(4(5(2(2(3(4(x1)))))))))))) ->
       2(3(0(3(3(4(1(1(1(0(2(1(0(1(3(0(1(1(x1))))))))))))))))))
     , 0(5(2(5(3(2(5(4(1(3(2(3(x1)))))))))))) ->
       3(2(2(0(1(0(4(0(2(0(0(1(1(1(3(0(x1))))))))))))))))
     , 0(4(4(2(3(2(2(5(5(4(5(1(x1)))))))))))) ->
       1(0(4(0(2(0(0(5(5(0(2(1(3(0(3(3(x1))))))))))))))))
     , 0(2(5(5(4(4(4(2(2(3(5(3(x1)))))))))))) ->
       5(1(5(0(0(1(4(5(0(5(4(0(0(0(5(2(x1))))))))))))))))
     , 0(2(2(4(4(5(4(3(1(0(0(4(x1)))))))))))) ->
       3(0(0(2(4(0(1(1(0(4(1(0(0(0(x1))))))))))))))
     , 0(2(2(4(1(1(3(2(3(5(0(4(x1)))))))))))) ->
       0(1(4(0(5(0(1(1(3(1(3(3(1(4(x1))))))))))))))
     , 0(2(0(4(2(3(2(2(5(5(4(4(x1)))))))))))) ->
       1(0(5(2(0(0(3(0(1(1(0(1(3(2(3(0(x1))))))))))))))))}
  StartTerms: all
  Strategy: none

Certificate: TIMEOUT

Proof:
  Computation stopped due to timeout after 60.0 seconds.

Arrrr..

Tool TRI

Execution Time60.950565ms
Answer
TIMEOUT
InputICFP 2010 138194

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  5(5(4(1(2(1(2(3(2(3(5(0(x1)))))))))))) ->
       0(1(2(0(0(2(0(5(1(3(4(4(1(2(1(x1)))))))))))))))
     , 5(5(2(3(3(3(1(5(4(1(3(3(x1)))))))))))) ->
       4(2(0(1(1(1(0(5(3(4(0(2(2(0(x1))))))))))))))
     , 5(5(1(3(3(2(5(4(5(5(4(3(x1)))))))))))) ->
       1(4(5(5(3(4(0(1(2(2(0(0(5(3(2(x1)))))))))))))))
     , 5(4(5(5(3(3(3(2(2(3(4(4(x1)))))))))))) ->
       0(5(2(5(2(4(1(0(2(4(2(5(1(1(x1))))))))))))))
     , 5(4(5(3(3(3(1(2(1(5(4(5(x1)))))))))))) ->
       5(0(2(0(0(3(0(1(2(4(2(0(2(4(4(4(5(x1)))))))))))))))))
     , 5(4(4(2(5(4(1(1(3(2(5(4(x1)))))))))))) ->
       0(0(3(3(2(4(0(0(4(2(3(0(4(3(2(1(0(0(x1))))))))))))))))))
     , 5(4(3(5(2(4(3(0(5(3(2(3(x1)))))))))))) ->
       3(4(0(0(1(3(0(1(1(2(4(0(0(2(2(2(x1))))))))))))))))
     , 5(4(3(1(3(5(4(3(0(4(5(2(x1)))))))))))) ->
       0(2(4(0(5(3(0(0(0(4(0(5(5(2(4(0(x1))))))))))))))))
     , 5(4(2(5(3(1(2(3(5(2(4(4(x1)))))))))))) ->
       1(0(0(3(5(2(0(2(1(3(5(5(1(1(3(0(x1))))))))))))))))
     , 5(3(5(3(4(3(2(5(5(5(4(4(x1)))))))))))) ->
       2(0(2(3(0(0(1(3(2(2(3(0(4(5(x1))))))))))))))
     , 5(3(3(5(5(1(2(2(3(4(3(2(x1)))))))))))) ->
       1(1(4(3(1(0(5(1(1(0(0(2(4(3(3(0(x1))))))))))))))))
     , 5(3(3(2(5(3(5(4(4(5(3(1(x1)))))))))))) ->
       0(1(2(4(1(3(3(5(1(3(1(5(0(1(5(0(5(x1)))))))))))))))))
     , 5(3(2(2(0(5(4(2(2(1(1(4(x1)))))))))))) ->
       3(0(2(0(1(0(0(1(4(0(2(2(0(4(5(4(x1))))))))))))))))
     , 5(2(4(2(4(4(4(5(3(5(4(0(x1)))))))))))) ->
       5(0(1(3(4(1(5(5(0(5(5(2(3(0(4(x1)))))))))))))))
     , 5(1(3(2(5(2(3(4(1(5(3(1(x1)))))))))))) ->
       0(0(3(1(3(2(0(0(0(4(0(0(2(5(5(1(x1))))))))))))))))
     , 5(1(0(3(2(2(3(2(3(5(5(4(x1)))))))))))) ->
       5(0(1(1(3(2(0(3(2(1(2(2(3(1(x1))))))))))))))
     , 5(1(0(2(4(5(3(4(4(5(4(2(x1)))))))))))) ->
       0(3(4(0(4(0(2(3(4(3(0(3(3(0(0(x1)))))))))))))))
     , 5(0(1(5(2(5(4(2(2(2(5(0(x1)))))))))))) ->
       0(0(0(4(3(0(2(0(1(1(0(2(1(3(0(1(4(x1)))))))))))))))))
     , 4(5(5(4(2(3(5(3(3(3(2(2(x1)))))))))))) ->
       1(2(0(5(4(3(4(2(3(2(0(1(3(0(4(2(x1))))))))))))))))
     , 4(5(4(3(3(1(5(2(5(3(4(4(x1)))))))))))) ->
       0(0(3(0(5(1(0(1(4(2(0(0(3(4(1(3(0(x1)))))))))))))))))
     , 4(5(2(3(3(0(5(4(4(2(1(0(x1)))))))))))) ->
       5(0(5(5(2(0(0(0(2(0(0(3(0(1(5(1(1(x1)))))))))))))))))
     , 4(5(2(1(2(0(2(3(4(1(5(4(x1)))))))))))) ->
       0(4(2(4(4(1(2(0(2(0(0(0(1(2(0(0(1(x1)))))))))))))))))
     , 4(4(5(4(1(0(2(5(0(3(0(1(x1)))))))))))) ->
       2(0(1(0(2(0(5(0(0(1(2(5(0(3(x1))))))))))))))
     , 4(4(4(4(4(3(5(2(4(5(3(4(x1)))))))))))) ->
       4(0(4(0(2(4(0(4(5(0(1(0(5(0(0(0(0(3(x1))))))))))))))))))
     , 4(4(4(1(0(5(4(5(2(3(4(4(x1)))))))))))) ->
       0(1(5(3(4(4(5(1(4(0(1(3(0(5(x1))))))))))))))
     , 4(4(3(3(4(4(3(3(4(1(4(4(x1)))))))))))) ->
       3(0(1(1(1(5(1(1(3(1(0(0(3(4(3(4(x1))))))))))))))))
     , 4(4(1(1(0(1(2(5(1(5(4(3(x1)))))))))))) ->
       0(1(4(1(0(0(4(2(0(0(1(0(3(4(x1))))))))))))))
     , 4(3(5(0(5(5(4(5(4(3(3(1(x1)))))))))))) ->
       0(0(0(4(4(1(0(0(2(5(0(5(1(3(x1))))))))))))))
     , 4(3(2(5(4(2(5(4(1(1(0(2(x1)))))))))))) ->
       3(1(0(1(0(0(4(1(2(4(0(1(2(4(2(3(0(x1)))))))))))))))))
     , 4(3(0(5(5(3(2(3(5(1(4(4(x1)))))))))))) ->
       4(3(0(1(0(1(0(0(1(0(4(5(3(4(4(x1)))))))))))))))
     , 4(2(5(4(3(0(3(3(5(4(5(4(x1)))))))))))) ->
       4(2(4(3(4(1(1(4(3(4(2(2(4(5(5(x1)))))))))))))))
     , 4(2(5(1(5(4(4(5(4(3(2(4(x1)))))))))))) ->
       1(4(2(1(1(5(1(4(0(2(1(1(4(5(0(x1)))))))))))))))
     , 4(2(5(1(0(5(2(2(2(1(5(0(x1)))))))))))) ->
       3(2(1(3(0(5(0(0(1(4(1(2(0(0(0(1(x1))))))))))))))))
     , 4(0(3(3(5(3(4(1(5(3(5(3(x1)))))))))))) ->
       2(1(3(4(0(0(0(2(2(2(0(0(4(1(0(0(0(x1)))))))))))))))))
     , 3(5(5(4(2(5(3(2(4(5(4(4(x1)))))))))))) ->
       4(3(0(4(2(0(1(5(0(3(2(4(1(1(x1))))))))))))))
     , 3(5(4(5(0(4(4(2(5(2(5(3(x1)))))))))))) ->
       1(3(1(5(2(0(0(5(4(3(3(0(0(4(0(x1)))))))))))))))
     , 3(5(4(3(5(5(4(4(5(5(2(1(x1)))))))))))) ->
       2(2(5(0(2(1(1(1(1(4(0(0(2(3(0(0(4(x1)))))))))))))))))
     , 3(5(4(3(5(4(3(0(5(4(4(1(x1)))))))))))) ->
       2(5(0(0(3(1(0(0(1(2(1(3(0(1(2(2(1(x1)))))))))))))))))
     , 3(5(3(2(5(3(2(1(4(5(4(2(x1)))))))))))) ->
       1(1(5(2(0(2(4(5(2(3(0(1(0(0(1(0(2(x1)))))))))))))))))
     , 3(5(3(2(2(1(2(0(3(3(5(3(x1)))))))))))) ->
       3(3(5(5(3(4(0(0(5(2(2(0(2(0(4(x1)))))))))))))))
     , 3(5(2(3(3(5(4(3(5(0(1(4(x1)))))))))))) ->
       4(0(0(3(4(4(5(5(2(1(1(2(1(0(x1))))))))))))))
     , 3(5(1(5(1(1(5(5(4(4(0(2(x1)))))))))))) ->
       3(1(0(0(3(4(1(1(1(5(4(2(5(2(5(2(x1))))))))))))))))
     , 3(5(1(1(5(4(4(4(2(3(5(4(x1)))))))))))) ->
       1(3(3(3(2(0(0(5(3(5(0(1(2(4(5(0(x1))))))))))))))))
     , 3(3(5(4(4(0(4(2(1(4(2(3(x1)))))))))))) ->
       2(1(1(2(0(2(2(2(0(5(2(1(5(0(3(x1)))))))))))))))
     , 3(3(5(4(3(2(5(0(2(2(3(4(x1)))))))))))) ->
       1(1(3(3(5(0(1(0(4(2(4(0(3(2(x1))))))))))))))
     , 3(3(3(3(3(3(5(0(4(5(0(4(x1)))))))))))) ->
       1(0(5(1(4(1(0(1(3(3(0(4(4(2(2(4(x1))))))))))))))))
     , 3(3(3(1(4(2(5(4(4(4(1(4(x1)))))))))))) ->
       1(0(0(4(0(5(2(3(0(2(0(0(1(0(5(5(3(1(x1))))))))))))))))))
     , 3(2(5(4(5(2(4(0(0(0(5(4(x1)))))))))))) ->
       3(1(1(3(1(3(4(5(3(1(0(0(1(2(x1))))))))))))))
     , 3(2(4(5(4(3(1(5(2(3(3(2(x1)))))))))))) ->
       1(0(1(3(1(2(5(5(0(4(2(1(2(0(0(4(2(x1)))))))))))))))))
     , 3(2(2(0(4(3(5(0(5(4(0(4(x1)))))))))))) ->
       3(4(0(1(2(3(1(2(1(0(0(2(2(5(x1))))))))))))))
     , 3(0(4(3(2(1(0(4(5(2(1(2(x1)))))))))))) ->
       5(1(4(0(2(4(2(1(0(2(4(2(0(0(x1))))))))))))))
     , 3(0(2(1(5(4(2(5(3(5(1(1(x1)))))))))))) ->
       2(0(5(0(1(2(3(0(1(4(3(1(3(3(x1))))))))))))))
     , 2(5(5(2(2(0(5(3(2(3(2(1(x1)))))))))))) ->
       1(3(1(3(5(0(2(0(0(0(0(1(2(4(4(1(1(0(x1))))))))))))))))))
     , 2(4(5(3(1(2(1(4(4(5(5(3(x1)))))))))))) ->
       0(0(3(0(0(4(4(3(5(0(0(2(2(4(0(x1)))))))))))))))
     , 2(4(4(4(3(1(3(5(1(3(3(1(x1)))))))))))) ->
       0(1(4(3(0(4(0(0(2(1(5(4(4(0(x1))))))))))))))
     , 2(4(3(1(4(1(5(3(1(3(3(3(x1)))))))))))) ->
       2(3(1(1(1(0(0(0(0(0(3(0(4(5(5(5(x1))))))))))))))))
     , 2(4(1(5(5(4(1(2(5(3(2(3(x1)))))))))))) ->
       4(2(2(1(2(0(0(5(0(2(3(2(0(0(5(x1)))))))))))))))
     , 2(3(5(5(5(4(4(1(4(5(3(0(x1)))))))))))) ->
       1(1(5(5(2(3(0(0(0(0(0(2(0(2(0(3(0(3(x1))))))))))))))))))
     , 2(3(5(4(5(1(4(4(4(0(3(5(x1)))))))))))) ->
       0(1(0(4(2(2(4(0(3(4(3(0(1(3(0(0(5(x1)))))))))))))))))
     , 2(3(5(2(3(3(3(2(5(4(4(1(x1)))))))))))) ->
       4(3(2(1(2(5(0(2(0(0(4(2(0(0(5(1(x1))))))))))))))))
     , 2(3(1(5(1(2(2(3(5(3(1(5(x1)))))))))))) ->
       1(1(1(1(5(0(0(3(0(4(3(0(0(4(1(1(5(x1)))))))))))))))))
     , 2(3(0(2(3(1(2(2(3(3(5(0(x1)))))))))))) ->
       1(3(1(5(2(4(0(1(4(5(4(3(4(0(0(x1)))))))))))))))
     , 2(2(5(4(4(4(3(4(2(3(4(3(x1)))))))))))) ->
       3(4(0(3(4(0(1(1(3(4(3(4(5(4(3(x1)))))))))))))))
     , 2(2(4(2(4(5(3(2(2(2(5(4(x1)))))))))))) ->
       0(1(3(0(4(1(1(3(1(1(1(4(1(4(0(2(0(0(x1))))))))))))))))))
     , 2(1(5(2(3(2(2(2(5(5(5(2(x1)))))))))))) ->
       2(4(3(5(2(4(0(2(0(0(0(2(2(0(4(x1)))))))))))))))
     , 2(1(4(5(5(4(4(5(4(4(3(1(x1)))))))))))) ->
       0(2(0(0(0(3(3(1(5(0(2(2(0(1(0(2(0(2(x1))))))))))))))))))
     , 2(1(2(4(4(2(2(3(5(4(4(3(x1)))))))))))) ->
       0(4(1(2(0(5(0(0(3(3(0(0(4(5(1(x1)))))))))))))))
     , 2(1(2(2(5(4(1(4(4(0(4(3(x1)))))))))))) ->
       0(0(3(1(4(0(0(0(3(0(5(3(0(0(0(3(2(x1)))))))))))))))))
     , 2(1(2(2(3(2(1(1(5(2(5(4(x1)))))))))))) ->
       3(0(1(1(0(3(1(5(0(0(2(4(1(3(3(0(x1))))))))))))))))
     , 2(1(1(2(3(5(4(2(4(4(4(4(x1)))))))))))) ->
       2(4(2(1(0(1(0(3(1(1(3(3(2(1(x1))))))))))))))
     , 2(0(4(4(2(4(3(5(3(0(5(3(x1)))))))))))) ->
       2(4(3(0(3(4(3(4(3(0(1(0(2(3(x1))))))))))))))
     , 1(5(5(3(3(2(3(2(5(4(1(0(x1)))))))))))) ->
       4(3(0(0(1(0(4(0(5(0(0(0(2(0(1(2(4(x1)))))))))))))))))
     , 1(5(4(3(1(4(4(5(0(2(2(2(x1)))))))))))) ->
       3(4(5(5(0(1(3(0(1(5(5(2(0(3(x1))))))))))))))
     , 1(5(4(1(5(2(1(2(4(4(4(4(x1)))))))))))) ->
       2(0(2(0(1(3(0(4(4(0(0(2(0(2(4(5(2(4(x1))))))))))))))))))
     , 1(5(3(1(1(1(5(4(2(2(5(4(x1)))))))))))) ->
       1(1(4(5(2(1(5(2(1(5(2(0(0(4(5(x1)))))))))))))))
     , 1(5(2(1(5(2(1(4(2(2(4(2(x1)))))))))))) ->
       4(4(4(0(2(3(4(3(0(0(0(0(0(2(1(1(x1))))))))))))))))
     , 1(5(1(2(3(2(5(2(1(5(4(1(x1)))))))))))) ->
       2(0(0(5(3(3(0(1(2(0(4(3(4(2(x1))))))))))))))
     , 1(4(4(5(3(2(0(5(1(4(5(3(x1)))))))))))) ->
       1(0(0(5(2(0(4(0(0(2(0(0(3(3(0(5(0(x1)))))))))))))))))
     , 1(4(4(2(4(0(5(4(0(3(3(4(x1)))))))))))) ->
       3(4(0(3(2(0(0(4(0(1(4(0(3(2(x1))))))))))))))
     , 1(4(3(3(2(2(5(2(5(3(3(1(x1)))))))))))) ->
       3(0(3(0(1(0(0(0(1(5(4(3(0(5(1(x1)))))))))))))))
     , 1(3(5(1(3(0(5(4(3(1(3(2(x1)))))))))))) ->
       0(0(2(4(1(1(1(1(4(4(0(0(0(4(x1))))))))))))))
     , 1(3(4(3(5(3(2(4(4(2(1(3(x1)))))))))))) ->
       0(2(0(1(2(1(2(0(3(0(1(2(1(0(0(3(3(x1)))))))))))))))))
     , 1(3(3(5(4(4(0(1(3(3(5(4(x1)))))))))))) ->
       5(5(3(0(0(2(3(1(0(4(2(0(0(3(1(5(x1))))))))))))))))
     , 1(3(3(2(3(2(3(2(1(4(4(4(x1)))))))))))) ->
       5(1(4(0(5(0(1(5(3(5(0(4(1(1(x1))))))))))))))
     , 1(3(1(1(5(3(5(4(3(3(4(2(x1)))))))))))) ->
       0(5(1(2(3(1(3(4(3(4(0(0(3(1(1(x1)))))))))))))))
     , 1(3(0(5(1(2(3(5(4(4(5(4(x1)))))))))))) ->
       1(0(3(1(0(0(0(4(0(0(4(5(1(5(0(2(x1))))))))))))))))
     , 1(2(3(3(4(4(4(5(3(3(5(4(x1)))))))))))) ->
       1(1(5(1(1(1(0(1(4(3(0(1(3(1(2(0(1(4(x1))))))))))))))))))
     , 1(1(2(5(1(5(4(3(3(3(2(4(x1)))))))))))) ->
       0(0(1(0(1(2(5(0(1(4(3(5(1(3(0(x1)))))))))))))))
     , 1(1(2(3(4(3(3(3(3(1(4(4(x1)))))))))))) ->
       1(2(0(4(0(5(0(1(2(1(3(3(1(0(2(5(x1))))))))))))))))
     , 0(5(4(4(2(5(4(5(2(2(3(4(x1)))))))))))) ->
       2(3(0(3(3(4(1(1(1(0(2(1(0(1(3(0(1(1(x1))))))))))))))))))
     , 0(5(2(5(3(2(5(4(1(3(2(3(x1)))))))))))) ->
       3(2(2(0(1(0(4(0(2(0(0(1(1(1(3(0(x1))))))))))))))))
     , 0(4(4(2(3(2(2(5(5(4(5(1(x1)))))))))))) ->
       1(0(4(0(2(0(0(5(5(0(2(1(3(0(3(3(x1))))))))))))))))
     , 0(2(5(5(4(4(4(2(2(3(5(3(x1)))))))))))) ->
       5(1(5(0(0(1(4(5(0(5(4(0(0(0(5(2(x1))))))))))))))))
     , 0(2(2(4(4(5(4(3(1(0(0(4(x1)))))))))))) ->
       3(0(0(2(4(0(1(1(0(4(1(0(0(0(x1))))))))))))))
     , 0(2(2(4(1(1(3(2(3(5(0(4(x1)))))))))))) ->
       0(1(4(0(5(0(1(1(3(1(3(3(1(4(x1))))))))))))))
     , 0(2(0(4(2(3(2(2(5(5(4(4(x1)))))))))))) ->
       1(0(5(2(0(0(3(0(1(1(0(1(3(2(3(0(x1))))))))))))))))}
  StartTerms: all
  Strategy: none

Certificate: TIMEOUT

Proof:
  Computation stopped due to timeout after 60.0 seconds.

Arrrr..