Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 5(5(0(1(4(3(4(2(5(4(3(4(x1)))))))))))) ->
1(2(3(3(5(1(2(3(5(0(1(0(3(1(x1))))))))))))))
, 5(4(2(0(0(0(4(0(1(1(0(4(x1)))))))))))) ->
5(1(4(5(2(0(2(4(1(5(3(0(2(2(4(x1)))))))))))))))
, 5(4(0(3(0(4(2(1(4(4(1(1(x1)))))))))))) ->
4(1(3(1(5(2(1(5(5(0(2(3(1(5(5(0(x1))))))))))))))))
, 5(3(4(4(4(2(0(1(1(1(3(3(x1)))))))))))) ->
3(0(3(1(2(0(2(5(3(5(1(5(2(2(5(1(2(x1)))))))))))))))))
, 5(3(2(4(3(4(5(1(2(3(4(1(x1)))))))))))) ->
5(5(1(5(1(0(2(0(5(0(5(0(1(2(2(x1)))))))))))))))
, 5(2(3(4(4(0(4(0(2(4(0(2(x1)))))))))))) ->
5(4(2(5(4(5(0(0(1(5(5(5(2(0(2(3(2(5(x1))))))))))))))))))
, 5(2(1(3(4(1(1(1(4(2(3(0(x1)))))))))))) ->
1(0(3(1(5(5(5(2(2(5(0(0(5(1(5(4(5(0(x1))))))))))))))))))
, 5(1(3(4(2(3(0(4(0(0(3(0(x1)))))))))))) ->
0(3(1(5(1(0(0(2(5(5(3(5(1(0(2(5(2(2(x1))))))))))))))))))
, 5(0(5(4(2(3(4(4(4(5(4(4(x1)))))))))))) ->
2(0(5(1(3(3(3(1(1(2(3(5(0(3(x1))))))))))))))
, 5(0(4(3(4(3(2(1(4(2(4(0(x1)))))))))))) ->
5(5(0(0(2(2(2(4(0(1(0(5(3(5(5(4(1(1(x1))))))))))))))))))
, 5(0(3(5(2(3(4(5(3(3(4(1(x1)))))))))))) ->
2(4(0(2(5(1(5(5(5(2(2(2(5(0(x1))))))))))))))
, 5(0(3(4(4(0(3(1(0(3(3(2(x1)))))))))))) ->
1(5(3(1(4(1(5(4(1(1(1(5(0(0(2(5(x1))))))))))))))))
, 5(0(2(4(4(0(4(4(3(4(3(1(x1)))))))))))) ->
3(1(3(3(5(5(5(1(1(4(5(5(0(0(2(1(0(x1)))))))))))))))))
, 4(3(4(2(4(0(3(3(1(4(3(0(x1)))))))))))) ->
1(4(3(2(5(0(2(1(0(2(5(2(0(2(5(2(1(x1)))))))))))))))))
, 4(3(2(4(3(2(4(0(2(0(4(5(x1)))))))))))) ->
4(0(0(2(5(3(0(5(5(3(3(5(2(0(5(2(5(x1)))))))))))))))))
, 4(3(0(4(0(3(4(2(3(5(1(1(x1)))))))))))) ->
4(4(0(0(5(0(2(0(2(1(1(0(0(5(x1))))))))))))))
, 4(2(5(1(1(3(3(2(1(4(0(2(x1)))))))))))) ->
5(3(3(5(1(0(2(1(5(5(0(0(2(3(5(5(5(0(x1))))))))))))))))))
, 4(2(5(0(5(2(1(1(3(1(3(0(x1)))))))))))) ->
1(4(0(5(5(2(5(5(3(3(5(5(5(5(1(0(5(x1)))))))))))))))))
, 4(2(3(4(3(4(1(3(0(3(3(4(x1)))))))))))) ->
1(5(4(2(0(2(2(5(5(5(1(0(2(1(0(2(5(4(x1))))))))))))))))))
, 4(2(1(3(0(4(4(4(1(1(3(0(x1)))))))))))) ->
5(4(1(0(2(5(3(1(2(5(2(5(2(2(5(5(2(x1)))))))))))))))))
, 4(2(1(1(5(0(2(1(2(1(4(4(x1)))))))))))) ->
4(3(3(3(2(1(0(2(0(0(5(0(0(2(x1))))))))))))))
, 4(1(5(1(4(3(4(0(1(5(4(0(x1)))))))))))) ->
2(5(5(4(1(5(1(2(5(0(0(5(5(2(5(2(2(x1)))))))))))))))))
, 4(1(3(4(3(4(0(3(3(2(3(2(x1)))))))))))) ->
0(2(5(0(2(3(0(1(0(2(5(0(1(2(x1))))))))))))))
, 4(1(1(1(3(0(4(4(0(3(4(1(x1)))))))))))) ->
1(0(0(3(3(1(2(5(3(3(1(4(0(1(x1))))))))))))))
, 4(0(4(4(4(4(1(0(4(2(1(3(x1)))))))))))) ->
1(4(5(3(3(3(5(4(1(5(5(3(5(3(x1))))))))))))))
, 4(0(3(4(3(0(2(5(3(4(0(5(x1)))))))))))) ->
1(2(0(5(3(5(5(1(2(5(1(3(5(5(5(5(0(x1)))))))))))))))))
, 4(0(1(3(1(4(1(4(3(4(4(0(x1)))))))))))) ->
1(3(1(5(0(3(5(5(4(5(4(1(1(4(1(1(x1))))))))))))))))
, 3(4(4(5(2(3(4(4(4(3(0(0(x1)))))))))))) ->
2(0(0(0(1(1(2(5(5(4(1(5(1(3(1(0(x1))))))))))))))))
, 3(4(4(4(0(4(4(4(4(2(5(1(x1)))))))))))) ->
1(1(2(4(5(2(0(5(1(3(2(2(5(1(5(5(x1))))))))))))))))
, 3(4(4(3(3(4(3(4(2(0(2(4(x1)))))))))))) ->
3(2(0(5(5(0(0(3(1(4(1(5(4(5(2(x1)))))))))))))))
, 3(4(4(2(5(1(1(0(4(2(0(3(x1)))))))))))) ->
5(5(5(2(3(1(3(3(1(5(2(1(5(3(x1))))))))))))))
, 3(4(4(0(4(2(3(4(0(3(3(5(x1)))))))))))) ->
5(1(5(4(0(0(5(3(0(1(1(2(3(5(2(5(1(x1)))))))))))))))))
, 3(4(4(0(1(5(1(4(0(3(3(0(x1)))))))))))) ->
2(3(2(1(1(0(2(1(2(2(2(0(5(3(1(x1)))))))))))))))
, 3(4(3(4(5(2(3(2(3(4(3(0(x1)))))))))))) ->
2(5(5(4(1(5(5(3(0(1(2(1(0(5(3(3(0(x1)))))))))))))))))
, 3(4(3(4(3(0(4(4(2(1(4(5(x1)))))))))))) ->
0(4(5(4(4(1(0(0(2(1(0(2(1(2(5(1(3(x1)))))))))))))))))
, 3(4(3(4(0(1(0(5(2(3(4(1(x1)))))))))))) ->
5(2(4(4(1(5(3(2(5(0(2(5(2(2(1(x1)))))))))))))))
, 3(4(3(0(3(1(2(1(1(1(4(0(x1)))))))))))) ->
2(1(2(0(0(5(5(1(3(5(5(3(5(1(2(0(2(0(x1))))))))))))))))))
, 3(4(2(4(0(2(4(2(3(4(0(3(x1)))))))))))) ->
2(5(2(1(5(5(3(5(5(5(5(0(3(5(x1))))))))))))))
, 3(4(2(3(3(5(2(4(0(2(2(5(x1)))))))))))) ->
3(2(1(2(1(4(5(3(3(3(2(5(2(5(x1))))))))))))))
, 3(4(1(5(4(3(4(4(4(2(4(4(x1)))))))))))) ->
5(5(5(5(0(5(4(0(3(5(0(3(1(3(2(x1)))))))))))))))
, 3(4(1(4(4(2(0(4(0(3(4(1(x1)))))))))))) ->
3(4(0(2(2(0(5(4(3(1(1(3(5(1(5(x1)))))))))))))))
, 3(4(0(0(1(5(2(4(2(3(2(2(x1)))))))))))) ->
1(5(5(5(2(1(3(2(5(1(4(5(2(5(0(x1)))))))))))))))
, 3(3(3(3(5(1(3(4(0(3(0(2(x1)))))))))))) ->
5(5(5(5(4(5(3(3(3(3(5(0(0(1(5(0(x1))))))))))))))))
, 3(3(2(3(3(3(5(3(0(3(4(2(x1)))))))))))) ->
2(5(4(1(5(5(2(2(5(5(5(5(1(1(0(x1)))))))))))))))
, 3(3(1(5(0(4(2(0(4(2(1(2(x1)))))))))))) ->
5(5(1(2(5(4(1(5(5(5(5(3(2(0(0(3(3(x1)))))))))))))))))
, 3(3(1(3(4(0(1(5(5(3(4(1(x1)))))))))))) ->
1(5(4(5(5(1(5(1(2(1(5(4(4(2(x1))))))))))))))
, 3(2(4(3(2(4(0(1(1(4(1(3(x1)))))))))))) ->
0(0(5(5(1(0(5(5(0(2(3(4(5(0(2(0(5(x1)))))))))))))))))
, 3(2(3(4(4(0(5(3(4(4(4(0(x1)))))))))))) ->
5(1(2(5(1(3(0(5(5(3(2(5(1(2(5(1(0(0(x1))))))))))))))))))
, 3(2(0(3(4(4(2(4(2(3(4(0(x1)))))))))))) ->
0(1(3(5(5(3(2(5(2(3(5(3(4(3(3(x1)))))))))))))))
, 3(1(3(4(0(1(0(3(1(3(4(4(x1)))))))))))) ->
5(3(3(5(3(2(4(2(2(3(1(1(0(2(1(x1)))))))))))))))
, 3(1(3(1(4(3(4(3(1(3(4(4(x1)))))))))))) ->
5(5(3(2(3(1(1(0(0(5(1(1(5(2(5(0(2(x1)))))))))))))))))
, 3(1(0(4(0(3(2(1(4(0(5(4(x1)))))))))))) ->
0(5(4(5(1(0(3(5(3(0(3(1(1(2(x1))))))))))))))
, 3(0(4(0(3(4(4(4(4(4(4(1(x1)))))))))))) ->
3(1(5(1(4(5(2(1(4(5(0(1(4(5(5(x1)))))))))))))))
, 3(0(3(4(4(0(4(4(3(4(4(1(x1)))))))))))) ->
5(2(0(2(5(2(0(1(2(2(4(1(0(4(4(5(4(1(x1))))))))))))))))))
, 3(0(2(1(1(4(3(1(4(2(1(0(x1)))))))))))) ->
5(2(0(3(0(1(2(5(4(5(5(5(4(0(0(x1)))))))))))))))
, 2(5(5(2(2(4(4(4(5(4(3(4(x1)))))))))))) ->
0(5(0(2(2(2(5(1(5(5(5(3(3(1(2(5(5(3(x1))))))))))))))))))
, 2(5(2(2(1(4(2(1(4(1(4(4(x1)))))))))))) ->
5(5(1(5(5(2(4(3(0(5(1(5(0(3(x1))))))))))))))
, 2(4(3(4(0(0(1(3(0(1(4(1(x1)))))))))))) ->
2(5(2(2(3(3(3(1(1(5(5(1(5(4(0(2(x1))))))))))))))))
, 2(4(3(3(3(4(0(0(4(0(0(1(x1)))))))))))) ->
2(0(2(4(1(2(5(0(0(2(1(2(5(5(5(1(0(x1)))))))))))))))))
, 2(4(1(1(4(2(4(0(4(5(0(4(x1)))))))))))) ->
3(1(5(1(5(5(5(5(5(5(1(3(1(5(5(5(0(5(x1))))))))))))))))))
, 2(4(0(4(1(4(1(1(1(1(3(1(x1)))))))))))) ->
4(2(0(3(2(0(0(2(3(1(2(2(2(0(5(5(x1))))))))))))))))
, 2(4(0(4(0(1(2(0(1(3(4(1(x1)))))))))))) ->
5(1(4(5(3(3(1(1(5(2(5(5(5(4(1(x1)))))))))))))))
, 2(4(0(3(4(4(0(3(4(0(5(0(x1)))))))))))) ->
0(3(1(3(5(5(5(0(2(2(2(0(4(5(1(3(3(x1)))))))))))))))))
, 2(3(5(0(3(1(4(0(1(3(4(4(x1)))))))))))) ->
5(2(2(5(5(0(2(0(5(3(0(4(1(0(2(0(3(x1)))))))))))))))))
, 2(3(4(3(0(0(4(2(4(1(1(4(x1)))))))))))) ->
5(0(3(1(1(0(3(3(3(3(5(4(1(2(5(x1)))))))))))))))
, 2(2(4(4(2(3(4(3(4(2(4(5(x1)))))))))))) ->
2(3(0(3(3(5(1(3(1(5(1(5(1(1(5(5(0(2(x1))))))))))))))))))
, 2(2(4(0(2(1(5(3(3(2(4(4(x1)))))))))))) ->
5(3(3(0(3(3(5(5(0(2(2(5(0(0(x1))))))))))))))
, 2(2(3(4(3(4(3(4(2(4(4(0(x1)))))))))))) ->
2(5(4(5(3(4(0(5(4(1(2(5(0(5(5(x1)))))))))))))))
, 2(2(3(3(1(5(4(0(4(2(4(3(x1)))))))))))) ->
5(5(5(1(1(2(5(2(0(5(1(5(3(0(3(0(5(3(x1))))))))))))))))))
, 2(2(2(4(2(0(4(1(3(4(4(4(x1)))))))))))) ->
5(4(3(5(1(4(5(3(0(3(5(1(3(2(x1))))))))))))))
, 2(2(1(3(5(2(5(0(4(2(5(0(x1)))))))))))) ->
2(2(5(5(2(5(5(2(0(2(5(5(1(1(5(x1)))))))))))))))
, 2(1(1(3(4(4(3(4(4(0(4(3(x1)))))))))))) ->
2(3(3(1(0(0(1(2(2(2(5(1(1(2(4(1(2(3(x1))))))))))))))))))
, 1(4(3(3(0(1(2(1(0(3(3(5(x1)))))))))))) ->
5(0(2(5(5(5(2(5(3(2(4(5(0(5(x1))))))))))))))
, 1(4(3(1(0(1(1(1(2(3(4(4(x1)))))))))))) ->
5(3(4(1(2(2(2(2(5(0(5(1(5(1(5(3(5(x1)))))))))))))))))
, 1(4(2(5(1(4(0(1(3(0(4(0(x1)))))))))))) ->
3(1(3(2(0(2(0(0(2(2(5(1(3(5(5(1(x1))))))))))))))))
, 1(3(5(4(1(0(4(0(3(4(0(4(x1)))))))))))) ->
5(1(0(5(3(1(5(1(5(0(0(2(2(1(3(0(5(x1)))))))))))))))))
, 1(3(4(4(4(3(0(3(5(5(1(2(x1)))))))))))) ->
5(2(2(5(2(2(1(5(3(2(1(2(5(5(5(5(5(x1)))))))))))))))))
, 1(3(2(1(2(4(4(2(1(3(2(2(x1)))))))))))) ->
1(3(5(3(0(5(2(2(5(3(5(5(5(3(5(1(x1))))))))))))))))
, 1(2(3(0(4(0(3(0(4(4(3(4(x1)))))))))))) ->
2(3(5(3(0(5(0(2(3(1(4(5(0(0(x1))))))))))))))
, 1(2(1(4(0(1(4(0(1(5(1(1(x1)))))))))))) ->
2(2(2(3(1(5(2(2(2(0(1(3(3(5(5(0(x1))))))))))))))))
, 1(0(5(0(5(2(4(0(4(2(1(1(x1)))))))))))) ->
5(1(1(0(0(5(5(5(0(2(1(0(2(5(5(4(3(x1)))))))))))))))))
, 1(0(2(1(0(3(1(4(4(4(4(5(x1)))))))))))) ->
3(1(3(3(5(1(3(1(5(5(3(2(5(3(2(x1)))))))))))))))
, 0(5(3(2(1(3(4(0(4(4(0(0(x1)))))))))))) ->
4(2(5(5(5(2(2(5(5(3(2(5(5(0(5(x1)))))))))))))))
, 0(5(2(2(1(3(4(0(1(3(5(4(x1)))))))))))) ->
1(0(2(2(5(2(1(1(5(5(5(5(5(3(1(x1)))))))))))))))
, 0(4(4(1(5(3(4(2(4(0(2(5(x1)))))))))))) ->
5(2(0(2(5(3(0(1(0(0(2(0(3(5(1(5(x1))))))))))))))))
, 0(4(4(1(0(3(2(2(3(4(3(4(x1)))))))))))) ->
5(1(5(0(2(5(5(2(3(2(4(3(1(2(2(5(x1))))))))))))))))
, 0(4(2(4(1(1(3(0(0(4(1(4(x1)))))))))))) ->
2(3(1(5(4(5(2(0(2(1(5(1(3(1(x1))))))))))))))
, 0(4(2(3(5(4(4(4(1(2(2(4(x1)))))))))))) ->
0(4(2(0(3(0(5(0(2(1(2(5(1(5(5(4(x1))))))))))))))))
, 0(4(0(4(0(4(4(5(0(1(5(2(x1)))))))))))) ->
3(1(5(1(3(3(4(1(5(5(4(1(3(3(x1))))))))))))))
, 0(3(4(5(2(1(4(2(3(4(4(3(x1)))))))))))) ->
0(5(3(5(3(0(1(0(5(0(5(1(3(5(4(2(x1))))))))))))))))
, 0(3(4(2(1(4(1(4(4(4(4(0(x1)))))))))))) ->
3(2(1(0(5(0(3(5(4(0(2(3(1(0(5(0(x1))))))))))))))))
, 0(3(2(4(0(4(5(3(4(1(2(4(x1)))))))))))) ->
2(1(5(1(0(3(0(5(1(2(3(5(1(5(5(1(x1))))))))))))))))
, 0(2(4(3(3(1(4(0(1(3(2(2(x1)))))))))))) ->
3(2(4(4(3(5(1(5(5(3(3(1(0(2(2(1(x1))))))))))))))))
, 0(1(4(0(0(3(2(4(3(1(0(4(x1)))))))))))) ->
2(5(5(3(1(2(2(5(4(3(1(1(5(3(5(x1)))))))))))))))
, 0(1(1(1(4(0(4(5(0(4(3(1(x1)))))))))))) ->
5(2(5(2(5(5(5(0(4(4(3(1(5(2(2(5(3(x1)))))))))))))))))
, 0(0(4(2(5(0(1(4(2(1(0(1(x1)))))))))))) ->
2(2(5(5(2(0(0(5(3(1(5(4(1(2(5(5(5(1(x1))))))))))))))))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ 1_0(1) -> 1
, 1_1(1) -> 14
, 1_1(2) -> 1
, 1_1(2) -> 14
, 1_1(2) -> 28
, 1_1(2) -> 41
, 1_1(2) -> 42
, 1_1(2) -> 43
, 1_1(2) -> 87
, 1_1(2) -> 127
, 1_1(2) -> 129
, 1_1(2) -> 142
, 1_1(2) -> 192
, 1_1(2) -> 205
, 1_1(2) -> 217
, 1_1(2) -> 269
, 1_1(2) -> 310
, 1_1(2) -> 365
, 1_1(2) -> 432
, 1_1(2) -> 484
, 1_1(2) -> 536
, 1_1(2) -> 545
, 1_1(2) -> 637
, 1_1(2) -> 646
, 1_1(2) -> 1293
, 1_1(7) -> 6
, 1_1(12) -> 11
, 1_1(13) -> 351
, 1_1(14) -> 143
, 1_1(15) -> 14
, 1_1(16) -> 15
, 1_1(23) -> 22
, 1_1(28) -> 503
, 1_1(29) -> 14
, 1_1(30) -> 29
, 1_1(32) -> 31
, 1_1(35) -> 34
, 1_1(40) -> 845
, 1_1(41) -> 40
, 1_1(42) -> 514
, 1_1(43) -> 179
, 1_1(44) -> 14
, 1_1(45) -> 14
, 1_1(47) -> 46
, 1_1(54) -> 53
, 1_1(58) -> 613
, 1_1(59) -> 58
, 1_1(61) -> 60
, 1_1(63) -> 62
, 1_1(71) -> 70
, 1_1(72) -> 14
, 1_1(79) -> 78
, 1_1(86) -> 764
, 1_1(87) -> 385
, 1_1(90) -> 89
, 1_1(100) -> 99
, 1_1(102) -> 14
, 1_1(104) -> 103
, 1_1(106) -> 105
, 1_1(114) -> 113
, 1_1(117) -> 14
, 1_1(120) -> 119
, 1_1(124) -> 123
, 1_1(125) -> 124
, 1_1(127) -> 665
, 1_1(129) -> 432
, 1_1(137) -> 136
, 1_1(142) -> 341
, 1_1(144) -> 14
, 1_1(145) -> 14
, 1_1(146) -> 385
, 1_1(148) -> 147
, 1_1(156) -> 155
, 1_1(158) -> 157
, 1_1(161) -> 160
, 1_1(162) -> 161
, 1_1(163) -> 162
, 1_1(165) -> 113
, 1_1(166) -> 44
, 1_1(172) -> 171
, 1_1(173) -> 172
, 1_1(179) -> 524
, 1_1(180) -> 14
, 1_1(186) -> 185
, 1_1(194) -> 14
, 1_1(207) -> 14
, 1_1(208) -> 14
, 1_1(209) -> 14
, 1_1(215) -> 214
, 1_1(216) -> 215
, 1_1(217) -> 242
, 1_1(221) -> 220
, 1_1(224) -> 223
, 1_1(230) -> 695
, 1_1(232) -> 14
, 1_1(251) -> 250
, 1_1(254) -> 253
, 1_1(256) -> 99
, 1_1(257) -> 72
, 1_1(262) -> 261
, 1_1(274) -> 273
, 1_1(278) -> 162
, 1_1(280) -> 253
, 1_1(284) -> 283
, 1_1(286) -> 285
, 1_1(292) -> 14
, 1_1(298) -> 297
, 1_1(305) -> 304
, 1_1(310) -> 309
, 1_1(317) -> 316
, 1_1(318) -> 1032
, 1_1(320) -> 385
, 1_1(326) -> 325
, 1_1(329) -> 328
, 1_1(332) -> 331
, 1_1(341) -> 340
, 1_1(344) -> 343
, 1_1(345) -> 344
, 1_1(350) -> 349
, 1_1(352) -> 351
, 1_1(353) -> 2
, 1_1(360) -> 359
, 1_1(362) -> 1590
, 1_1(365) -> 364
, 1_1(373) -> 372
, 1_1(375) -> 374
, 1_1(376) -> 503
, 1_1(380) -> 379
, 1_1(383) -> 382
, 1_1(385) -> 944
, 1_1(393) -> 392
, 1_1(394) -> 393
, 1_1(397) -> 58
, 1_1(399) -> 14
, 1_1(401) -> 400
, 1_1(402) -> 401
, 1_1(405) -> 404
, 1_1(413) -> 412
, 1_1(415) -> 414
, 1_1(421) -> 14
, 1_1(423) -> 422
, 1_1(427) -> 426
, 1_1(430) -> 429
, 1_1(436) -> 435
, 1_1(444) -> 117
, 1_1(450) -> 449
, 1_1(456) -> 455
, 1_1(460) -> 459
, 1_1(468) -> 366
, 1_1(470) -> 469
, 1_1(485) -> 484
, 1_1(486) -> 14
, 1_1(487) -> 14
, 1_1(494) -> 493
, 1_1(495) -> 494
, 1_1(496) -> 1030
, 1_1(500) -> 499
, 1_1(504) -> 503
, 1_1(516) -> 515
, 1_1(528) -> 527
, 1_1(536) -> 728
, 1_1(539) -> 538
, 1_1(541) -> 540
, 1_1(543) -> 542
, 1_1(549) -> 548
, 1_1(561) -> 560
, 1_1(569) -> 568
, 1_1(572) -> 571
, 1_1(573) -> 102
, 1_1(590) -> 589
, 1_1(591) -> 590
, 1_1(595) -> 594
, 1_1(596) -> 595
, 1_1(600) -> 599
, 1_1(601) -> 600
, 1_1(605) -> 14
, 1_1(607) -> 606
, 1_1(615) -> 614
, 1_1(619) -> 618
, 1_1(623) -> 622
, 1_1(629) -> 628
, 1_1(633) -> 632
, 1_1(637) -> 341
, 1_1(640) -> 639
, 1_1(647) -> 14
, 1_1(648) -> 14
, 1_1(649) -> 14
, 1_1(650) -> 14
, 1_1(651) -> 14
, 1_1(652) -> 651
, 1_1(658) -> 657
, 1_1(670) -> 669
, 1_1(671) -> 670
, 1_1(674) -> 673
, 1_1(678) -> 677
, 1_1(684) -> 683
, 1_1(694) -> 693
, 1_1(696) -> 695
, 1_1(699) -> 14
, 1_1(707) -> 706
, 1_1(713) -> 712
, 1_1(714) -> 713
, 1_1(717) -> 1593
, 1_1(739) -> 738
, 1_1(744) -> 32
, 1_1(840) -> 839
, 1_1(842) -> 841
, 1_1(844) -> 843
, 1_1(846) -> 845
, 1_1(847) -> 846
, 1_1(880) -> 879
, 1_1(882) -> 377
, 1_1(883) -> 882
, 1_1(889) -> 888
, 1_1(902) -> 1099
, 1_1(918) -> 14
, 1_1(920) -> 919
, 1_1(934) -> 14
, 1_1(935) -> 14
, 1_1(943) -> 843
, 1_1(944) -> 160
, 1_1(946) -> 945
, 1_1(949) -> 948
, 1_1(954) -> 953
, 1_1(955) -> 954
, 1_1(958) -> 957
, 1_1(1022) -> 14
, 1_1(1023) -> 1022
, 1_1(1024) -> 14
, 1_1(1025) -> 14
, 1_1(1026) -> 14
, 1_1(1027) -> 14
, 1_1(1028) -> 14
, 1_1(1029) -> 14
, 1_1(1030) -> 14
, 1_1(1031) -> 1030
, 1_1(1032) -> 1645
, 1_1(1081) -> 1080
, 1_1(1082) -> 1628
, 1_1(1092) -> 1091
, 1_1(1094) -> 1093
, 1_1(1124) -> 1123
, 1_1(1138) -> 1137
, 1_1(1262) -> 1261
, 1_1(1265) -> 1264
, 1_1(1271) -> 1270
, 1_1(1275) -> 16
, 1_1(1278) -> 14
, 1_1(1281) -> 14
, 1_1(1284) -> 14
, 1_1(1289) -> 1288
, 1_1(1374) -> 169
, 1_1(1376) -> 1375
, 1_1(1382) -> 14
, 1_1(1393) -> 1392
, 1_1(1394) -> 1393
, 1_1(1408) -> 1407
, 1_1(1519) -> 1518
, 1_1(1578) -> 399
, 1_1(1591) -> 1590
, 1_1(1597) -> 1596
, 1_1(1600) -> 14
, 1_1(1601) -> 14
, 1_1(1604) -> 1603
, 1_1(1609) -> 1608
, 1_1(1620) -> 1619
, 1_1(1625) -> 1624
, 1_1(1633) -> 1632
, 1_1(1638) -> 1637
, 1_1(1640) -> 1639
, 1_1(1682) -> 1681
, 1_1(1746) -> 1745
, 1_1(1749) -> 1748
, 1_2(7740) -> 129
, 1_2(7741) -> 7740
, 1_2(7748) -> 7747
, 1_2(7753) -> 7752
, 0_0(1) -> 1
, 0_1(1) -> 43
, 0_1(2) -> 43
, 0_1(11) -> 10
, 0_1(13) -> 12
, 0_1(14) -> 301
, 0_1(15) -> 15
, 0_1(20) -> 19
, 0_1(26) -> 25
, 0_1(29) -> 217
, 0_1(30) -> 15
, 0_1(38) -> 37
, 0_1(42) -> 217
, 0_1(43) -> 572
, 0_1(45) -> 44
, 0_1(49) -> 48
, 0_1(58) -> 301
, 0_1(59) -> 280
, 0_1(64) -> 63
, 0_1(66) -> 65
, 0_1(68) -> 67
, 0_1(70) -> 69
, 0_1(71) -> 25
, 0_1(77) -> 76
, 0_1(78) -> 77
, 0_1(84) -> 83
, 0_1(86) -> 165
, 0_1(87) -> 217
, 0_1(88) -> 2
, 0_1(97) -> 96
, 0_1(98) -> 97
, 0_1(102) -> 1
, 0_1(102) -> 13
, 0_1(102) -> 27
, 0_1(102) -> 28
, 0_1(102) -> 43
, 0_1(102) -> 59
, 0_1(102) -> 86
, 0_1(102) -> 87
, 0_1(102) -> 128
, 0_1(102) -> 129
, 0_1(102) -> 267
, 0_1(102) -> 352
, 0_1(102) -> 398
, 0_1(102) -> 431
, 0_1(102) -> 485
, 0_1(102) -> 582
, 0_1(102) -> 637
, 0_1(102) -> 658
, 0_1(102) -> 981
, 0_1(102) -> 1599
, 0_1(107) -> 106
, 0_1(108) -> 107
, 0_1(115) -> 114
, 0_1(117) -> 15
, 0_1(118) -> 117
, 0_1(128) -> 534
, 0_1(129) -> 128
, 0_1(130) -> 60
, 0_1(131) -> 130
, 0_1(136) -> 135
, 0_1(138) -> 137
, 0_1(145) -> 144
, 0_1(153) -> 254
, 0_1(165) -> 164
, 0_1(166) -> 43
, 0_1(177) -> 176
, 0_1(178) -> 177
, 0_1(180) -> 15
, 0_1(184) -> 183
, 0_1(187) -> 186
, 0_1(191) -> 190
, 0_1(193) -> 591
, 0_1(194) -> 29
, 0_1(195) -> 194
, 0_1(199) -> 198
, 0_1(206) -> 205
, 0_1(207) -> 217
, 0_1(208) -> 207
, 0_1(209) -> 208
, 0_1(211) -> 210
, 0_1(213) -> 212
, 0_1(217) -> 216
, 0_1(222) -> 221
, 0_1(227) -> 226
, 0_1(228) -> 227
, 0_1(231) -> 180
, 0_1(245) -> 244
, 0_1(252) -> 251
, 0_1(255) -> 254
, 0_1(258) -> 257
, 0_1(268) -> 289
, 0_1(269) -> 205
, 0_1(275) -> 274
, 0_1(277) -> 276
, 0_1(278) -> 277
, 0_1(280) -> 279
, 0_1(289) -> 288
, 0_1(290) -> 289
, 0_1(292) -> 15
, 0_1(294) -> 293
, 0_1(297) -> 296
, 0_1(299) -> 298
, 0_1(301) -> 512
, 0_1(302) -> 88
, 0_1(319) -> 467
, 0_1(320) -> 415
, 0_1(321) -> 3
, 0_1(334) -> 333
, 0_1(342) -> 118
, 0_1(343) -> 342
, 0_1(353) -> 15
, 0_1(358) -> 357
, 0_1(365) -> 710
, 0_1(367) -> 366
, 0_1(370) -> 369
, 0_1(371) -> 370
, 0_1(388) -> 387
, 0_1(389) -> 388
, 0_1(392) -> 391
, 0_1(403) -> 402
, 0_1(409) -> 408
, 0_1(412) -> 411
, 0_1(416) -> 415
, 0_1(424) -> 423
, 0_1(425) -> 424
, 0_1(428) -> 427
, 0_1(441) -> 440
, 0_1(443) -> 1638
, 0_1(446) -> 445
, 0_1(447) -> 446
, 0_1(458) -> 457
, 0_1(477) -> 476
, 0_1(480) -> 479
, 0_1(483) -> 482
, 0_1(486) -> 43
, 0_1(487) -> 486
, 0_1(490) -> 489
, 0_1(495) -> 1411
, 0_1(513) -> 512
, 0_1(514) -> 513
, 0_1(535) -> 534
, 0_1(536) -> 535
, 0_1(546) -> 102
, 0_1(550) -> 549
, 0_1(553) -> 552
, 0_1(558) -> 557
, 0_1(563) -> 562
, 0_1(573) -> 43
, 0_1(597) -> 596
, 0_1(598) -> 597
, 0_1(604) -> 15
, 0_1(605) -> 43
, 0_1(607) -> 43
, 0_1(608) -> 607
, 0_1(612) -> 611
, 0_1(622) -> 621
, 0_1(624) -> 433
, 0_1(628) -> 627
, 0_1(634) -> 633
, 0_1(639) -> 638
, 0_1(647) -> 604
, 0_1(648) -> 15
, 0_1(650) -> 15
, 0_1(664) -> 663
, 0_1(681) -> 680
, 0_1(682) -> 681
, 0_1(699) -> 1
, 0_1(700) -> 699
, 0_1(703) -> 702
, 0_1(704) -> 703
, 0_1(722) -> 721
, 0_1(726) -> 725
, 0_1(732) -> 731
, 0_1(734) -> 733
, 0_1(737) -> 736
, 0_1(740) -> 739
, 0_1(745) -> 744
, 0_1(836) -> 399
, 0_1(848) -> 219
, 0_1(855) -> 854
, 0_1(877) -> 876
, 0_1(887) -> 886
, 0_1(902) -> 901
, 0_1(918) -> 15
, 0_1(924) -> 923
, 0_1(934) -> 15
, 0_1(941) -> 940
, 0_1(947) -> 946
, 0_1(948) -> 947
, 0_1(958) -> 227
, 0_1(1023) -> 1
, 0_1(1024) -> 15
, 0_1(1025) -> 15
, 0_1(1026) -> 15
, 0_1(1027) -> 1
, 0_1(1028) -> 15
, 0_1(1029) -> 1028
, 0_1(1074) -> 1073
, 0_1(1076) -> 1075
, 0_1(1077) -> 1076
, 0_1(1085) -> 16
, 0_1(1096) -> 1095
, 0_1(1097) -> 1096
, 0_1(1246) -> 1245
, 0_1(1254) -> 1411
, 0_1(1257) -> 1256
, 0_1(1259) -> 1258
, 0_1(1270) -> 1269
, 0_1(1275) -> 15
, 0_1(1278) -> 1275
, 0_1(1281) -> 1278
, 0_1(1287) -> 1286
, 0_1(1290) -> 1289
, 0_1(1381) -> 15
, 0_1(1407) -> 1406
, 0_1(1409) -> 1408
, 0_1(1410) -> 1409
, 0_1(1498) -> 386
, 0_1(1583) -> 1582
, 0_1(1585) -> 1584
, 0_1(1587) -> 1586
, 0_1(1589) -> 1588
, 0_1(1592) -> 97
, 0_1(1600) -> 15
, 0_1(1603) -> 1602
, 0_1(1605) -> 1604
, 0_1(1607) -> 1606
, 0_1(1611) -> 468
, 0_1(1613) -> 1612
, 0_1(1617) -> 1616
, 0_1(1621) -> 1620
, 0_1(1623) -> 1622
, 0_1(1630) -> 43
, 0_1(1660) -> 1659
, 0_1(1742) -> 937
, 0_1(1743) -> 1742
, 0_2(7746) -> 7745
, 2_0(1) -> 1
, 2_1(1) -> 59
, 2_1(2) -> 59
, 2_1(3) -> 2
, 2_1(8) -> 7
, 2_1(14) -> 193
, 2_1(15) -> 59
, 2_1(19) -> 18
, 2_1(21) -> 20
, 2_1(27) -> 26
, 2_1(28) -> 27
, 2_1(29) -> 59
, 2_1(30) -> 59
, 2_1(31) -> 59
, 2_1(34) -> 33
, 2_1(39) -> 38
, 2_1(42) -> 153
, 2_1(43) -> 458
, 2_1(44) -> 59
, 2_1(45) -> 59
, 2_1(48) -> 47
, 2_1(50) -> 49
, 2_1(56) -> 55
, 2_1(57) -> 56
, 2_1(58) -> 428
, 2_1(59) -> 71
, 2_1(65) -> 64
, 2_1(72) -> 59
, 2_1(73) -> 72
, 2_1(83) -> 82
, 2_1(85) -> 84
, 2_1(86) -> 1519
, 2_1(87) -> 86
, 2_1(94) -> 93
, 2_1(95) -> 94
, 2_1(101) -> 987
, 2_1(102) -> 59
, 2_1(109) -> 108
, 2_1(116) -> 115
, 2_1(117) -> 1
, 2_1(117) -> 14
, 2_1(117) -> 26
, 2_1(117) -> 27
, 2_1(117) -> 28
, 2_1(117) -> 42
, 2_1(117) -> 43
, 2_1(117) -> 58
, 2_1(117) -> 59
, 2_1(117) -> 71
, 2_1(117) -> 87
, 2_1(117) -> 127
, 2_1(117) -> 128
, 2_1(117) -> 129
, 2_1(117) -> 193
, 2_1(117) -> 301
, 2_1(117) -> 443
, 2_1(117) -> 466
, 2_1(117) -> 536
, 2_1(117) -> 572
, 2_1(117) -> 582
, 2_1(117) -> 637
, 2_1(117) -> 698
, 2_1(117) -> 957
, 2_1(118) -> 59
, 2_1(126) -> 125
, 2_1(128) -> 740
, 2_1(129) -> 958
, 2_1(132) -> 131
, 2_1(133) -> 132
, 2_1(134) -> 133
, 2_1(144) -> 59
, 2_1(145) -> 15
, 2_1(146) -> 145
, 2_1(152) -> 151
, 2_1(153) -> 152
, 2_1(179) -> 178
, 2_1(180) -> 59
, 2_1(181) -> 59
, 2_1(182) -> 181
, 2_1(185) -> 184
, 2_1(188) -> 187
, 2_1(190) -> 189
, 2_1(192) -> 191
, 2_1(193) -> 443
, 2_1(194) -> 59
, 2_1(195) -> 59
, 2_1(196) -> 195
, 2_1(205) -> 204
, 2_1(206) -> 475
, 2_1(207) -> 59
, 2_1(208) -> 29
, 2_1(209) -> 59
, 2_1(212) -> 211
, 2_1(214) -> 213
, 2_1(217) -> 558
, 2_1(223) -> 222
, 2_1(229) -> 228
, 2_1(231) -> 29
, 2_1(234) -> 233
, 2_1(241) -> 569
, 2_1(244) -> 243
, 2_1(246) -> 245
, 2_1(247) -> 246
, 2_1(253) -> 252
, 2_1(256) -> 255
, 2_1(259) -> 258
, 2_1(263) -> 262
, 2_1(265) -> 264
, 2_1(267) -> 266
, 2_1(268) -> 267
, 2_1(269) -> 86
, 2_1(270) -> 59
, 2_1(273) -> 272
, 2_1(276) -> 275
, 2_1(280) -> 456
, 2_1(287) -> 286
, 2_1(291) -> 262
, 2_1(292) -> 102
, 2_1(295) -> 294
, 2_1(300) -> 299
, 2_1(306) -> 305
, 2_1(319) -> 125
, 2_1(320) -> 1684
, 2_1(327) -> 326
, 2_1(331) -> 59
, 2_1(346) -> 345
, 2_1(349) -> 1583
, 2_1(352) -> 1617
, 2_1(353) -> 59
, 2_1(354) -> 353
, 2_1(357) -> 356
, 2_1(362) -> 361
, 2_1(363) -> 362
, 2_1(365) -> 658
, 2_1(366) -> 44
, 2_1(378) -> 377
, 2_1(385) -> 384
, 2_1(395) -> 394
, 2_1(397) -> 55
, 2_1(398) -> 397
, 2_1(400) -> 399
, 2_1(404) -> 403
, 2_1(406) -> 405
, 2_1(407) -> 406
, 2_1(408) -> 407
, 2_1(414) -> 413
, 2_1(419) -> 59
, 2_1(426) -> 425
, 2_1(429) -> 428
, 2_1(431) -> 430
, 2_1(433) -> 15
, 2_1(439) -> 438
, 2_1(442) -> 441
, 2_1(445) -> 444
, 2_1(457) -> 456
, 2_1(459) -> 281
, 2_1(469) -> 468
, 2_1(485) -> 84
, 2_1(486) -> 59
, 2_1(487) -> 59
, 2_1(488) -> 487
, 2_1(489) -> 488
, 2_1(499) -> 498
, 2_1(502) -> 501
, 2_1(519) -> 518
, 2_1(520) -> 519
, 2_1(522) -> 941
, 2_1(525) -> 61
, 2_1(534) -> 533
, 2_1(542) -> 541
, 2_1(546) -> 59
, 2_1(554) -> 553
, 2_1(559) -> 16
, 2_1(567) -> 566
, 2_1(570) -> 569
, 2_1(572) -> 533
, 2_1(578) -> 577
, 2_1(580) -> 579
, 2_1(585) -> 584
, 2_1(587) -> 586
, 2_1(588) -> 587
, 2_1(593) -> 592
, 2_1(603) -> 602
, 2_1(604) -> 29
, 2_1(605) -> 59
, 2_1(606) -> 15
, 2_1(618) -> 617
, 2_1(625) -> 624
, 2_1(627) -> 626
, 2_1(630) -> 629
, 2_1(631) -> 630
, 2_1(641) -> 640
, 2_1(647) -> 59
, 2_1(648) -> 647
, 2_1(649) -> 648
, 2_1(650) -> 649
, 2_1(658) -> 71
, 2_1(659) -> 658
, 2_1(661) -> 660
, 2_1(666) -> 459
, 2_1(676) -> 118
, 2_1(677) -> 15
, 2_1(679) -> 678
, 2_1(683) -> 682
, 2_1(685) -> 684
, 2_1(687) -> 569
, 2_1(697) -> 1388
, 2_1(699) -> 29
, 2_1(702) -> 701
, 2_1(705) -> 704
, 2_1(708) -> 707
, 2_1(709) -> 708
, 2_1(710) -> 709
, 2_1(716) -> 715
, 2_1(723) -> 722
, 2_1(724) -> 723
, 2_1(725) -> 724
, 2_1(729) -> 433
, 2_1(733) -> 732
, 2_1(763) -> 955
, 2_1(856) -> 855
, 2_1(857) -> 856
, 2_1(881) -> 880
, 2_1(884) -> 883
, 2_1(886) -> 885
, 2_1(918) -> 1
, 2_1(934) -> 117
, 2_1(937) -> 936
, 2_1(940) -> 939
, 2_1(942) -> 941
, 2_1(950) -> 949
, 2_1(951) -> 950
, 2_1(952) -> 951
, 2_1(956) -> 955
, 2_1(967) -> 966
, 2_1(988) -> 987
, 2_1(1022) -> 193
, 2_1(1023) -> 29
, 2_1(1024) -> 1023
, 2_1(1025) -> 1024
, 2_1(1026) -> 1025
, 2_1(1027) -> 1026
, 2_1(1028) -> 1
, 2_1(1029) -> 1
, 2_1(1073) -> 167
, 2_1(1075) -> 1074
, 2_1(1078) -> 1077
, 2_1(1079) -> 1078
, 2_1(1098) -> 1097
, 2_1(1099) -> 1098
, 2_1(1122) -> 730
, 2_1(1123) -> 1122
, 2_1(1137) -> 1136
, 2_1(1139) -> 1138
, 2_1(1140) -> 1138
, 2_1(1141) -> 1749
, 2_1(1248) -> 1247
, 2_1(1249) -> 1248
, 2_1(1260) -> 1259
, 2_1(1263) -> 934
, 2_1(1267) -> 1266
, 2_1(1268) -> 1267
, 2_1(1269) -> 1268
, 2_1(1275) -> 59
, 2_1(1278) -> 15
, 2_1(1281) -> 1
, 2_1(1288) -> 1287
, 2_1(1291) -> 1290
, 2_1(1380) -> 1379
, 2_1(1381) -> 15
, 2_1(1384) -> 1383
, 2_1(1385) -> 1384
, 2_1(1389) -> 88
, 2_1(1390) -> 1389
, 2_1(1392) -> 1391
, 2_1(1397) -> 658
, 2_1(1411) -> 1410
, 2_1(1499) -> 1498
, 2_1(1508) -> 1507
, 2_1(1516) -> 1515
, 2_1(1582) -> 1581
, 2_1(1584) -> 419
, 2_1(1590) -> 1589
, 2_1(1592) -> 1591
, 2_1(1600) -> 1
, 2_1(1618) -> 1617
, 2_1(1626) -> 1625
, 2_1(1641) -> 1640
, 2_1(1642) -> 1641
, 2_1(1650) -> 1649
, 2_1(1684) -> 1683
, 2_1(1750) -> 1749
, 2_2(7742) -> 7741
, 2_2(7745) -> 7744
, 2_2(7750) -> 7749
, 2_2(7751) -> 7750
, 4_0(1) -> 1
, 4_1(1) -> 28
, 4_1(14) -> 637
, 4_1(15) -> 15
, 4_1(17) -> 16
, 4_1(22) -> 21
, 4_1(29) -> 1
, 4_1(29) -> 27
, 4_1(29) -> 28
, 4_1(29) -> 43
, 4_1(29) -> 59
, 4_1(29) -> 87
, 4_1(29) -> 217
, 4_1(29) -> 256
, 4_1(29) -> 415
, 4_1(29) -> 545
, 4_1(29) -> 645
, 4_1(29) -> 1293
, 4_1(42) -> 101
, 4_1(43) -> 646
, 4_1(58) -> 763
, 4_1(59) -> 545
, 4_1(72) -> 15
, 4_1(75) -> 74
, 4_1(87) -> 101
, 4_1(102) -> 101
, 4_1(117) -> 15
, 4_1(129) -> 1293
, 4_1(135) -> 134
, 4_1(143) -> 142
, 4_1(144) -> 117
, 4_1(157) -> 156
, 4_1(160) -> 159
, 4_1(174) -> 173
, 4_1(180) -> 2
, 4_1(207) -> 29
, 4_1(217) -> 310
, 4_1(243) -> 154
, 4_1(256) -> 635
, 4_1(269) -> 376
, 4_1(280) -> 675
, 4_1(283) -> 282
, 4_1(301) -> 310
, 4_1(316) -> 315
, 4_1(338) -> 337
, 4_1(340) -> 339
, 4_1(349) -> 348
, 4_1(355) -> 354
, 4_1(365) -> 623
, 4_1(374) -> 373
, 4_1(387) -> 386
, 4_1(398) -> 726
, 4_1(419) -> 102
, 4_1(421) -> 420
, 4_1(422) -> 421
, 4_1(431) -> 726
, 4_1(432) -> 1599
, 4_1(434) -> 433
, 4_1(435) -> 434
, 4_1(471) -> 470
, 4_1(479) -> 478
, 4_1(486) -> 44
, 4_1(492) -> 491
, 4_1(505) -> 504
, 4_1(506) -> 476
, 4_1(515) -> 281
, 4_1(527) -> 526
, 4_1(536) -> 583
, 4_1(545) -> 544
, 4_1(556) -> 555
, 4_1(572) -> 646
, 4_1(586) -> 585
, 4_1(603) -> 555
, 4_1(605) -> 604
, 4_1(616) -> 615
, 4_1(620) -> 619
, 4_1(632) -> 631
, 4_1(635) -> 634
, 4_1(636) -> 635
, 4_1(643) -> 642
, 4_1(647) -> 15
, 4_1(648) -> 15
, 4_1(649) -> 15
, 4_1(662) -> 661
, 4_1(677) -> 676
, 4_1(698) -> 988
, 4_1(727) -> 726
, 4_1(728) -> 1599
, 4_1(738) -> 737
, 4_1(764) -> 763
, 4_1(857) -> 1262
, 4_1(876) -> 875
, 4_1(879) -> 878
, 4_1(921) -> 920
, 4_1(957) -> 956
, 4_1(1022) -> 218
, 4_1(1023) -> 15
, 4_1(1025) -> 15
, 4_1(1026) -> 15
, 4_1(1027) -> 28
, 4_1(1517) -> 1516
, 4_1(1580) -> 1579
, 4_1(1593) -> 1595
, 4_1(1596) -> 1595
, 4_1(1616) -> 1615
, 4_1(1629) -> 366
, 4_1(1630) -> 1629
, 4_1(1644) -> 1643
, 4_1(1661) -> 1660
, 4_1(1662) -> 1661
, 4_1(1748) -> 1747
, 4_2(7743) -> 7742
, 5_0(1) -> 1
, 5_1(1) -> 87
, 5_1(2) -> 87
, 5_1(3) -> 87
, 5_1(6) -> 5
, 5_1(10) -> 9
, 5_1(13) -> 409
, 5_1(14) -> 398
, 5_1(15) -> 1
, 5_1(15) -> 13
, 5_1(15) -> 14
, 5_1(15) -> 26
, 5_1(15) -> 27
, 5_1(15) -> 28
, 5_1(15) -> 42
, 5_1(15) -> 43
, 5_1(15) -> 59
, 5_1(15) -> 71
, 5_1(15) -> 86
, 5_1(15) -> 87
, 5_1(15) -> 115
, 5_1(15) -> 125
, 5_1(15) -> 129
, 5_1(15) -> 179
, 5_1(15) -> 242
, 5_1(15) -> 256
, 5_1(15) -> 269
, 5_1(15) -> 301
, 5_1(15) -> 320
, 5_1(15) -> 418
, 5_1(15) -> 432
, 5_1(15) -> 441
, 5_1(15) -> 485
, 5_1(15) -> 503
, 5_1(15) -> 536
, 5_1(15) -> 545
, 5_1(15) -> 582
, 5_1(15) -> 958
, 5_1(15) -> 967
, 5_1(15) -> 1380
, 5_1(15) -> 1608
, 5_1(15) -> 1610
, 5_1(16) -> 87
, 5_1(18) -> 17
, 5_1(24) -> 23
, 5_1(28) -> 256
, 5_1(29) -> 29
, 5_1(30) -> 87
, 5_1(31) -> 29
, 5_1(33) -> 32
, 5_1(36) -> 35
, 5_1(37) -> 36
, 5_1(41) -> 230
, 5_1(42) -> 41
, 5_1(43) -> 42
, 5_1(44) -> 42
, 5_1(45) -> 87
, 5_1(51) -> 50
, 5_1(53) -> 52
, 5_1(55) -> 54
, 5_1(58) -> 57
, 5_1(59) -> 269
, 5_1(60) -> 15
, 5_1(62) -> 61
, 5_1(67) -> 66
, 5_1(69) -> 68
, 5_1(71) -> 116
, 5_1(72) -> 29
, 5_1(74) -> 73
, 5_1(76) -> 75
, 5_1(80) -> 79
, 5_1(81) -> 80
, 5_1(82) -> 81
, 5_1(86) -> 206
, 5_1(87) -> 365
, 5_1(91) -> 90
, 5_1(92) -> 91
, 5_1(93) -> 92
, 5_1(96) -> 95
, 5_1(99) -> 98
, 5_1(101) -> 100
, 5_1(102) -> 87
, 5_1(103) -> 42
, 5_1(105) -> 104
, 5_1(110) -> 109
, 5_1(111) -> 110
, 5_1(113) -> 112
, 5_1(114) -> 439
, 5_1(115) -> 291
, 5_1(117) -> 87
, 5_1(119) -> 118
, 5_1(127) -> 465
, 5_1(128) -> 127
, 5_1(129) -> 320
, 5_1(139) -> 138
, 5_1(141) -> 140
, 5_1(142) -> 141
, 5_1(143) -> 523
, 5_1(144) -> 29
, 5_1(145) -> 29
, 5_1(146) -> 87
, 5_1(147) -> 146
, 5_1(149) -> 148
, 5_1(150) -> 149
, 5_1(151) -> 150
, 5_1(153) -> 505
, 5_1(154) -> 2
, 5_1(159) -> 158
, 5_1(164) -> 163
, 5_1(166) -> 87
, 5_1(169) -> 168
, 5_1(170) -> 169
, 5_1(171) -> 170
, 5_1(175) -> 174
, 5_1(176) -> 175
, 5_1(179) -> 687
, 5_1(180) -> 1
, 5_1(183) -> 182
, 5_1(189) -> 188
, 5_1(193) -> 192
, 5_1(194) -> 87
, 5_1(195) -> 29
, 5_1(197) -> 196
, 5_1(200) -> 199
, 5_1(201) -> 200
, 5_1(204) -> 203
, 5_1(206) -> 290
, 5_1(207) -> 1
, 5_1(208) -> 87
, 5_1(209) -> 29
, 5_1(210) -> 209
, 5_1(216) -> 857
, 5_1(217) -> 698
, 5_1(220) -> 219
, 5_1(225) -> 224
, 5_1(226) -> 225
, 5_1(230) -> 330
, 5_1(231) -> 87
, 5_1(232) -> 231
, 5_1(233) -> 232
, 5_1(235) -> 234
, 5_1(236) -> 235
, 5_1(239) -> 238
, 5_1(240) -> 239
, 5_1(241) -> 240
, 5_1(242) -> 241
, 5_1(248) -> 247
, 5_1(249) -> 248
, 5_1(250) -> 249
, 5_1(256) -> 717
, 5_1(257) -> 87
, 5_1(260) -> 259
, 5_1(264) -> 263
, 5_1(266) -> 265
, 5_1(269) -> 268
, 5_1(279) -> 278
, 5_1(280) -> 603
, 5_1(281) -> 117
, 5_1(282) -> 281
, 5_1(285) -> 284
, 5_1(288) -> 287
, 5_1(291) -> 290
, 5_1(292) -> 87
, 5_1(293) -> 292
, 5_1(301) -> 300
, 5_1(307) -> 306
, 5_1(311) -> 180
, 5_1(315) -> 314
, 5_1(318) -> 317
, 5_1(319) -> 318
, 5_1(320) -> 659
, 5_1(322) -> 321
, 5_1(324) -> 323
, 5_1(325) -> 324
, 5_1(328) -> 327
, 5_1(329) -> 461
, 5_1(331) -> 29
, 5_1(332) -> 87
, 5_1(333) -> 332
, 5_1(336) -> 335
, 5_1(337) -> 336
, 5_1(339) -> 338
, 5_1(347) -> 346
, 5_1(348) -> 347
, 5_1(351) -> 350
, 5_1(353) -> 29
, 5_1(356) -> 355
, 5_1(359) -> 358
, 5_1(364) -> 363
, 5_1(365) -> 1141
, 5_1(366) -> 87
, 5_1(368) -> 367
, 5_1(369) -> 368
, 5_1(376) -> 375
, 5_1(377) -> 60
, 5_1(384) -> 383
, 5_1(385) -> 496
, 5_1(386) -> 16
, 5_1(390) -> 389
, 5_1(397) -> 396
, 5_1(398) -> 1082
, 5_1(399) -> 42
, 5_1(409) -> 1397
, 5_1(410) -> 285
, 5_1(417) -> 416
, 5_1(419) -> 29
, 5_1(420) -> 419
, 5_1(432) -> 431
, 5_1(437) -> 436
, 5_1(440) -> 439
, 5_1(443) -> 442
, 5_1(448) -> 447
, 5_1(449) -> 448
, 5_1(452) -> 451
, 5_1(453) -> 452
, 5_1(455) -> 454
, 5_1(456) -> 81
, 5_1(457) -> 556
, 5_1(461) -> 460
, 5_1(462) -> 461
, 5_1(464) -> 463
, 5_1(465) -> 464
, 5_1(466) -> 465
, 5_1(467) -> 466
, 5_1(472) -> 471
, 5_1(476) -> 377
, 5_1(478) -> 477
, 5_1(482) -> 481
, 5_1(484) -> 932
, 5_1(485) -> 1380
, 5_1(486) -> 1
, 5_1(487) -> 1
, 5_1(491) -> 490
, 5_1(496) -> 87
, 5_1(497) -> 154
, 5_1(498) -> 497
, 5_1(503) -> 502
, 5_1(507) -> 506
, 5_1(512) -> 511
, 5_1(517) -> 516
, 5_1(518) -> 517
, 5_1(521) -> 520
, 5_1(522) -> 521
, 5_1(523) -> 522
, 5_1(524) -> 523
, 5_1(525) -> 87
, 5_1(526) -> 525
, 5_1(529) -> 528
, 5_1(530) -> 529
, 5_1(531) -> 530
, 5_1(532) -> 531
, 5_1(536) -> 320
, 5_1(537) -> 243
, 5_1(538) -> 537
, 5_1(540) -> 539
, 5_1(544) -> 543
, 5_1(545) -> 1610
, 5_1(546) -> 29
, 5_1(547) -> 546
, 5_1(548) -> 547
, 5_1(551) -> 550
, 5_1(552) -> 551
, 5_1(557) -> 556
, 5_1(559) -> 87
, 5_1(560) -> 559
, 5_1(564) -> 563
, 5_1(565) -> 564
, 5_1(568) -> 567
, 5_1(571) -> 570
, 5_1(572) -> 857
, 5_1(575) -> 574
, 5_1(576) -> 575
, 5_1(579) -> 578
, 5_1(582) -> 581
, 5_1(599) -> 598
, 5_1(602) -> 601
, 5_1(603) -> 847
, 5_1(604) -> 102
, 5_1(605) -> 29
, 5_1(606) -> 605
, 5_1(607) -> 87
, 5_1(610) -> 609
, 5_1(614) -> 166
, 5_1(617) -> 616
, 5_1(621) -> 620
, 5_1(626) -> 625
, 5_1(636) -> 717
, 5_1(637) -> 636
, 5_1(642) -> 641
, 5_1(644) -> 643
, 5_1(645) -> 644
, 5_1(646) -> 645
, 5_1(647) -> 29
, 5_1(648) -> 1
, 5_1(649) -> 87
, 5_1(650) -> 87
, 5_1(651) -> 650
, 5_1(653) -> 652
, 5_1(654) -> 653
, 5_1(655) -> 654
, 5_1(660) -> 62
, 5_1(665) -> 664
, 5_1(672) -> 671
, 5_1(673) -> 672
, 5_1(675) -> 674
, 5_1(680) -> 679
, 5_1(685) -> 238
, 5_1(686) -> 685
, 5_1(687) -> 686
, 5_1(688) -> 615
, 5_1(689) -> 688
, 5_1(690) -> 689
, 5_1(691) -> 690
, 5_1(692) -> 691
, 5_1(693) -> 692
, 5_1(696) -> 330
, 5_1(697) -> 696
, 5_1(698) -> 697
, 5_1(699) -> 87
, 5_1(700) -> 87
, 5_1(710) -> 881
, 5_1(715) -> 714
, 5_1(717) -> 716
, 5_1(719) -> 718
, 5_1(720) -> 719
, 5_1(721) -> 720
, 5_1(728) -> 727
, 5_1(730) -> 729
, 5_1(731) -> 730
, 5_1(735) -> 734
, 5_1(763) -> 762
, 5_1(839) -> 838
, 5_1(843) -> 842
, 5_1(845) -> 844
, 5_1(853) -> 852
, 5_1(854) -> 853
, 5_1(874) -> 515
, 5_1(878) -> 877
, 5_1(885) -> 884
, 5_1(888) -> 887
, 5_1(899) -> 889
, 5_1(918) -> 87
, 5_1(919) -> 918
, 5_1(920) -> 87
, 5_1(922) -> 921
, 5_1(934) -> 1
, 5_1(935) -> 934
, 5_1(936) -> 935
, 5_1(938) -> 937
, 5_1(939) -> 938
, 5_1(943) -> 942
, 5_1(944) -> 943
, 5_1(953) -> 952
, 5_1(966) -> 936
, 5_1(981) -> 967
, 5_1(1022) -> 398
, 5_1(1023) -> 87
, 5_1(1024) -> 87
, 5_1(1025) -> 87
, 5_1(1026) -> 1
, 5_1(1027) -> 87
, 5_1(1028) -> 1027
, 5_1(1029) -> 1
, 5_1(1030) -> 1029
, 5_1(1031) -> 87
, 5_1(1032) -> 1031
, 5_1(1080) -> 1079
, 5_1(1082) -> 1750
, 5_1(1088) -> 1085
, 5_1(1093) -> 1092
, 5_1(1095) -> 1094
, 5_1(1133) -> 1124
, 5_1(1140) -> 1139
, 5_1(1141) -> 1140
, 5_1(1244) -> 331
, 5_1(1247) -> 1246
, 5_1(1250) -> 1249
, 5_1(1252) -> 1251
, 5_1(1253) -> 1252
, 5_1(1254) -> 1253
, 5_1(1255) -> 399
, 5_1(1258) -> 1257
, 5_1(1263) -> 87
, 5_1(1266) -> 1265
, 5_1(1275) -> 29
, 5_1(1278) -> 29
, 5_1(1281) -> 87
, 5_1(1284) -> 1281
, 5_1(1285) -> 1284
, 5_1(1286) -> 1285
, 5_1(1292) -> 1291
, 5_1(1293) -> 1292
, 5_1(1377) -> 1376
, 5_1(1378) -> 1377
, 5_1(1381) -> 699
, 5_1(1382) -> 1381
, 5_1(1383) -> 1382
, 5_1(1386) -> 1385
, 5_1(1387) -> 1386
, 5_1(1391) -> 1390
, 5_1(1395) -> 1394
, 5_1(1396) -> 1395
, 5_1(1397) -> 1396
, 5_1(1506) -> 1499
, 5_1(1507) -> 1506
, 5_1(1519) -> 116
, 5_1(1579) -> 1578
, 5_1(1581) -> 1580
, 5_1(1585) -> 87
, 5_1(1588) -> 1587
, 5_1(1593) -> 1592
, 5_1(1598) -> 1597
, 5_1(1599) -> 1598
, 5_1(1600) -> 87
, 5_1(1601) -> 1600
, 5_1(1606) -> 1605
, 5_1(1608) -> 1607
, 5_1(1612) -> 1611
, 5_1(1615) -> 1614
, 5_1(1619) -> 444
, 5_1(1624) -> 1623
, 5_1(1628) -> 1627
, 5_1(1632) -> 1631
, 5_1(1634) -> 1633
, 5_1(1635) -> 1634
, 5_1(1643) -> 1642
, 5_1(1649) -> 433
, 5_1(1657) -> 1650
, 5_1(1658) -> 1657
, 5_1(1659) -> 1658
, 5_1(1683) -> 1682
, 5_1(1744) -> 1743
, 5_1(1747) -> 1746
, 5_2(652) -> 7754
, 5_2(7744) -> 7743
, 5_2(7747) -> 7746
, 5_2(7752) -> 7751
, 5_2(7754) -> 7753
, 3_0(1) -> 1
, 3_1(1) -> 129
, 3_1(2) -> 129
, 3_1(3) -> 129
, 3_1(4) -> 3
, 3_1(5) -> 4
, 3_1(9) -> 8
, 3_1(14) -> 13
, 3_1(15) -> 129
, 3_1(25) -> 24
, 3_1(27) -> 981
, 3_1(29) -> 129
, 3_1(30) -> 129
, 3_1(31) -> 30
, 3_1(40) -> 39
, 3_1(41) -> 1272
, 3_1(42) -> 319
, 3_1(43) -> 418
, 3_1(44) -> 1
, 3_1(44) -> 14
, 3_1(44) -> 27
, 3_1(44) -> 42
, 3_1(44) -> 43
, 3_1(44) -> 59
, 3_1(44) -> 87
, 3_1(44) -> 128
, 3_1(44) -> 129
, 3_1(44) -> 179
, 3_1(44) -> 253
, 3_1(44) -> 280
, 3_1(44) -> 320
, 3_1(44) -> 418
, 3_1(44) -> 503
, 3_1(44) -> 590
, 3_1(44) -> 603
, 3_1(46) -> 45
, 3_1(52) -> 51
, 3_1(59) -> 485
, 3_1(70) -> 1517
, 3_1(72) -> 2
, 3_1(85) -> 473
, 3_1(86) -> 85
, 3_1(87) -> 319
, 3_1(89) -> 88
, 3_1(102) -> 129
, 3_1(103) -> 102
, 3_1(112) -> 111
, 3_1(117) -> 129
, 3_1(121) -> 120
, 3_1(122) -> 121
, 3_1(123) -> 122
, 3_1(127) -> 126
, 3_1(129) -> 536
, 3_1(140) -> 139
, 3_1(143) -> 612
, 3_1(144) -> 2
, 3_1(145) -> 2
, 3_1(155) -> 154
, 3_1(166) -> 129
, 3_1(167) -> 166
, 3_1(168) -> 167
, 3_1(179) -> 352
, 3_1(180) -> 2
, 3_1(181) -> 180
, 3_1(194) -> 129
, 3_1(195) -> 2
, 3_1(198) -> 197
, 3_1(202) -> 201
, 3_1(203) -> 202
, 3_1(207) -> 129
, 3_1(208) -> 1
, 3_1(209) -> 2
, 3_1(217) -> 902
, 3_1(218) -> 15
, 3_1(219) -> 218
, 3_1(230) -> 229
, 3_1(231) -> 1
, 3_1(237) -> 236
, 3_1(238) -> 237
, 3_1(242) -> 1618
, 3_1(256) -> 1609
, 3_1(261) -> 260
, 3_1(270) -> 29
, 3_1(271) -> 270
, 3_1(272) -> 271
, 3_1(292) -> 129
, 3_1(296) -> 295
, 3_1(303) -> 302
, 3_1(304) -> 303
, 3_1(308) -> 307
, 3_1(309) -> 308
, 3_1(311) -> 129
, 3_1(312) -> 311
, 3_1(313) -> 312
, 3_1(314) -> 313
, 3_1(319) -> 129
, 3_1(320) -> 319
, 3_1(323) -> 322
, 3_1(330) -> 329
, 3_1(331) -> 2
, 3_1(335) -> 334
, 3_1(353) -> 129
, 3_1(361) -> 360
, 3_1(365) -> 129
, 3_1(372) -> 371
, 3_1(379) -> 378
, 3_1(381) -> 380
, 3_1(382) -> 381
, 3_1(391) -> 390
, 3_1(396) -> 395
, 3_1(398) -> 1254
, 3_1(399) -> 117
, 3_1(411) -> 410
, 3_1(415) -> 902
, 3_1(418) -> 417
, 3_1(419) -> 2
, 3_1(433) -> 129
, 3_1(438) -> 437
, 3_1(445) -> 129
, 3_1(451) -> 450
, 3_1(454) -> 453
, 3_1(463) -> 462
, 3_1(473) -> 472
, 3_1(474) -> 473
, 3_1(475) -> 474
, 3_1(481) -> 480
, 3_1(484) -> 483
, 3_1(486) -> 129
, 3_1(487) -> 129
, 3_1(488) -> 129
, 3_1(493) -> 492
, 3_1(496) -> 495
, 3_1(501) -> 500
, 3_1(508) -> 507
, 3_1(509) -> 508
, 3_1(510) -> 509
, 3_1(511) -> 510
, 3_1(533) -> 532
, 3_1(546) -> 2
, 3_1(555) -> 554
, 3_1(562) -> 561
, 3_1(566) -> 565
, 3_1(574) -> 573
, 3_1(577) -> 576
, 3_1(581) -> 580
, 3_1(583) -> 582
, 3_1(584) -> 220
, 3_1(589) -> 588
, 3_1(592) -> 60
, 3_1(594) -> 593
, 3_1(604) -> 1
, 3_1(605) -> 2
, 3_1(606) -> 1
, 3_1(607) -> 15
, 3_1(609) -> 608
, 3_1(611) -> 610
, 3_1(613) -> 612
, 3_1(638) -> 624
, 3_1(647) -> 129
, 3_1(648) -> 1
, 3_1(649) -> 1
, 3_1(650) -> 1
, 3_1(656) -> 655
, 3_1(657) -> 656
, 3_1(663) -> 662
, 3_1(667) -> 666
, 3_1(668) -> 667
, 3_1(669) -> 668
, 3_1(677) -> 129
, 3_1(695) -> 694
, 3_1(699) -> 129
, 3_1(701) -> 700
, 3_1(706) -> 705
, 3_1(711) -> 18
, 3_1(712) -> 711
, 3_1(717) -> 139
, 3_1(718) -> 104
, 3_1(736) -> 735
, 3_1(759) -> 745
, 3_1(760) -> 759
, 3_1(761) -> 760
, 3_1(762) -> 761
, 3_1(837) -> 836
, 3_1(838) -> 837
, 3_1(841) -> 840
, 3_1(851) -> 848
, 3_1(852) -> 851
, 3_1(875) -> 874
, 3_1(901) -> 899
, 3_1(918) -> 72
, 3_1(923) -> 922
, 3_1(932) -> 924
, 3_1(934) -> 1
, 3_1(944) -> 1644
, 3_1(945) -> 399
, 3_1(987) -> 981
, 3_1(1022) -> 13
, 3_1(1023) -> 129
, 3_1(1024) -> 1
, 3_1(1025) -> 15
, 3_1(1026) -> 1
, 3_1(1027) -> 1
, 3_1(1028) -> 1
, 3_1(1029) -> 1
, 3_1(1082) -> 1081
, 3_1(1091) -> 1088
, 3_1(1136) -> 1133
, 3_1(1141) -> 329
, 3_1(1245) -> 1244
, 3_1(1251) -> 1250
, 3_1(1256) -> 1255
, 3_1(1261) -> 1260
, 3_1(1263) -> 129
, 3_1(1264) -> 1263
, 3_1(1272) -> 1271
, 3_1(1275) -> 2
, 3_1(1278) -> 1
, 3_1(1281) -> 44
, 3_1(1293) -> 582
, 3_1(1375) -> 1374
, 3_1(1379) -> 1378
, 3_1(1381) -> 1
, 3_1(1388) -> 1387
, 3_1(1406) -> 626
, 3_1(1515) -> 1508
, 3_1(1518) -> 1517
, 3_1(1578) -> 15
, 3_1(1586) -> 1585
, 3_1(1594) -> 615
, 3_1(1595) -> 1594
, 3_1(1600) -> 604
, 3_1(1602) -> 1601
, 3_1(1610) -> 1609
, 3_1(1614) -> 1613
, 3_1(1622) -> 1621
, 3_1(1627) -> 1626
, 3_1(1631) -> 1630
, 3_1(1636) -> 1635
, 3_1(1637) -> 1636
, 3_1(1639) -> 282
, 3_1(1645) -> 1644
, 3_1(1681) -> 1662
, 3_1(1684) -> 1378
, 3_1(1745) -> 1744
, 3_2(7749) -> 7748}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(0(1(4(3(4(2(5(4(3(4(x1)))))))))))) ->
1(2(3(3(5(1(2(3(5(0(1(0(3(1(x1))))))))))))))
, 5(4(2(0(0(0(4(0(1(1(0(4(x1)))))))))))) ->
5(1(4(5(2(0(2(4(1(5(3(0(2(2(4(x1)))))))))))))))
, 5(4(0(3(0(4(2(1(4(4(1(1(x1)))))))))))) ->
4(1(3(1(5(2(1(5(5(0(2(3(1(5(5(0(x1))))))))))))))))
, 5(3(4(4(4(2(0(1(1(1(3(3(x1)))))))))))) ->
3(0(3(1(2(0(2(5(3(5(1(5(2(2(5(1(2(x1)))))))))))))))))
, 5(3(2(4(3(4(5(1(2(3(4(1(x1)))))))))))) ->
5(5(1(5(1(0(2(0(5(0(5(0(1(2(2(x1)))))))))))))))
, 5(2(3(4(4(0(4(0(2(4(0(2(x1)))))))))))) ->
5(4(2(5(4(5(0(0(1(5(5(5(2(0(2(3(2(5(x1))))))))))))))))))
, 5(2(1(3(4(1(1(1(4(2(3(0(x1)))))))))))) ->
1(0(3(1(5(5(5(2(2(5(0(0(5(1(5(4(5(0(x1))))))))))))))))))
, 5(1(3(4(2(3(0(4(0(0(3(0(x1)))))))))))) ->
0(3(1(5(1(0(0(2(5(5(3(5(1(0(2(5(2(2(x1))))))))))))))))))
, 5(0(5(4(2(3(4(4(4(5(4(4(x1)))))))))))) ->
2(0(5(1(3(3(3(1(1(2(3(5(0(3(x1))))))))))))))
, 5(0(4(3(4(3(2(1(4(2(4(0(x1)))))))))))) ->
5(5(0(0(2(2(2(4(0(1(0(5(3(5(5(4(1(1(x1))))))))))))))))))
, 5(0(3(5(2(3(4(5(3(3(4(1(x1)))))))))))) ->
2(4(0(2(5(1(5(5(5(2(2(2(5(0(x1))))))))))))))
, 5(0(3(4(4(0(3(1(0(3(3(2(x1)))))))))))) ->
1(5(3(1(4(1(5(4(1(1(1(5(0(0(2(5(x1))))))))))))))))
, 5(0(2(4(4(0(4(4(3(4(3(1(x1)))))))))))) ->
3(1(3(3(5(5(5(1(1(4(5(5(0(0(2(1(0(x1)))))))))))))))))
, 4(3(4(2(4(0(3(3(1(4(3(0(x1)))))))))))) ->
1(4(3(2(5(0(2(1(0(2(5(2(0(2(5(2(1(x1)))))))))))))))))
, 4(3(2(4(3(2(4(0(2(0(4(5(x1)))))))))))) ->
4(0(0(2(5(3(0(5(5(3(3(5(2(0(5(2(5(x1)))))))))))))))))
, 4(3(0(4(0(3(4(2(3(5(1(1(x1)))))))))))) ->
4(4(0(0(5(0(2(0(2(1(1(0(0(5(x1))))))))))))))
, 4(2(5(1(1(3(3(2(1(4(0(2(x1)))))))))))) ->
5(3(3(5(1(0(2(1(5(5(0(0(2(3(5(5(5(0(x1))))))))))))))))))
, 4(2(5(0(5(2(1(1(3(1(3(0(x1)))))))))))) ->
1(4(0(5(5(2(5(5(3(3(5(5(5(5(1(0(5(x1)))))))))))))))))
, 4(2(3(4(3(4(1(3(0(3(3(4(x1)))))))))))) ->
1(5(4(2(0(2(2(5(5(5(1(0(2(1(0(2(5(4(x1))))))))))))))))))
, 4(2(1(3(0(4(4(4(1(1(3(0(x1)))))))))))) ->
5(4(1(0(2(5(3(1(2(5(2(5(2(2(5(5(2(x1)))))))))))))))))
, 4(2(1(1(5(0(2(1(2(1(4(4(x1)))))))))))) ->
4(3(3(3(2(1(0(2(0(0(5(0(0(2(x1))))))))))))))
, 4(1(5(1(4(3(4(0(1(5(4(0(x1)))))))))))) ->
2(5(5(4(1(5(1(2(5(0(0(5(5(2(5(2(2(x1)))))))))))))))))
, 4(1(3(4(3(4(0(3(3(2(3(2(x1)))))))))))) ->
0(2(5(0(2(3(0(1(0(2(5(0(1(2(x1))))))))))))))
, 4(1(1(1(3(0(4(4(0(3(4(1(x1)))))))))))) ->
1(0(0(3(3(1(2(5(3(3(1(4(0(1(x1))))))))))))))
, 4(0(4(4(4(4(1(0(4(2(1(3(x1)))))))))))) ->
1(4(5(3(3(3(5(4(1(5(5(3(5(3(x1))))))))))))))
, 4(0(3(4(3(0(2(5(3(4(0(5(x1)))))))))))) ->
1(2(0(5(3(5(5(1(2(5(1(3(5(5(5(5(0(x1)))))))))))))))))
, 4(0(1(3(1(4(1(4(3(4(4(0(x1)))))))))))) ->
1(3(1(5(0(3(5(5(4(5(4(1(1(4(1(1(x1))))))))))))))))
, 3(4(4(5(2(3(4(4(4(3(0(0(x1)))))))))))) ->
2(0(0(0(1(1(2(5(5(4(1(5(1(3(1(0(x1))))))))))))))))
, 3(4(4(4(0(4(4(4(4(2(5(1(x1)))))))))))) ->
1(1(2(4(5(2(0(5(1(3(2(2(5(1(5(5(x1))))))))))))))))
, 3(4(4(3(3(4(3(4(2(0(2(4(x1)))))))))))) ->
3(2(0(5(5(0(0(3(1(4(1(5(4(5(2(x1)))))))))))))))
, 3(4(4(2(5(1(1(0(4(2(0(3(x1)))))))))))) ->
5(5(5(2(3(1(3(3(1(5(2(1(5(3(x1))))))))))))))
, 3(4(4(0(4(2(3(4(0(3(3(5(x1)))))))))))) ->
5(1(5(4(0(0(5(3(0(1(1(2(3(5(2(5(1(x1)))))))))))))))))
, 3(4(4(0(1(5(1(4(0(3(3(0(x1)))))))))))) ->
2(3(2(1(1(0(2(1(2(2(2(0(5(3(1(x1)))))))))))))))
, 3(4(3(4(5(2(3(2(3(4(3(0(x1)))))))))))) ->
2(5(5(4(1(5(5(3(0(1(2(1(0(5(3(3(0(x1)))))))))))))))))
, 3(4(3(4(3(0(4(4(2(1(4(5(x1)))))))))))) ->
0(4(5(4(4(1(0(0(2(1(0(2(1(2(5(1(3(x1)))))))))))))))))
, 3(4(3(4(0(1(0(5(2(3(4(1(x1)))))))))))) ->
5(2(4(4(1(5(3(2(5(0(2(5(2(2(1(x1)))))))))))))))
, 3(4(3(0(3(1(2(1(1(1(4(0(x1)))))))))))) ->
2(1(2(0(0(5(5(1(3(5(5(3(5(1(2(0(2(0(x1))))))))))))))))))
, 3(4(2(4(0(2(4(2(3(4(0(3(x1)))))))))))) ->
2(5(2(1(5(5(3(5(5(5(5(0(3(5(x1))))))))))))))
, 3(4(2(3(3(5(2(4(0(2(2(5(x1)))))))))))) ->
3(2(1(2(1(4(5(3(3(3(2(5(2(5(x1))))))))))))))
, 3(4(1(5(4(3(4(4(4(2(4(4(x1)))))))))))) ->
5(5(5(5(0(5(4(0(3(5(0(3(1(3(2(x1)))))))))))))))
, 3(4(1(4(4(2(0(4(0(3(4(1(x1)))))))))))) ->
3(4(0(2(2(0(5(4(3(1(1(3(5(1(5(x1)))))))))))))))
, 3(4(0(0(1(5(2(4(2(3(2(2(x1)))))))))))) ->
1(5(5(5(2(1(3(2(5(1(4(5(2(5(0(x1)))))))))))))))
, 3(3(3(3(5(1(3(4(0(3(0(2(x1)))))))))))) ->
5(5(5(5(4(5(3(3(3(3(5(0(0(1(5(0(x1))))))))))))))))
, 3(3(2(3(3(3(5(3(0(3(4(2(x1)))))))))))) ->
2(5(4(1(5(5(2(2(5(5(5(5(1(1(0(x1)))))))))))))))
, 3(3(1(5(0(4(2(0(4(2(1(2(x1)))))))))))) ->
5(5(1(2(5(4(1(5(5(5(5(3(2(0(0(3(3(x1)))))))))))))))))
, 3(3(1(3(4(0(1(5(5(3(4(1(x1)))))))))))) ->
1(5(4(5(5(1(5(1(2(1(5(4(4(2(x1))))))))))))))
, 3(2(4(3(2(4(0(1(1(4(1(3(x1)))))))))))) ->
0(0(5(5(1(0(5(5(0(2(3(4(5(0(2(0(5(x1)))))))))))))))))
, 3(2(3(4(4(0(5(3(4(4(4(0(x1)))))))))))) ->
5(1(2(5(1(3(0(5(5(3(2(5(1(2(5(1(0(0(x1))))))))))))))))))
, 3(2(0(3(4(4(2(4(2(3(4(0(x1)))))))))))) ->
0(1(3(5(5(3(2(5(2(3(5(3(4(3(3(x1)))))))))))))))
, 3(1(3(4(0(1(0(3(1(3(4(4(x1)))))))))))) ->
5(3(3(5(3(2(4(2(2(3(1(1(0(2(1(x1)))))))))))))))
, 3(1(3(1(4(3(4(3(1(3(4(4(x1)))))))))))) ->
5(5(3(2(3(1(1(0(0(5(1(1(5(2(5(0(2(x1)))))))))))))))))
, 3(1(0(4(0(3(2(1(4(0(5(4(x1)))))))))))) ->
0(5(4(5(1(0(3(5(3(0(3(1(1(2(x1))))))))))))))
, 3(0(4(0(3(4(4(4(4(4(4(1(x1)))))))))))) ->
3(1(5(1(4(5(2(1(4(5(0(1(4(5(5(x1)))))))))))))))
, 3(0(3(4(4(0(4(4(3(4(4(1(x1)))))))))))) ->
5(2(0(2(5(2(0(1(2(2(4(1(0(4(4(5(4(1(x1))))))))))))))))))
, 3(0(2(1(1(4(3(1(4(2(1(0(x1)))))))))))) ->
5(2(0(3(0(1(2(5(4(5(5(5(4(0(0(x1)))))))))))))))
, 2(5(5(2(2(4(4(4(5(4(3(4(x1)))))))))))) ->
0(5(0(2(2(2(5(1(5(5(5(3(3(1(2(5(5(3(x1))))))))))))))))))
, 2(5(2(2(1(4(2(1(4(1(4(4(x1)))))))))))) ->
5(5(1(5(5(2(4(3(0(5(1(5(0(3(x1))))))))))))))
, 2(4(3(4(0(0(1(3(0(1(4(1(x1)))))))))))) ->
2(5(2(2(3(3(3(1(1(5(5(1(5(4(0(2(x1))))))))))))))))
, 2(4(3(3(3(4(0(0(4(0(0(1(x1)))))))))))) ->
2(0(2(4(1(2(5(0(0(2(1(2(5(5(5(1(0(x1)))))))))))))))))
, 2(4(1(1(4(2(4(0(4(5(0(4(x1)))))))))))) ->
3(1(5(1(5(5(5(5(5(5(1(3(1(5(5(5(0(5(x1))))))))))))))))))
, 2(4(0(4(1(4(1(1(1(1(3(1(x1)))))))))))) ->
4(2(0(3(2(0(0(2(3(1(2(2(2(0(5(5(x1))))))))))))))))
, 2(4(0(4(0(1(2(0(1(3(4(1(x1)))))))))))) ->
5(1(4(5(3(3(1(1(5(2(5(5(5(4(1(x1)))))))))))))))
, 2(4(0(3(4(4(0(3(4(0(5(0(x1)))))))))))) ->
0(3(1(3(5(5(5(0(2(2(2(0(4(5(1(3(3(x1)))))))))))))))))
, 2(3(5(0(3(1(4(0(1(3(4(4(x1)))))))))))) ->
5(2(2(5(5(0(2(0(5(3(0(4(1(0(2(0(3(x1)))))))))))))))))
, 2(3(4(3(0(0(4(2(4(1(1(4(x1)))))))))))) ->
5(0(3(1(1(0(3(3(3(3(5(4(1(2(5(x1)))))))))))))))
, 2(2(4(4(2(3(4(3(4(2(4(5(x1)))))))))))) ->
2(3(0(3(3(5(1(3(1(5(1(5(1(1(5(5(0(2(x1))))))))))))))))))
, 2(2(4(0(2(1(5(3(3(2(4(4(x1)))))))))))) ->
5(3(3(0(3(3(5(5(0(2(2(5(0(0(x1))))))))))))))
, 2(2(3(4(3(4(3(4(2(4(4(0(x1)))))))))))) ->
2(5(4(5(3(4(0(5(4(1(2(5(0(5(5(x1)))))))))))))))
, 2(2(3(3(1(5(4(0(4(2(4(3(x1)))))))))))) ->
5(5(5(1(1(2(5(2(0(5(1(5(3(0(3(0(5(3(x1))))))))))))))))))
, 2(2(2(4(2(0(4(1(3(4(4(4(x1)))))))))))) ->
5(4(3(5(1(4(5(3(0(3(5(1(3(2(x1))))))))))))))
, 2(2(1(3(5(2(5(0(4(2(5(0(x1)))))))))))) ->
2(2(5(5(2(5(5(2(0(2(5(5(1(1(5(x1)))))))))))))))
, 2(1(1(3(4(4(3(4(4(0(4(3(x1)))))))))))) ->
2(3(3(1(0(0(1(2(2(2(5(1(1(2(4(1(2(3(x1))))))))))))))))))
, 1(4(3(3(0(1(2(1(0(3(3(5(x1)))))))))))) ->
5(0(2(5(5(5(2(5(3(2(4(5(0(5(x1))))))))))))))
, 1(4(3(1(0(1(1(1(2(3(4(4(x1)))))))))))) ->
5(3(4(1(2(2(2(2(5(0(5(1(5(1(5(3(5(x1)))))))))))))))))
, 1(4(2(5(1(4(0(1(3(0(4(0(x1)))))))))))) ->
3(1(3(2(0(2(0(0(2(2(5(1(3(5(5(1(x1))))))))))))))))
, 1(3(5(4(1(0(4(0(3(4(0(4(x1)))))))))))) ->
5(1(0(5(3(1(5(1(5(0(0(2(2(1(3(0(5(x1)))))))))))))))))
, 1(3(4(4(4(3(0(3(5(5(1(2(x1)))))))))))) ->
5(2(2(5(2(2(1(5(3(2(1(2(5(5(5(5(5(x1)))))))))))))))))
, 1(3(2(1(2(4(4(2(1(3(2(2(x1)))))))))))) ->
1(3(5(3(0(5(2(2(5(3(5(5(5(3(5(1(x1))))))))))))))))
, 1(2(3(0(4(0(3(0(4(4(3(4(x1)))))))))))) ->
2(3(5(3(0(5(0(2(3(1(4(5(0(0(x1))))))))))))))
, 1(2(1(4(0(1(4(0(1(5(1(1(x1)))))))))))) ->
2(2(2(3(1(5(2(2(2(0(1(3(3(5(5(0(x1))))))))))))))))
, 1(0(5(0(5(2(4(0(4(2(1(1(x1)))))))))))) ->
5(1(1(0(0(5(5(5(0(2(1(0(2(5(5(4(3(x1)))))))))))))))))
, 1(0(2(1(0(3(1(4(4(4(4(5(x1)))))))))))) ->
3(1(3(3(5(1(3(1(5(5(3(2(5(3(2(x1)))))))))))))))
, 0(5(3(2(1(3(4(0(4(4(0(0(x1)))))))))))) ->
4(2(5(5(5(2(2(5(5(3(2(5(5(0(5(x1)))))))))))))))
, 0(5(2(2(1(3(4(0(1(3(5(4(x1)))))))))))) ->
1(0(2(2(5(2(1(1(5(5(5(5(5(3(1(x1)))))))))))))))
, 0(4(4(1(5(3(4(2(4(0(2(5(x1)))))))))))) ->
5(2(0(2(5(3(0(1(0(0(2(0(3(5(1(5(x1))))))))))))))))
, 0(4(4(1(0(3(2(2(3(4(3(4(x1)))))))))))) ->
5(1(5(0(2(5(5(2(3(2(4(3(1(2(2(5(x1))))))))))))))))
, 0(4(2(4(1(1(3(0(0(4(1(4(x1)))))))))))) ->
2(3(1(5(4(5(2(0(2(1(5(1(3(1(x1))))))))))))))
, 0(4(2(3(5(4(4(4(1(2(2(4(x1)))))))))))) ->
0(4(2(0(3(0(5(0(2(1(2(5(1(5(5(4(x1))))))))))))))))
, 0(4(0(4(0(4(4(5(0(1(5(2(x1)))))))))))) ->
3(1(5(1(3(3(4(1(5(5(4(1(3(3(x1))))))))))))))
, 0(3(4(5(2(1(4(2(3(4(4(3(x1)))))))))))) ->
0(5(3(5(3(0(1(0(5(0(5(1(3(5(4(2(x1))))))))))))))))
, 0(3(4(2(1(4(1(4(4(4(4(0(x1)))))))))))) ->
3(2(1(0(5(0(3(5(4(0(2(3(1(0(5(0(x1))))))))))))))))
, 0(3(2(4(0(4(5(3(4(1(2(4(x1)))))))))))) ->
2(1(5(1(0(3(0(5(1(2(3(5(1(5(5(1(x1))))))))))))))))
, 0(2(4(3(3(1(4(0(1(3(2(2(x1)))))))))))) ->
3(2(4(4(3(5(1(5(5(3(3(1(0(2(2(1(x1))))))))))))))))
, 0(1(4(0(0(3(2(4(3(1(0(4(x1)))))))))))) ->
2(5(5(3(1(2(2(5(4(3(1(1(5(3(5(x1)))))))))))))))
, 0(1(1(1(4(0(4(5(0(4(3(1(x1)))))))))))) ->
5(2(5(2(5(5(5(0(4(4(3(1(5(2(2(5(3(x1)))))))))))))))))
, 0(0(4(2(5(0(1(4(2(1(0(1(x1)))))))))))) ->
2(2(5(5(2(0(0(5(3(1(5(4(1(2(5(5(5(1(x1))))))))))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(0(1(4(3(4(2(5(4(3(4(x1)))))))))))) ->
1(2(3(3(5(1(2(3(5(0(1(0(3(1(x1))))))))))))))
, 5(4(2(0(0(0(4(0(1(1(0(4(x1)))))))))))) ->
5(1(4(5(2(0(2(4(1(5(3(0(2(2(4(x1)))))))))))))))
, 5(4(0(3(0(4(2(1(4(4(1(1(x1)))))))))))) ->
4(1(3(1(5(2(1(5(5(0(2(3(1(5(5(0(x1))))))))))))))))
, 5(3(4(4(4(2(0(1(1(1(3(3(x1)))))))))))) ->
3(0(3(1(2(0(2(5(3(5(1(5(2(2(5(1(2(x1)))))))))))))))))
, 5(3(2(4(3(4(5(1(2(3(4(1(x1)))))))))))) ->
5(5(1(5(1(0(2(0(5(0(5(0(1(2(2(x1)))))))))))))))
, 5(2(3(4(4(0(4(0(2(4(0(2(x1)))))))))))) ->
5(4(2(5(4(5(0(0(1(5(5(5(2(0(2(3(2(5(x1))))))))))))))))))
, 5(2(1(3(4(1(1(1(4(2(3(0(x1)))))))))))) ->
1(0(3(1(5(5(5(2(2(5(0(0(5(1(5(4(5(0(x1))))))))))))))))))
, 5(1(3(4(2(3(0(4(0(0(3(0(x1)))))))))))) ->
0(3(1(5(1(0(0(2(5(5(3(5(1(0(2(5(2(2(x1))))))))))))))))))
, 5(0(5(4(2(3(4(4(4(5(4(4(x1)))))))))))) ->
2(0(5(1(3(3(3(1(1(2(3(5(0(3(x1))))))))))))))
, 5(0(4(3(4(3(2(1(4(2(4(0(x1)))))))))))) ->
5(5(0(0(2(2(2(4(0(1(0(5(3(5(5(4(1(1(x1))))))))))))))))))
, 5(0(3(5(2(3(4(5(3(3(4(1(x1)))))))))))) ->
2(4(0(2(5(1(5(5(5(2(2(2(5(0(x1))))))))))))))
, 5(0(3(4(4(0(3(1(0(3(3(2(x1)))))))))))) ->
1(5(3(1(4(1(5(4(1(1(1(5(0(0(2(5(x1))))))))))))))))
, 5(0(2(4(4(0(4(4(3(4(3(1(x1)))))))))))) ->
3(1(3(3(5(5(5(1(1(4(5(5(0(0(2(1(0(x1)))))))))))))))))
, 4(3(4(2(4(0(3(3(1(4(3(0(x1)))))))))))) ->
1(4(3(2(5(0(2(1(0(2(5(2(0(2(5(2(1(x1)))))))))))))))))
, 4(3(2(4(3(2(4(0(2(0(4(5(x1)))))))))))) ->
4(0(0(2(5(3(0(5(5(3(3(5(2(0(5(2(5(x1)))))))))))))))))
, 4(3(0(4(0(3(4(2(3(5(1(1(x1)))))))))))) ->
4(4(0(0(5(0(2(0(2(1(1(0(0(5(x1))))))))))))))
, 4(2(5(1(1(3(3(2(1(4(0(2(x1)))))))))))) ->
5(3(3(5(1(0(2(1(5(5(0(0(2(3(5(5(5(0(x1))))))))))))))))))
, 4(2(5(0(5(2(1(1(3(1(3(0(x1)))))))))))) ->
1(4(0(5(5(2(5(5(3(3(5(5(5(5(1(0(5(x1)))))))))))))))))
, 4(2(3(4(3(4(1(3(0(3(3(4(x1)))))))))))) ->
1(5(4(2(0(2(2(5(5(5(1(0(2(1(0(2(5(4(x1))))))))))))))))))
, 4(2(1(3(0(4(4(4(1(1(3(0(x1)))))))))))) ->
5(4(1(0(2(5(3(1(2(5(2(5(2(2(5(5(2(x1)))))))))))))))))
, 4(2(1(1(5(0(2(1(2(1(4(4(x1)))))))))))) ->
4(3(3(3(2(1(0(2(0(0(5(0(0(2(x1))))))))))))))
, 4(1(5(1(4(3(4(0(1(5(4(0(x1)))))))))))) ->
2(5(5(4(1(5(1(2(5(0(0(5(5(2(5(2(2(x1)))))))))))))))))
, 4(1(3(4(3(4(0(3(3(2(3(2(x1)))))))))))) ->
0(2(5(0(2(3(0(1(0(2(5(0(1(2(x1))))))))))))))
, 4(1(1(1(3(0(4(4(0(3(4(1(x1)))))))))))) ->
1(0(0(3(3(1(2(5(3(3(1(4(0(1(x1))))))))))))))
, 4(0(4(4(4(4(1(0(4(2(1(3(x1)))))))))))) ->
1(4(5(3(3(3(5(4(1(5(5(3(5(3(x1))))))))))))))
, 4(0(3(4(3(0(2(5(3(4(0(5(x1)))))))))))) ->
1(2(0(5(3(5(5(1(2(5(1(3(5(5(5(5(0(x1)))))))))))))))))
, 4(0(1(3(1(4(1(4(3(4(4(0(x1)))))))))))) ->
1(3(1(5(0(3(5(5(4(5(4(1(1(4(1(1(x1))))))))))))))))
, 3(4(4(5(2(3(4(4(4(3(0(0(x1)))))))))))) ->
2(0(0(0(1(1(2(5(5(4(1(5(1(3(1(0(x1))))))))))))))))
, 3(4(4(4(0(4(4(4(4(2(5(1(x1)))))))))))) ->
1(1(2(4(5(2(0(5(1(3(2(2(5(1(5(5(x1))))))))))))))))
, 3(4(4(3(3(4(3(4(2(0(2(4(x1)))))))))))) ->
3(2(0(5(5(0(0(3(1(4(1(5(4(5(2(x1)))))))))))))))
, 3(4(4(2(5(1(1(0(4(2(0(3(x1)))))))))))) ->
5(5(5(2(3(1(3(3(1(5(2(1(5(3(x1))))))))))))))
, 3(4(4(0(4(2(3(4(0(3(3(5(x1)))))))))))) ->
5(1(5(4(0(0(5(3(0(1(1(2(3(5(2(5(1(x1)))))))))))))))))
, 3(4(4(0(1(5(1(4(0(3(3(0(x1)))))))))))) ->
2(3(2(1(1(0(2(1(2(2(2(0(5(3(1(x1)))))))))))))))
, 3(4(3(4(5(2(3(2(3(4(3(0(x1)))))))))))) ->
2(5(5(4(1(5(5(3(0(1(2(1(0(5(3(3(0(x1)))))))))))))))))
, 3(4(3(4(3(0(4(4(2(1(4(5(x1)))))))))))) ->
0(4(5(4(4(1(0(0(2(1(0(2(1(2(5(1(3(x1)))))))))))))))))
, 3(4(3(4(0(1(0(5(2(3(4(1(x1)))))))))))) ->
5(2(4(4(1(5(3(2(5(0(2(5(2(2(1(x1)))))))))))))))
, 3(4(3(0(3(1(2(1(1(1(4(0(x1)))))))))))) ->
2(1(2(0(0(5(5(1(3(5(5(3(5(1(2(0(2(0(x1))))))))))))))))))
, 3(4(2(4(0(2(4(2(3(4(0(3(x1)))))))))))) ->
2(5(2(1(5(5(3(5(5(5(5(0(3(5(x1))))))))))))))
, 3(4(2(3(3(5(2(4(0(2(2(5(x1)))))))))))) ->
3(2(1(2(1(4(5(3(3(3(2(5(2(5(x1))))))))))))))
, 3(4(1(5(4(3(4(4(4(2(4(4(x1)))))))))))) ->
5(5(5(5(0(5(4(0(3(5(0(3(1(3(2(x1)))))))))))))))
, 3(4(1(4(4(2(0(4(0(3(4(1(x1)))))))))))) ->
3(4(0(2(2(0(5(4(3(1(1(3(5(1(5(x1)))))))))))))))
, 3(4(0(0(1(5(2(4(2(3(2(2(x1)))))))))))) ->
1(5(5(5(2(1(3(2(5(1(4(5(2(5(0(x1)))))))))))))))
, 3(3(3(3(5(1(3(4(0(3(0(2(x1)))))))))))) ->
5(5(5(5(4(5(3(3(3(3(5(0(0(1(5(0(x1))))))))))))))))
, 3(3(2(3(3(3(5(3(0(3(4(2(x1)))))))))))) ->
2(5(4(1(5(5(2(2(5(5(5(5(1(1(0(x1)))))))))))))))
, 3(3(1(5(0(4(2(0(4(2(1(2(x1)))))))))))) ->
5(5(1(2(5(4(1(5(5(5(5(3(2(0(0(3(3(x1)))))))))))))))))
, 3(3(1(3(4(0(1(5(5(3(4(1(x1)))))))))))) ->
1(5(4(5(5(1(5(1(2(1(5(4(4(2(x1))))))))))))))
, 3(2(4(3(2(4(0(1(1(4(1(3(x1)))))))))))) ->
0(0(5(5(1(0(5(5(0(2(3(4(5(0(2(0(5(x1)))))))))))))))))
, 3(2(3(4(4(0(5(3(4(4(4(0(x1)))))))))))) ->
5(1(2(5(1(3(0(5(5(3(2(5(1(2(5(1(0(0(x1))))))))))))))))))
, 3(2(0(3(4(4(2(4(2(3(4(0(x1)))))))))))) ->
0(1(3(5(5(3(2(5(2(3(5(3(4(3(3(x1)))))))))))))))
, 3(1(3(4(0(1(0(3(1(3(4(4(x1)))))))))))) ->
5(3(3(5(3(2(4(2(2(3(1(1(0(2(1(x1)))))))))))))))
, 3(1(3(1(4(3(4(3(1(3(4(4(x1)))))))))))) ->
5(5(3(2(3(1(1(0(0(5(1(1(5(2(5(0(2(x1)))))))))))))))))
, 3(1(0(4(0(3(2(1(4(0(5(4(x1)))))))))))) ->
0(5(4(5(1(0(3(5(3(0(3(1(1(2(x1))))))))))))))
, 3(0(4(0(3(4(4(4(4(4(4(1(x1)))))))))))) ->
3(1(5(1(4(5(2(1(4(5(0(1(4(5(5(x1)))))))))))))))
, 3(0(3(4(4(0(4(4(3(4(4(1(x1)))))))))))) ->
5(2(0(2(5(2(0(1(2(2(4(1(0(4(4(5(4(1(x1))))))))))))))))))
, 3(0(2(1(1(4(3(1(4(2(1(0(x1)))))))))))) ->
5(2(0(3(0(1(2(5(4(5(5(5(4(0(0(x1)))))))))))))))
, 2(5(5(2(2(4(4(4(5(4(3(4(x1)))))))))))) ->
0(5(0(2(2(2(5(1(5(5(5(3(3(1(2(5(5(3(x1))))))))))))))))))
, 2(5(2(2(1(4(2(1(4(1(4(4(x1)))))))))))) ->
5(5(1(5(5(2(4(3(0(5(1(5(0(3(x1))))))))))))))
, 2(4(3(4(0(0(1(3(0(1(4(1(x1)))))))))))) ->
2(5(2(2(3(3(3(1(1(5(5(1(5(4(0(2(x1))))))))))))))))
, 2(4(3(3(3(4(0(0(4(0(0(1(x1)))))))))))) ->
2(0(2(4(1(2(5(0(0(2(1(2(5(5(5(1(0(x1)))))))))))))))))
, 2(4(1(1(4(2(4(0(4(5(0(4(x1)))))))))))) ->
3(1(5(1(5(5(5(5(5(5(1(3(1(5(5(5(0(5(x1))))))))))))))))))
, 2(4(0(4(1(4(1(1(1(1(3(1(x1)))))))))))) ->
4(2(0(3(2(0(0(2(3(1(2(2(2(0(5(5(x1))))))))))))))))
, 2(4(0(4(0(1(2(0(1(3(4(1(x1)))))))))))) ->
5(1(4(5(3(3(1(1(5(2(5(5(5(4(1(x1)))))))))))))))
, 2(4(0(3(4(4(0(3(4(0(5(0(x1)))))))))))) ->
0(3(1(3(5(5(5(0(2(2(2(0(4(5(1(3(3(x1)))))))))))))))))
, 2(3(5(0(3(1(4(0(1(3(4(4(x1)))))))))))) ->
5(2(2(5(5(0(2(0(5(3(0(4(1(0(2(0(3(x1)))))))))))))))))
, 2(3(4(3(0(0(4(2(4(1(1(4(x1)))))))))))) ->
5(0(3(1(1(0(3(3(3(3(5(4(1(2(5(x1)))))))))))))))
, 2(2(4(4(2(3(4(3(4(2(4(5(x1)))))))))))) ->
2(3(0(3(3(5(1(3(1(5(1(5(1(1(5(5(0(2(x1))))))))))))))))))
, 2(2(4(0(2(1(5(3(3(2(4(4(x1)))))))))))) ->
5(3(3(0(3(3(5(5(0(2(2(5(0(0(x1))))))))))))))
, 2(2(3(4(3(4(3(4(2(4(4(0(x1)))))))))))) ->
2(5(4(5(3(4(0(5(4(1(2(5(0(5(5(x1)))))))))))))))
, 2(2(3(3(1(5(4(0(4(2(4(3(x1)))))))))))) ->
5(5(5(1(1(2(5(2(0(5(1(5(3(0(3(0(5(3(x1))))))))))))))))))
, 2(2(2(4(2(0(4(1(3(4(4(4(x1)))))))))))) ->
5(4(3(5(1(4(5(3(0(3(5(1(3(2(x1))))))))))))))
, 2(2(1(3(5(2(5(0(4(2(5(0(x1)))))))))))) ->
2(2(5(5(2(5(5(2(0(2(5(5(1(1(5(x1)))))))))))))))
, 2(1(1(3(4(4(3(4(4(0(4(3(x1)))))))))))) ->
2(3(3(1(0(0(1(2(2(2(5(1(1(2(4(1(2(3(x1))))))))))))))))))
, 1(4(3(3(0(1(2(1(0(3(3(5(x1)))))))))))) ->
5(0(2(5(5(5(2(5(3(2(4(5(0(5(x1))))))))))))))
, 1(4(3(1(0(1(1(1(2(3(4(4(x1)))))))))))) ->
5(3(4(1(2(2(2(2(5(0(5(1(5(1(5(3(5(x1)))))))))))))))))
, 1(4(2(5(1(4(0(1(3(0(4(0(x1)))))))))))) ->
3(1(3(2(0(2(0(0(2(2(5(1(3(5(5(1(x1))))))))))))))))
, 1(3(5(4(1(0(4(0(3(4(0(4(x1)))))))))))) ->
5(1(0(5(3(1(5(1(5(0(0(2(2(1(3(0(5(x1)))))))))))))))))
, 1(3(4(4(4(3(0(3(5(5(1(2(x1)))))))))))) ->
5(2(2(5(2(2(1(5(3(2(1(2(5(5(5(5(5(x1)))))))))))))))))
, 1(3(2(1(2(4(4(2(1(3(2(2(x1)))))))))))) ->
1(3(5(3(0(5(2(2(5(3(5(5(5(3(5(1(x1))))))))))))))))
, 1(2(3(0(4(0(3(0(4(4(3(4(x1)))))))))))) ->
2(3(5(3(0(5(0(2(3(1(4(5(0(0(x1))))))))))))))
, 1(2(1(4(0(1(4(0(1(5(1(1(x1)))))))))))) ->
2(2(2(3(1(5(2(2(2(0(1(3(3(5(5(0(x1))))))))))))))))
, 1(0(5(0(5(2(4(0(4(2(1(1(x1)))))))))))) ->
5(1(1(0(0(5(5(5(0(2(1(0(2(5(5(4(3(x1)))))))))))))))))
, 1(0(2(1(0(3(1(4(4(4(4(5(x1)))))))))))) ->
3(1(3(3(5(1(3(1(5(5(3(2(5(3(2(x1)))))))))))))))
, 0(5(3(2(1(3(4(0(4(4(0(0(x1)))))))))))) ->
4(2(5(5(5(2(2(5(5(3(2(5(5(0(5(x1)))))))))))))))
, 0(5(2(2(1(3(4(0(1(3(5(4(x1)))))))))))) ->
1(0(2(2(5(2(1(1(5(5(5(5(5(3(1(x1)))))))))))))))
, 0(4(4(1(5(3(4(2(4(0(2(5(x1)))))))))))) ->
5(2(0(2(5(3(0(1(0(0(2(0(3(5(1(5(x1))))))))))))))))
, 0(4(4(1(0(3(2(2(3(4(3(4(x1)))))))))))) ->
5(1(5(0(2(5(5(2(3(2(4(3(1(2(2(5(x1))))))))))))))))
, 0(4(2(4(1(1(3(0(0(4(1(4(x1)))))))))))) ->
2(3(1(5(4(5(2(0(2(1(5(1(3(1(x1))))))))))))))
, 0(4(2(3(5(4(4(4(1(2(2(4(x1)))))))))))) ->
0(4(2(0(3(0(5(0(2(1(2(5(1(5(5(4(x1))))))))))))))))
, 0(4(0(4(0(4(4(5(0(1(5(2(x1)))))))))))) ->
3(1(5(1(3(3(4(1(5(5(4(1(3(3(x1))))))))))))))
, 0(3(4(5(2(1(4(2(3(4(4(3(x1)))))))))))) ->
0(5(3(5(3(0(1(0(5(0(5(1(3(5(4(2(x1))))))))))))))))
, 0(3(4(2(1(4(1(4(4(4(4(0(x1)))))))))))) ->
3(2(1(0(5(0(3(5(4(0(2(3(1(0(5(0(x1))))))))))))))))
, 0(3(2(4(0(4(5(3(4(1(2(4(x1)))))))))))) ->
2(1(5(1(0(3(0(5(1(2(3(5(1(5(5(1(x1))))))))))))))))
, 0(2(4(3(3(1(4(0(1(3(2(2(x1)))))))))))) ->
3(2(4(4(3(5(1(5(5(3(3(1(0(2(2(1(x1))))))))))))))))
, 0(1(4(0(0(3(2(4(3(1(0(4(x1)))))))))))) ->
2(5(5(3(1(2(2(5(4(3(1(1(5(3(5(x1)))))))))))))))
, 0(1(1(1(4(0(4(5(0(4(3(1(x1)))))))))))) ->
5(2(5(2(5(5(5(0(4(4(3(1(5(2(2(5(3(x1)))))))))))))))))
, 0(0(4(2(5(0(1(4(2(1(0(1(x1)))))))))))) ->
2(2(5(5(2(0(0(5(3(1(5(4(1(2(5(5(5(1(x1))))))))))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(0(1(4(3(4(2(5(4(3(4(x1)))))))))))) ->
1(2(3(3(5(1(2(3(5(0(1(0(3(1(x1))))))))))))))
, 5(4(2(0(0(0(4(0(1(1(0(4(x1)))))))))))) ->
5(1(4(5(2(0(2(4(1(5(3(0(2(2(4(x1)))))))))))))))
, 5(4(0(3(0(4(2(1(4(4(1(1(x1)))))))))))) ->
4(1(3(1(5(2(1(5(5(0(2(3(1(5(5(0(x1))))))))))))))))
, 5(3(4(4(4(2(0(1(1(1(3(3(x1)))))))))))) ->
3(0(3(1(2(0(2(5(3(5(1(5(2(2(5(1(2(x1)))))))))))))))))
, 5(3(2(4(3(4(5(1(2(3(4(1(x1)))))))))))) ->
5(5(1(5(1(0(2(0(5(0(5(0(1(2(2(x1)))))))))))))))
, 5(2(3(4(4(0(4(0(2(4(0(2(x1)))))))))))) ->
5(4(2(5(4(5(0(0(1(5(5(5(2(0(2(3(2(5(x1))))))))))))))))))
, 5(2(1(3(4(1(1(1(4(2(3(0(x1)))))))))))) ->
1(0(3(1(5(5(5(2(2(5(0(0(5(1(5(4(5(0(x1))))))))))))))))))
, 5(1(3(4(2(3(0(4(0(0(3(0(x1)))))))))))) ->
0(3(1(5(1(0(0(2(5(5(3(5(1(0(2(5(2(2(x1))))))))))))))))))
, 5(0(5(4(2(3(4(4(4(5(4(4(x1)))))))))))) ->
2(0(5(1(3(3(3(1(1(2(3(5(0(3(x1))))))))))))))
, 5(0(4(3(4(3(2(1(4(2(4(0(x1)))))))))))) ->
5(5(0(0(2(2(2(4(0(1(0(5(3(5(5(4(1(1(x1))))))))))))))))))
, 5(0(3(5(2(3(4(5(3(3(4(1(x1)))))))))))) ->
2(4(0(2(5(1(5(5(5(2(2(2(5(0(x1))))))))))))))
, 5(0(3(4(4(0(3(1(0(3(3(2(x1)))))))))))) ->
1(5(3(1(4(1(5(4(1(1(1(5(0(0(2(5(x1))))))))))))))))
, 5(0(2(4(4(0(4(4(3(4(3(1(x1)))))))))))) ->
3(1(3(3(5(5(5(1(1(4(5(5(0(0(2(1(0(x1)))))))))))))))))
, 4(3(4(2(4(0(3(3(1(4(3(0(x1)))))))))))) ->
1(4(3(2(5(0(2(1(0(2(5(2(0(2(5(2(1(x1)))))))))))))))))
, 4(3(2(4(3(2(4(0(2(0(4(5(x1)))))))))))) ->
4(0(0(2(5(3(0(5(5(3(3(5(2(0(5(2(5(x1)))))))))))))))))
, 4(3(0(4(0(3(4(2(3(5(1(1(x1)))))))))))) ->
4(4(0(0(5(0(2(0(2(1(1(0(0(5(x1))))))))))))))
, 4(2(5(1(1(3(3(2(1(4(0(2(x1)))))))))))) ->
5(3(3(5(1(0(2(1(5(5(0(0(2(3(5(5(5(0(x1))))))))))))))))))
, 4(2(5(0(5(2(1(1(3(1(3(0(x1)))))))))))) ->
1(4(0(5(5(2(5(5(3(3(5(5(5(5(1(0(5(x1)))))))))))))))))
, 4(2(3(4(3(4(1(3(0(3(3(4(x1)))))))))))) ->
1(5(4(2(0(2(2(5(5(5(1(0(2(1(0(2(5(4(x1))))))))))))))))))
, 4(2(1(3(0(4(4(4(1(1(3(0(x1)))))))))))) ->
5(4(1(0(2(5(3(1(2(5(2(5(2(2(5(5(2(x1)))))))))))))))))
, 4(2(1(1(5(0(2(1(2(1(4(4(x1)))))))))))) ->
4(3(3(3(2(1(0(2(0(0(5(0(0(2(x1))))))))))))))
, 4(1(5(1(4(3(4(0(1(5(4(0(x1)))))))))))) ->
2(5(5(4(1(5(1(2(5(0(0(5(5(2(5(2(2(x1)))))))))))))))))
, 4(1(3(4(3(4(0(3(3(2(3(2(x1)))))))))))) ->
0(2(5(0(2(3(0(1(0(2(5(0(1(2(x1))))))))))))))
, 4(1(1(1(3(0(4(4(0(3(4(1(x1)))))))))))) ->
1(0(0(3(3(1(2(5(3(3(1(4(0(1(x1))))))))))))))
, 4(0(4(4(4(4(1(0(4(2(1(3(x1)))))))))))) ->
1(4(5(3(3(3(5(4(1(5(5(3(5(3(x1))))))))))))))
, 4(0(3(4(3(0(2(5(3(4(0(5(x1)))))))))))) ->
1(2(0(5(3(5(5(1(2(5(1(3(5(5(5(5(0(x1)))))))))))))))))
, 4(0(1(3(1(4(1(4(3(4(4(0(x1)))))))))))) ->
1(3(1(5(0(3(5(5(4(5(4(1(1(4(1(1(x1))))))))))))))))
, 3(4(4(5(2(3(4(4(4(3(0(0(x1)))))))))))) ->
2(0(0(0(1(1(2(5(5(4(1(5(1(3(1(0(x1))))))))))))))))
, 3(4(4(4(0(4(4(4(4(2(5(1(x1)))))))))))) ->
1(1(2(4(5(2(0(5(1(3(2(2(5(1(5(5(x1))))))))))))))))
, 3(4(4(3(3(4(3(4(2(0(2(4(x1)))))))))))) ->
3(2(0(5(5(0(0(3(1(4(1(5(4(5(2(x1)))))))))))))))
, 3(4(4(2(5(1(1(0(4(2(0(3(x1)))))))))))) ->
5(5(5(2(3(1(3(3(1(5(2(1(5(3(x1))))))))))))))
, 3(4(4(0(4(2(3(4(0(3(3(5(x1)))))))))))) ->
5(1(5(4(0(0(5(3(0(1(1(2(3(5(2(5(1(x1)))))))))))))))))
, 3(4(4(0(1(5(1(4(0(3(3(0(x1)))))))))))) ->
2(3(2(1(1(0(2(1(2(2(2(0(5(3(1(x1)))))))))))))))
, 3(4(3(4(5(2(3(2(3(4(3(0(x1)))))))))))) ->
2(5(5(4(1(5(5(3(0(1(2(1(0(5(3(3(0(x1)))))))))))))))))
, 3(4(3(4(3(0(4(4(2(1(4(5(x1)))))))))))) ->
0(4(5(4(4(1(0(0(2(1(0(2(1(2(5(1(3(x1)))))))))))))))))
, 3(4(3(4(0(1(0(5(2(3(4(1(x1)))))))))))) ->
5(2(4(4(1(5(3(2(5(0(2(5(2(2(1(x1)))))))))))))))
, 3(4(3(0(3(1(2(1(1(1(4(0(x1)))))))))))) ->
2(1(2(0(0(5(5(1(3(5(5(3(5(1(2(0(2(0(x1))))))))))))))))))
, 3(4(2(4(0(2(4(2(3(4(0(3(x1)))))))))))) ->
2(5(2(1(5(5(3(5(5(5(5(0(3(5(x1))))))))))))))
, 3(4(2(3(3(5(2(4(0(2(2(5(x1)))))))))))) ->
3(2(1(2(1(4(5(3(3(3(2(5(2(5(x1))))))))))))))
, 3(4(1(5(4(3(4(4(4(2(4(4(x1)))))))))))) ->
5(5(5(5(0(5(4(0(3(5(0(3(1(3(2(x1)))))))))))))))
, 3(4(1(4(4(2(0(4(0(3(4(1(x1)))))))))))) ->
3(4(0(2(2(0(5(4(3(1(1(3(5(1(5(x1)))))))))))))))
, 3(4(0(0(1(5(2(4(2(3(2(2(x1)))))))))))) ->
1(5(5(5(2(1(3(2(5(1(4(5(2(5(0(x1)))))))))))))))
, 3(3(3(3(5(1(3(4(0(3(0(2(x1)))))))))))) ->
5(5(5(5(4(5(3(3(3(3(5(0(0(1(5(0(x1))))))))))))))))
, 3(3(2(3(3(3(5(3(0(3(4(2(x1)))))))))))) ->
2(5(4(1(5(5(2(2(5(5(5(5(1(1(0(x1)))))))))))))))
, 3(3(1(5(0(4(2(0(4(2(1(2(x1)))))))))))) ->
5(5(1(2(5(4(1(5(5(5(5(3(2(0(0(3(3(x1)))))))))))))))))
, 3(3(1(3(4(0(1(5(5(3(4(1(x1)))))))))))) ->
1(5(4(5(5(1(5(1(2(1(5(4(4(2(x1))))))))))))))
, 3(2(4(3(2(4(0(1(1(4(1(3(x1)))))))))))) ->
0(0(5(5(1(0(5(5(0(2(3(4(5(0(2(0(5(x1)))))))))))))))))
, 3(2(3(4(4(0(5(3(4(4(4(0(x1)))))))))))) ->
5(1(2(5(1(3(0(5(5(3(2(5(1(2(5(1(0(0(x1))))))))))))))))))
, 3(2(0(3(4(4(2(4(2(3(4(0(x1)))))))))))) ->
0(1(3(5(5(3(2(5(2(3(5(3(4(3(3(x1)))))))))))))))
, 3(1(3(4(0(1(0(3(1(3(4(4(x1)))))))))))) ->
5(3(3(5(3(2(4(2(2(3(1(1(0(2(1(x1)))))))))))))))
, 3(1(3(1(4(3(4(3(1(3(4(4(x1)))))))))))) ->
5(5(3(2(3(1(1(0(0(5(1(1(5(2(5(0(2(x1)))))))))))))))))
, 3(1(0(4(0(3(2(1(4(0(5(4(x1)))))))))))) ->
0(5(4(5(1(0(3(5(3(0(3(1(1(2(x1))))))))))))))
, 3(0(4(0(3(4(4(4(4(4(4(1(x1)))))))))))) ->
3(1(5(1(4(5(2(1(4(5(0(1(4(5(5(x1)))))))))))))))
, 3(0(3(4(4(0(4(4(3(4(4(1(x1)))))))))))) ->
5(2(0(2(5(2(0(1(2(2(4(1(0(4(4(5(4(1(x1))))))))))))))))))
, 3(0(2(1(1(4(3(1(4(2(1(0(x1)))))))))))) ->
5(2(0(3(0(1(2(5(4(5(5(5(4(0(0(x1)))))))))))))))
, 2(5(5(2(2(4(4(4(5(4(3(4(x1)))))))))))) ->
0(5(0(2(2(2(5(1(5(5(5(3(3(1(2(5(5(3(x1))))))))))))))))))
, 2(5(2(2(1(4(2(1(4(1(4(4(x1)))))))))))) ->
5(5(1(5(5(2(4(3(0(5(1(5(0(3(x1))))))))))))))
, 2(4(3(4(0(0(1(3(0(1(4(1(x1)))))))))))) ->
2(5(2(2(3(3(3(1(1(5(5(1(5(4(0(2(x1))))))))))))))))
, 2(4(3(3(3(4(0(0(4(0(0(1(x1)))))))))))) ->
2(0(2(4(1(2(5(0(0(2(1(2(5(5(5(1(0(x1)))))))))))))))))
, 2(4(1(1(4(2(4(0(4(5(0(4(x1)))))))))))) ->
3(1(5(1(5(5(5(5(5(5(1(3(1(5(5(5(0(5(x1))))))))))))))))))
, 2(4(0(4(1(4(1(1(1(1(3(1(x1)))))))))))) ->
4(2(0(3(2(0(0(2(3(1(2(2(2(0(5(5(x1))))))))))))))))
, 2(4(0(4(0(1(2(0(1(3(4(1(x1)))))))))))) ->
5(1(4(5(3(3(1(1(5(2(5(5(5(4(1(x1)))))))))))))))
, 2(4(0(3(4(4(0(3(4(0(5(0(x1)))))))))))) ->
0(3(1(3(5(5(5(0(2(2(2(0(4(5(1(3(3(x1)))))))))))))))))
, 2(3(5(0(3(1(4(0(1(3(4(4(x1)))))))))))) ->
5(2(2(5(5(0(2(0(5(3(0(4(1(0(2(0(3(x1)))))))))))))))))
, 2(3(4(3(0(0(4(2(4(1(1(4(x1)))))))))))) ->
5(0(3(1(1(0(3(3(3(3(5(4(1(2(5(x1)))))))))))))))
, 2(2(4(4(2(3(4(3(4(2(4(5(x1)))))))))))) ->
2(3(0(3(3(5(1(3(1(5(1(5(1(1(5(5(0(2(x1))))))))))))))))))
, 2(2(4(0(2(1(5(3(3(2(4(4(x1)))))))))))) ->
5(3(3(0(3(3(5(5(0(2(2(5(0(0(x1))))))))))))))
, 2(2(3(4(3(4(3(4(2(4(4(0(x1)))))))))))) ->
2(5(4(5(3(4(0(5(4(1(2(5(0(5(5(x1)))))))))))))))
, 2(2(3(3(1(5(4(0(4(2(4(3(x1)))))))))))) ->
5(5(5(1(1(2(5(2(0(5(1(5(3(0(3(0(5(3(x1))))))))))))))))))
, 2(2(2(4(2(0(4(1(3(4(4(4(x1)))))))))))) ->
5(4(3(5(1(4(5(3(0(3(5(1(3(2(x1))))))))))))))
, 2(2(1(3(5(2(5(0(4(2(5(0(x1)))))))))))) ->
2(2(5(5(2(5(5(2(0(2(5(5(1(1(5(x1)))))))))))))))
, 2(1(1(3(4(4(3(4(4(0(4(3(x1)))))))))))) ->
2(3(3(1(0(0(1(2(2(2(5(1(1(2(4(1(2(3(x1))))))))))))))))))
, 1(4(3(3(0(1(2(1(0(3(3(5(x1)))))))))))) ->
5(0(2(5(5(5(2(5(3(2(4(5(0(5(x1))))))))))))))
, 1(4(3(1(0(1(1(1(2(3(4(4(x1)))))))))))) ->
5(3(4(1(2(2(2(2(5(0(5(1(5(1(5(3(5(x1)))))))))))))))))
, 1(4(2(5(1(4(0(1(3(0(4(0(x1)))))))))))) ->
3(1(3(2(0(2(0(0(2(2(5(1(3(5(5(1(x1))))))))))))))))
, 1(3(5(4(1(0(4(0(3(4(0(4(x1)))))))))))) ->
5(1(0(5(3(1(5(1(5(0(0(2(2(1(3(0(5(x1)))))))))))))))))
, 1(3(4(4(4(3(0(3(5(5(1(2(x1)))))))))))) ->
5(2(2(5(2(2(1(5(3(2(1(2(5(5(5(5(5(x1)))))))))))))))))
, 1(3(2(1(2(4(4(2(1(3(2(2(x1)))))))))))) ->
1(3(5(3(0(5(2(2(5(3(5(5(5(3(5(1(x1))))))))))))))))
, 1(2(3(0(4(0(3(0(4(4(3(4(x1)))))))))))) ->
2(3(5(3(0(5(0(2(3(1(4(5(0(0(x1))))))))))))))
, 1(2(1(4(0(1(4(0(1(5(1(1(x1)))))))))))) ->
2(2(2(3(1(5(2(2(2(0(1(3(3(5(5(0(x1))))))))))))))))
, 1(0(5(0(5(2(4(0(4(2(1(1(x1)))))))))))) ->
5(1(1(0(0(5(5(5(0(2(1(0(2(5(5(4(3(x1)))))))))))))))))
, 1(0(2(1(0(3(1(4(4(4(4(5(x1)))))))))))) ->
3(1(3(3(5(1(3(1(5(5(3(2(5(3(2(x1)))))))))))))))
, 0(5(3(2(1(3(4(0(4(4(0(0(x1)))))))))))) ->
4(2(5(5(5(2(2(5(5(3(2(5(5(0(5(x1)))))))))))))))
, 0(5(2(2(1(3(4(0(1(3(5(4(x1)))))))))))) ->
1(0(2(2(5(2(1(1(5(5(5(5(5(3(1(x1)))))))))))))))
, 0(4(4(1(5(3(4(2(4(0(2(5(x1)))))))))))) ->
5(2(0(2(5(3(0(1(0(0(2(0(3(5(1(5(x1))))))))))))))))
, 0(4(4(1(0(3(2(2(3(4(3(4(x1)))))))))))) ->
5(1(5(0(2(5(5(2(3(2(4(3(1(2(2(5(x1))))))))))))))))
, 0(4(2(4(1(1(3(0(0(4(1(4(x1)))))))))))) ->
2(3(1(5(4(5(2(0(2(1(5(1(3(1(x1))))))))))))))
, 0(4(2(3(5(4(4(4(1(2(2(4(x1)))))))))))) ->
0(4(2(0(3(0(5(0(2(1(2(5(1(5(5(4(x1))))))))))))))))
, 0(4(0(4(0(4(4(5(0(1(5(2(x1)))))))))))) ->
3(1(5(1(3(3(4(1(5(5(4(1(3(3(x1))))))))))))))
, 0(3(4(5(2(1(4(2(3(4(4(3(x1)))))))))))) ->
0(5(3(5(3(0(1(0(5(0(5(1(3(5(4(2(x1))))))))))))))))
, 0(3(4(2(1(4(1(4(4(4(4(0(x1)))))))))))) ->
3(2(1(0(5(0(3(5(4(0(2(3(1(0(5(0(x1))))))))))))))))
, 0(3(2(4(0(4(5(3(4(1(2(4(x1)))))))))))) ->
2(1(5(1(0(3(0(5(1(2(3(5(1(5(5(1(x1))))))))))))))))
, 0(2(4(3(3(1(4(0(1(3(2(2(x1)))))))))))) ->
3(2(4(4(3(5(1(5(5(3(3(1(0(2(2(1(x1))))))))))))))))
, 0(1(4(0(0(3(2(4(3(1(0(4(x1)))))))))))) ->
2(5(5(3(1(2(2(5(4(3(1(1(5(3(5(x1)))))))))))))))
, 0(1(1(1(4(0(4(5(0(4(3(1(x1)))))))))))) ->
5(2(5(2(5(5(5(0(4(4(3(1(5(2(2(5(3(x1)))))))))))))))))
, 0(0(4(2(5(0(1(4(2(1(0(1(x1)))))))))))) ->
2(2(5(5(2(0(0(5(3(1(5(4(1(2(5(5(5(1(x1))))))))))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..