Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 5(5(5(2(2(2(5(3(2(4(0(5(x1)))))))))))) ->
1(3(0(4(4(0(0(4(3(5(0(0(2(3(4(2(5(x1)))))))))))))))))
, 5(5(4(3(3(5(2(2(4(3(5(4(x1)))))))))))) ->
1(0(0(0(5(4(5(0(3(0(3(2(4(2(0(3(1(x1)))))))))))))))))
, 5(5(2(5(2(4(3(2(3(5(5(3(x1)))))))))))) ->
0(0(4(4(0(3(2(0(5(1(2(2(2(3(0(x1)))))))))))))))
, 5(3(2(3(5(1(2(2(2(2(2(1(x1)))))))))))) ->
3(1(1(3(5(4(2(3(0(4(0(5(0(3(0(0(x1))))))))))))))))
, 5(2(3(1(5(2(5(5(5(0(3(5(x1)))))))))))) ->
2(0(2(3(0(0(5(1(3(1(2(0(3(5(1(1(x1))))))))))))))))
, 5(2(2(5(5(2(2(4(1(4(3(4(x1)))))))))))) ->
5(2(3(1(3(3(3(0(0(5(3(4(0(0(0(3(4(5(x1))))))))))))))))))
, 5(2(2(4(3(3(5(5(5(4(1(1(x1)))))))))))) ->
4(3(3(2(3(4(5(1(1(4(0(2(0(0(4(5(x1))))))))))))))))
, 5(2(2(2(2(2(5(0(3(0(5(1(x1)))))))))))) ->
2(5(1(0(2(0(4(1(0(4(2(4(0(4(x1))))))))))))))
, 5(2(1(5(4(1(1(1(5(4(2(4(x1)))))))))))) ->
2(4(2(0(3(1(4(0(0(0(3(5(2(0(2(3(x1))))))))))))))))
, 5(2(1(4(1(2(3(2(0(1(4(2(x1)))))))))))) ->
4(3(2(5(1(5(1(0(5(0(0(0(0(5(3(1(1(x1)))))))))))))))))
, 5(1(5(5(2(2(5(5(2(1(3(3(x1)))))))))))) ->
2(3(1(0(5(0(0(3(4(1(4(2(1(1(3(0(0(x1)))))))))))))))))
, 5(1(5(2(5(4(0(1(3(5(4(2(x1)))))))))))) ->
3(1(3(5(3(4(0(0(4(2(0(3(3(2(4(x1)))))))))))))))
, 5(1(4(1(2(5(3(1(3(0(3(5(x1)))))))))))) ->
0(0(2(0(5(3(0(5(1(5(2(0(0(0(4(0(x1))))))))))))))))
, 5(1(1(5(2(5(5(0(2(2(5(4(x1)))))))))))) ->
3(4(0(3(2(5(0(0(2(0(0(4(5(2(2(3(3(x1)))))))))))))))))
, 5(0(4(3(3(2(0(1(1(2(4(3(x1)))))))))))) ->
4(0(0(0(0(5(3(4(3(3(3(0(0(3(2(x1)))))))))))))))
, 5(0(4(1(5(5(4(1(2(5(2(1(x1)))))))))))) ->
4(2(0(5(1(3(1(4(3(5(0(0(3(5(0(3(2(x1)))))))))))))))))
, 4(5(4(4(5(2(2(1(4(2(2(4(x1)))))))))))) ->
3(5(5(1(3(2(2(3(0(0(4(3(5(4(x1))))))))))))))
, 4(4(2(5(0(2(5(2(5(1(5(2(x1)))))))))))) ->
2(0(0(3(5(0(5(3(0(4(4(4(2(0(3(x1)))))))))))))))
, 4(4(1(2(2(5(3(1(2(4(1(5(x1)))))))))))) ->
3(5(5(2(3(3(5(2(0(0(0(0(0(0(5(4(1(x1)))))))))))))))))
, 4(4(1(2(2(5(2(1(4(4(2(5(x1)))))))))))) ->
3(1(3(4(4(0(2(0(0(0(0(3(0(2(4(2(x1))))))))))))))))
, 4(3(5(2(2(5(2(5(5(5(2(4(x1)))))))))))) ->
4(5(4(4(0(3(1(3(2(4(3(3(3(3(5(0(4(x1)))))))))))))))))
, 4(2(5(2(4(1(2(0(5(5(3(5(x1)))))))))))) ->
2(3(5(0(0(3(1(1(5(5(1(4(0(2(x1))))))))))))))
, 4(2(3(4(1(2(5(4(2(2(4(5(x1)))))))))))) ->
3(2(4(0(0(5(3(0(2(1(0(0(0(1(4(4(0(1(x1))))))))))))))))))
, 4(1(5(5(4(1(2(2(5(4(4(4(x1)))))))))))) ->
1(3(0(5(4(2(1(5(0(1(3(0(4(3(0(x1)))))))))))))))
, 4(1(4(2(1(4(0(2(2(2(2(2(x1)))))))))))) ->
0(2(2(2(3(0(3(3(0(0(3(1(3(3(1(x1)))))))))))))))
, 4(1(2(5(2(2(2(4(3(4(4(0(x1)))))))))))) ->
0(5(4(0(5(0(2(0(2(0(4(0(4(0(5(x1)))))))))))))))
, 4(1(2(4(1(2(5(5(2(2(4(1(x1)))))))))))) ->
2(5(1(3(4(0(5(1(0(0(3(3(1(0(2(4(1(5(x1))))))))))))))))))
, 4(1(1(2(0(4(1(5(4(4(4(1(x1)))))))))))) ->
3(3(0(0(3(2(0(4(2(3(1(0(0(0(1(0(3(4(x1))))))))))))))))))
, 4(0(4(1(5(4(1(5(5(2(2(1(x1)))))))))))) ->
4(5(0(1(3(2(1(1(3(2(2(0(5(0(5(0(0(0(x1))))))))))))))))))
, 3(5(5(5(5(1(1(4(1(4(5(1(x1)))))))))))) ->
3(2(2(0(0(0(3(5(4(0(0(1(0(4(1(1(0(5(x1))))))))))))))))))
, 3(5(5(2(2(3(5(2(4(3(0(0(x1)))))))))))) ->
3(2(0(2(3(0(2(5(2(3(1(1(0(3(1(x1)))))))))))))))
, 3(5(4(3(1(5(5(4(1(2(2(5(x1)))))))))))) ->
4(5(3(1(3(3(0(0(0(0(4(2(2(0(3(3(4(0(x1))))))))))))))))))
, 3(5(2(5(2(2(4(5(5(5(3(1(x1)))))))))))) ->
1(0(3(5(3(5(3(5(4(4(2(5(0(1(x1))))))))))))))
, 3(4(5(3(3(2(5(2(4(1(0(5(x1)))))))))))) ->
0(0(0(1(4(4(1(3(1(0(4(4(1(1(0(0(0(2(x1))))))))))))))))))
, 3(4(4(5(3(1(2(2(5(4(4(1(x1)))))))))))) ->
0(0(2(0(5(3(4(2(1(1(0(0(2(1(0(2(2(x1)))))))))))))))))
, 3(4(2(0(2(4(1(5(5(2(5(2(x1)))))))))))) ->
3(0(5(5(1(0(0(2(5(1(4(0(1(1(3(x1)))))))))))))))
, 3(4(1(5(2(3(5(3(1(1(5(4(x1)))))))))))) ->
0(0(0(1(2(0(5(3(0(3(0(0(0(2(0(0(3(1(x1))))))))))))))))))
, 3(4(1(2(1(5(0(1(0(2(4(5(x1)))))))))))) ->
4(0(0(0(0(5(0(0(1(0(0(1(2(1(1(3(x1))))))))))))))))
, 3(4(0(5(3(2(1(2(2(2(2(3(x1)))))))))))) ->
0(1(1(2(0(0(0(5(3(0(1(1(5(1(3(2(x1))))))))))))))))
, 3(4(0(2(5(4(0(1(4(1(4(5(x1)))))))))))) ->
0(0(2(0(0(0(4(4(1(5(1(0(4(2(1(0(3(4(x1))))))))))))))))))
, 3(3(5(1(4(1(3(1(5(4(2(5(x1)))))))))))) ->
0(2(5(0(2(1(4(4(0(4(2(2(0(0(x1))))))))))))))
, 3(3(4(3(5(2(4(2(2(2(5(0(x1)))))))))))) ->
3(2(3(4(2(1(3(5(1(3(1(0(0(0(5(3(x1))))))))))))))))
, 3(3(4(3(4(1(3(3(2(5(4(3(x1)))))))))))) ->
4(2(5(1(3(5(0(0(3(0(0(0(0(1(3(3(x1))))))))))))))))
, 3(2(5(5(3(1(2(4(4(2(5(2(x1)))))))))))) ->
5(3(0(0(2(4(5(4(2(3(0(0(3(4(0(1(2(x1)))))))))))))))))
, 3(2(5(4(3(5(1(2(5(0(4(4(x1)))))))))))) ->
5(1(0(0(2(0(0(2(3(0(5(0(4(4(0(5(3(1(x1))))))))))))))))))
, 3(2(2(5(1(1(2(2(3(2(4(5(x1)))))))))))) ->
5(1(0(0(0(3(1(3(1(1(5(0(4(5(3(1(0(4(x1))))))))))))))))))
, 3(1(5(5(2(2(1(0(5(5(5(3(x1)))))))))))) ->
4(3(1(4(4(0(0(1(3(1(2(0(0(3(0(0(0(0(x1))))))))))))))))))
, 3(1(3(0(2(5(2(2(2(5(4(1(x1)))))))))))) ->
0(0(4(0(0(4(0(0(5(2(0(2(1(0(4(4(x1))))))))))))))))
, 3(0(5(5(2(5(4(1(1(2(5(3(x1)))))))))))) ->
3(1(3(1(1(2(1(4(0(5(1(2(1(3(0(0(0(0(x1))))))))))))))))))
, 3(0(4(3(2(1(2(2(2(1(4(1(x1)))))))))))) ->
3(0(2(1(0(5(0(2(0(5(4(4(3(2(0(5(x1))))))))))))))))
, 2(5(5(4(3(5(1(2(4(1(2(3(x1)))))))))))) ->
1(3(1(1(3(1(1(0(4(3(5(3(1(3(0(2(5(x1)))))))))))))))))
, 2(5(5(0(1(1(5(0(2(0(5(5(x1)))))))))))) ->
2(0(0(0(4(2(4(2(5(0(0(1(1(1(x1))))))))))))))
, 2(5(2(5(2(4(2(4(1(1(1(5(x1)))))))))))) ->
5(3(5(5(3(2(3(2(1(3(5(0(0(0(1(0(x1))))))))))))))))
, 2(5(2(2(5(4(5(1(2(5(4(3(x1)))))))))))) ->
4(0(5(3(5(0(1(3(3(3(5(0(0(0(1(3(5(0(x1))))))))))))))))))
, 2(5(0(1(4(3(1(4(1(4(1(1(x1)))))))))))) ->
1(1(3(3(2(4(4(2(4(5(0(5(3(0(0(x1)))))))))))))))
, 2(4(3(1(5(2(2(2(4(1(5(1(x1)))))))))))) ->
5(4(3(1(1(4(5(1(1(4(2(0(4(0(1(1(1(x1)))))))))))))))))
, 2(4(3(0(5(2(5(5(2(4(4(3(x1)))))))))))) ->
1(2(0(0(0(4(4(1(5(0(0(0(0(3(5(4(2(x1)))))))))))))))))
, 2(4(2(5(2(5(2(1(4(2(2(3(x1)))))))))))) ->
5(5(1(3(1(0(0(0(0(3(1(3(5(2(0(0(4(5(x1))))))))))))))))))
, 2(4(2(0(1(3(4(3(5(1(5(4(x1)))))))))))) ->
5(0(4(0(0(3(2(0(0(2(3(1(0(3(4(0(0(3(x1))))))))))))))))))
, 2(4(1(5(4(2(2(0(1(1(4(5(x1)))))))))))) ->
4(3(2(4(5(3(2(3(0(0(2(0(0(0(x1))))))))))))))
, 2(4(1(1(2(4(5(5(4(3(4(1(x1)))))))))))) ->
3(4(0(3(1(1(0(3(0(3(3(5(0(1(5(x1)))))))))))))))
, 2(3(4(2(5(5(5(5(0(4(1(3(x1)))))))))))) ->
0(4(0(0(2(2(1(4(5(0(1(4(5(5(0(0(0(x1)))))))))))))))))
, 2(3(0(2(2(5(5(4(2(4(2(3(x1)))))))))))) ->
0(3(5(3(2(0(2(1(2(4(2(3(0(3(x1))))))))))))))
, 2(2(5(5(2(5(5(3(0(3(2(1(x1)))))))))))) ->
5(1(1(3(1(1(0(2(2(0(0(3(4(2(1(2(x1))))))))))))))))
, 2(2(5(5(2(4(5(5(2(2(4(3(x1)))))))))))) ->
2(3(5(4(0(5(2(0(0(4(2(2(0(0(4(4(1(x1)))))))))))))))))
, 2(2(5(2(5(5(2(4(1(0(4(1(x1)))))))))))) ->
2(0(0(3(5(2(2(4(0(2(0(0(4(2(1(4(5(0(x1))))))))))))))))))
, 2(2(5(1(2(2(2(4(3(5(2(4(x1)))))))))))) ->
4(3(3(1(0(3(0(5(3(2(3(2(1(1(4(x1)))))))))))))))
, 2(2(4(2(3(4(4(3(3(1(5(3(x1)))))))))))) ->
5(0(3(1(4(5(2(1(3(1(1(5(0(4(x1))))))))))))))
, 2(2(4(1(3(2(0(1(5(4(5(4(x1)))))))))))) ->
1(1(3(4(0(1(3(0(0(4(0(1(0(2(3(x1)))))))))))))))
, 2(2(4(1(2(1(1(5(4(1(4(4(x1)))))))))))) ->
3(3(3(3(0(4(5(1(1(0(1(0(0(0(2(5(0(0(x1))))))))))))))))))
, 2(2(2(5(2(2(2(3(1(4(1(4(x1)))))))))))) ->
2(4(0(1(3(1(1(3(3(3(1(1(2(0(2(3(0(x1)))))))))))))))))
, 2(2(2(4(1(2(2(4(2(2(4(0(x1)))))))))))) ->
3(5(0(5(0(4(0(3(0(4(2(0(5(1(3(0(0(2(x1))))))))))))))))))
, 2(1(5(5(2(5(5(0(3(0(5(2(x1)))))))))))) ->
0(3(1(2(4(4(0(0(5(3(0(0(2(1(0(5(1(0(x1))))))))))))))))))
, 2(1(4(1(5(5(1(0(2(4(2(5(x1)))))))))))) ->
2(3(0(2(3(1(0(5(0(3(5(4(0(1(x1))))))))))))))
, 2(1(2(5(2(4(2(5(2(2(4(4(x1)))))))))))) ->
3(1(2(0(4(5(0(0(2(5(3(0(2(1(5(1(x1))))))))))))))))
, 2(0(5(2(2(5(1(4(1(1(1(2(x1)))))))))))) ->
4(0(0(0(0(3(1(0(0(2(1(0(2(4(4(3(0(x1)))))))))))))))))
, 2(0(3(5(3(4(4(3(2(4(0(3(x1)))))))))))) ->
4(0(5(0(0(3(1(3(0(1(0(0(0(1(x1))))))))))))))
, 2(0(0(5(5(2(0(1(4(4(5(0(x1)))))))))))) ->
4(0(3(1(3(0(2(3(4(2(5(1(0(1(x1))))))))))))))
, 1(5(1(4(3(3(5(5(2(4(1(5(x1)))))))))))) ->
1(4(2(0(3(0(2(5(0(5(1(5(1(5(x1))))))))))))))
, 1(4(0(4(1(1(1(4(1(2(4(1(x1)))))))))))) ->
2(1(3(0(0(2(1(2(3(3(5(1(3(2(x1))))))))))))))
, 1(3(2(4(4(2(3(2(2(3(2(0(x1)))))))))))) ->
3(3(0(4(0(0(4(5(3(0(3(1(0(0(0(x1)))))))))))))))
, 1(2(1(4(3(5(2(2(1(5(5(4(x1)))))))))))) ->
3(3(5(3(5(5(0(0(5(0(0(2(0(1(1(x1)))))))))))))))
, 1(1(2(5(4(1(2(3(5(1(3(2(x1)))))))))))) ->
0(3(1(1(1(0(5(3(0(5(0(0(0(2(x1))))))))))))))
, 1(0(4(1(4(3(2(5(5(3(2(4(x1)))))))))))) ->
3(0(0(3(2(4(3(2(1(3(2(0(0(4(4(0(0(x1)))))))))))))))))
, 1(0(2(4(1(5(5(4(1(2(1(0(x1)))))))))))) ->
0(5(1(0(1(3(1(0(0(5(0(0(4(2(2(4(2(x1)))))))))))))))))
, 0(5(2(5(0(3(0(1(2(5(5(4(x1)))))))))))) ->
4(3(1(3(3(1(1(0(2(4(4(0(0(5(4(4(4(x1)))))))))))))))))
, 0(4(1(5(2(5(3(3(3(5(2(5(x1)))))))))))) ->
0(0(3(2(0(0(5(1(0(0(4(2(1(0(3(0(2(2(x1))))))))))))))))))
, 0(4(1(2(5(2(1(1(2(2(5(1(x1)))))))))))) ->
0(0(0(1(1(0(1(4(5(4(3(1(0(1(4(5(4(x1)))))))))))))))))
, 0(2(4(3(5(1(5(4(1(4(1(5(x1)))))))))))) ->
2(1(0(0(3(1(0(0(1(5(0(4(3(5(5(0(0(x1)))))))))))))))))
, 0(2(4(3(2(5(5(5(2(5(0(2(x1)))))))))))) ->
0(1(1(3(4(0(3(5(2(2(2(3(0(5(1(0(x1))))))))))))))))
, 0(2(0(5(5(5(3(5(5(3(5(5(x1)))))))))))) ->
0(3(3(3(1(0(5(1(0(3(3(2(1(5(5(x1)))))))))))))))
, 0(1(5(5(5(2(3(2(2(2(2(1(x1)))))))))))) ->
1(5(0(0(3(2(0(0(4(0(3(4(0(3(2(3(4(x1)))))))))))))))))
, 0(1(5(2(2(1(2(5(2(3(1(4(x1)))))))))))) ->
1(1(0(0(4(5(4(2(0(5(2(1(2(2(0(0(4(x1)))))))))))))))))
, 0(1(5(1(4(1(2(4(1(4(1(3(x1)))))))))))) ->
3(3(0(2(0(5(0(5(3(3(5(1(1(5(3(1(1(x1)))))))))))))))))
, 0(1(3(1(5(1(1(5(2(4(1(3(x1)))))))))))) ->
5(3(2(3(0(0(5(2(0(3(3(2(3(3(1(x1)))))))))))))))
, 0(1(0(2(2(3(5(3(4(4(4(5(x1)))))))))))) ->
3(1(0(0(3(1(1(0(0(1(2(3(1(0(0(x1)))))))))))))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ 5_0(1) -> 1
, 5_0(2) -> 1
, 5_0(3) -> 1
, 5_0(4) -> 1
, 5_0(5) -> 1
, 5_0(6) -> 1
, 5_1(1) -> 22
, 5_1(2) -> 22
, 5_1(3) -> 22
, 5_1(4) -> 22
, 5_1(5) -> 22
, 5_1(6) -> 22
, 5_1(7) -> 22
, 5_1(16) -> 15
, 5_1(22) -> 1111
, 5_1(26) -> 25
, 5_1(28) -> 27
, 5_1(36) -> 584
, 5_1(37) -> 934
, 5_1(38) -> 22
, 5_1(46) -> 45
, 5_1(51) -> 284
, 5_1(52) -> 22
, 5_1(53) -> 22
, 5_1(54) -> 22
, 5_1(56) -> 55
, 5_1(63) -> 62
, 5_1(64) -> 705
, 5_1(65) -> 875
, 5_1(66) -> 22
, 5_1(72) -> 71
, 5_1(79) -> 78
, 5_1(80) -> 1
, 5_1(80) -> 22
, 5_1(89) -> 88
, 5_1(96) -> 22
, 5_1(102) -> 101
, 5_1(106) -> 740
, 5_1(109) -> 66
, 5_1(119) -> 284
, 5_1(120) -> 232
, 5_1(131) -> 130
, 5_1(134) -> 543
, 5_1(136) -> 135
, 5_1(138) -> 137
, 5_1(141) -> 140
, 5_1(146) -> 145
, 5_1(147) -> 22
, 5_1(150) -> 149
, 5_1(160) -> 159
, 5_1(172) -> 171
, 5_1(175) -> 174
, 5_1(177) -> 176
, 5_1(181) -> 921
, 5_1(182) -> 22
, 5_1(183) -> 22
, 5_1(186) -> 185
, 5_1(193) -> 192
, 5_1(196) -> 22
, 5_1(200) -> 199
, 5_1(206) -> 220
, 5_1(211) -> 210
, 5_1(217) -> 216
, 5_1(221) -> 22
, 5_1(222) -> 221
, 5_1(223) -> 222
, 5_1(237) -> 236
, 5_1(239) -> 238
, 5_1(249) -> 248
, 5_1(257) -> 256
, 5_1(258) -> 22
, 5_1(270) -> 729
, 5_1(271) -> 22
, 5_1(272) -> 271
, 5_1(273) -> 22
, 5_1(274) -> 22
, 5_1(285) -> 22
, 5_1(286) -> 285
, 5_1(292) -> 291
, 5_1(293) -> 292
, 5_1(297) -> 22
, 5_1(300) -> 299
, 5_1(309) -> 921
, 5_1(310) -> 439
, 5_1(311) -> 22
, 5_1(314) -> 313
, 5_1(318) -> 317
, 5_1(323) -> 22
, 5_1(335) -> 323
, 5_1(338) -> 337
, 5_1(347) -> 233
, 5_1(352) -> 351
, 5_1(361) -> 973
, 5_1(387) -> 386
, 5_1(388) -> 787
, 5_1(389) -> 388
, 5_1(390) -> 22
, 5_1(397) -> 396
, 5_1(410) -> 409
, 5_1(414) -> 22
, 5_1(415) -> 414
, 5_1(429) -> 22
, 5_1(432) -> 431
, 5_1(434) -> 433
, 5_1(436) -> 435
, 5_1(440) -> 22
, 5_1(453) -> 1011
, 5_1(457) -> 456
, 5_1(468) -> 22
, 5_1(469) -> 468
, 5_1(470) -> 469
, 5_1(475) -> 474
, 5_1(482) -> 481
, 5_1(490) -> 22
, 5_1(494) -> 493
, 5_1(507) -> 506
, 5_1(512) -> 511
, 5_1(518) -> 517
, 5_1(523) -> 522
, 5_1(537) -> 536
, 5_1(545) -> 544
, 5_1(548) -> 547
, 5_1(556) -> 3
, 5_1(556) -> 134
, 5_1(556) -> 207
, 5_1(557) -> 22
, 5_1(558) -> 22
, 5_1(562) -> 561
, 5_1(571) -> 22
, 5_1(580) -> 579
, 5_1(591) -> 590
, 5_1(594) -> 593
, 5_1(615) -> 614
, 5_1(620) -> 1049
, 5_1(621) -> 22
, 5_1(629) -> 628
, 5_1(635) -> 634
, 5_1(639) -> 638
, 5_1(643) -> 22
, 5_1(653) -> 652
, 5_1(657) -> 22
, 5_1(665) -> 664
, 5_1(668) -> 4
, 5_1(668) -> 21
, 5_1(668) -> 169
, 5_1(668) -> 208
, 5_1(668) -> 269
, 5_1(668) -> 467
, 5_1(668) -> 1036
, 5_1(669) -> 22
, 5_1(670) -> 669
, 5_1(671) -> 670
, 5_1(678) -> 677
, 5_1(681) -> 913
, 5_1(682) -> 22
, 5_1(683) -> 22
, 5_1(684) -> 683
, 5_1(686) -> 685
, 5_1(692) -> 691
, 5_1(696) -> 22
, 5_1(704) -> 703
, 5_1(711) -> 710
, 5_1(724) -> 723
, 5_1(730) -> 668
, 5_1(731) -> 1
, 5_1(732) -> 22
, 5_1(733) -> 1
, 5_1(758) -> 757
, 5_1(764) -> 22
, 5_1(765) -> 22
, 5_1(766) -> 22
, 5_1(775) -> 774
, 5_1(776) -> 22
, 5_1(784) -> 783
, 5_1(789) -> 788
, 5_1(798) -> 22
, 5_1(810) -> 22
, 5_1(811) -> 810
, 5_1(814) -> 813
, 5_1(824) -> 823
, 5_1(840) -> 839
, 5_1(849) -> 848
, 5_1(867) -> 866
, 5_1(875) -> 1089
, 5_1(876) -> 22
, 5_1(888) -> 764
, 5_1(890) -> 889
, 5_1(899) -> 898
, 5_1(907) -> 906
, 5_1(919) -> 918
, 5_1(922) -> 22
, 5_1(926) -> 925
, 5_1(930) -> 929
, 5_1(933) -> 971
, 5_1(953) -> 664
, 5_1(962) -> 961
, 5_1(963) -> 22
, 5_1(970) -> 969
, 5_1(972) -> 971
, 5_1(983) -> 22
, 5_1(990) -> 989
, 5_1(994) -> 984
, 5_1(996) -> 995
, 5_1(997) -> 996
, 5_1(1000) -> 999
, 5_1(1003) -> 22
, 5_1(1009) -> 1008
, 5_1(1012) -> 22
, 5_1(1025) -> 1003
, 5_1(1033) -> 1032
, 5_1(1037) -> 22
, 5_1(1050) -> 1049
, 5_1(1051) -> 22
, 5_1(1057) -> 1056
, 5_1(1071) -> 1070
, 5_1(1086) -> 1085
, 5_1(1096) -> 1095
, 5_1(1105) -> 1104
, 5_1(1112) -> 22
, 5_1(1113) -> 1112
, 5_1(1126) -> 22
, 5_1(1130) -> 1129
, 5_1(1134) -> 1133
, 5_1(1139) -> 22
, 5_1(1144) -> 1143
, 5_1(1146) -> 1145
, 5_1(1149) -> 1148
, 5_1(1151) -> 5
, 5_1(1151) -> 51
, 5_1(1151) -> 310
, 5_1(1151) -> 554
, 5_1(1152) -> 22
, 5_1(1157) -> 1156
, 5_1(1162) -> 1
, 4_0(1) -> 2
, 4_0(2) -> 2
, 4_0(3) -> 2
, 4_0(4) -> 2
, 4_0(5) -> 2
, 4_0(6) -> 2
, 4_1(1) -> 120
, 4_1(2) -> 120
, 4_1(3) -> 120
, 4_1(4) -> 120
, 4_1(5) -> 120
, 4_1(6) -> 120
, 4_1(7) -> 120
, 4_1(10) -> 9
, 4_1(11) -> 10
, 4_1(14) -> 13
, 4_1(21) -> 20
, 4_1(22) -> 95
, 4_1(27) -> 26
, 4_1(34) -> 33
, 4_1(37) -> 257
, 4_1(40) -> 39
, 4_1(41) -> 40
, 4_1(49) -> 795
, 4_1(50) -> 322
, 4_1(51) -> 181
, 4_1(52) -> 1
, 4_1(53) -> 120
, 4_1(57) -> 56
, 4_1(61) -> 60
, 4_1(65) -> 1024
, 4_1(66) -> 120
, 4_1(80) -> 120
, 4_1(91) -> 90
, 4_1(96) -> 1
, 4_1(96) -> 22
, 4_1(96) -> 284
, 4_1(101) -> 100
, 4_1(105) -> 104
, 4_1(110) -> 120
, 4_1(114) -> 113
, 4_1(117) -> 116
, 4_1(119) -> 118
, 4_1(120) -> 620
, 4_1(121) -> 66
, 4_1(126) -> 125
, 4_1(154) -> 153
, 4_1(156) -> 155
, 4_1(162) -> 161
, 4_1(165) -> 164
, 4_1(181) -> 308
, 4_1(182) -> 52
, 4_1(192) -> 191
, 4_1(202) -> 201
, 4_1(208) -> 270
, 4_1(209) -> 120
, 4_1(215) -> 214
, 4_1(221) -> 1
, 4_1(222) -> 120
, 4_1(231) -> 230
, 4_1(232) -> 1076
, 4_1(233) -> 120
, 4_1(242) -> 241
, 4_1(243) -> 242
, 4_1(244) -> 243
, 4_1(257) -> 822
, 4_1(258) -> 120
, 4_1(260) -> 259
, 4_1(261) -> 260
, 4_1(271) -> 2
, 4_1(271) -> 118
, 4_1(271) -> 120
, 4_1(271) -> 181
, 4_1(271) -> 230
, 4_1(272) -> 120
, 4_1(273) -> 272
, 4_1(274) -> 273
, 4_1(280) -> 279
, 4_1(284) -> 834
, 4_1(295) -> 294
, 4_1(296) -> 120
, 4_1(297) -> 296
, 4_1(309) -> 308
, 4_1(310) -> 309
, 4_1(311) -> 120
, 4_1(315) -> 314
, 4_1(322) -> 945
, 4_1(336) -> 335
, 4_1(344) -> 343
, 4_1(346) -> 345
, 4_1(348) -> 120
, 4_1(350) -> 349
, 4_1(361) -> 360
, 4_1(368) -> 367
, 4_1(390) -> 1
, 4_1(391) -> 120
, 4_1(398) -> 397
, 4_1(403) -> 402
, 4_1(414) -> 3
, 4_1(414) -> 36
, 4_1(414) -> 134
, 4_1(414) -> 195
, 4_1(414) -> 231
, 4_1(414) -> 376
, 4_1(415) -> 120
, 4_1(424) -> 423
, 4_1(429) -> 120
, 4_1(437) -> 436
, 4_1(438) -> 437
, 4_1(444) -> 443
, 4_1(445) -> 444
, 4_1(450) -> 449
, 4_1(451) -> 450
, 4_1(459) -> 458
, 4_1(477) -> 476
, 4_1(515) -> 514
, 4_1(516) -> 515
, 4_1(521) -> 520
, 4_1(527) -> 526
, 4_1(528) -> 527
, 4_1(530) -> 529
, 4_1(533) -> 532
, 4_1(544) -> 120
, 4_1(556) -> 120
, 4_1(557) -> 1
, 4_1(561) -> 560
, 4_1(563) -> 562
, 4_1(569) -> 568
, 4_1(571) -> 120
, 4_1(582) -> 581
, 4_1(583) -> 582
, 4_1(593) -> 592
, 4_1(598) -> 597
, 4_1(599) -> 598
, 4_1(609) -> 441
, 4_1(612) -> 611
, 4_1(620) -> 1050
, 4_1(621) -> 120
, 4_1(627) -> 626
, 4_1(640) -> 639
, 4_1(641) -> 640
, 4_1(643) -> 120
, 4_1(651) -> 650
, 4_1(656) -> 294
, 4_1(657) -> 120
, 4_1(661) -> 660
, 4_1(663) -> 662
, 4_1(666) -> 716
, 4_1(668) -> 120
, 4_1(669) -> 1
, 4_1(670) -> 120
, 4_1(682) -> 4
, 4_1(682) -> 21
, 4_1(682) -> 75
, 4_1(682) -> 169
, 4_1(682) -> 208
, 4_1(682) -> 244
, 4_1(682) -> 359
, 4_1(682) -> 467
, 4_1(682) -> 531
, 4_1(682) -> 642
, 4_1(700) -> 699
, 4_1(701) -> 700
, 4_1(703) -> 702
, 4_1(706) -> 668
, 4_1(710) -> 709
, 4_1(714) -> 713
, 4_1(721) -> 720
, 4_1(722) -> 721
, 4_1(730) -> 120
, 4_1(731) -> 120
, 4_1(732) -> 1
, 4_1(733) -> 120
, 4_1(742) -> 741
, 4_1(754) -> 753
, 4_1(757) -> 756
, 4_1(764) -> 1
, 4_1(765) -> 764
, 4_1(777) -> 776
, 4_1(783) -> 782
, 4_1(787) -> 786
, 4_1(796) -> 795
, 4_1(798) -> 120
, 4_1(809) -> 808
, 4_1(812) -> 811
, 4_1(818) -> 817
, 4_1(827) -> 826
, 4_1(832) -> 831
, 4_1(848) -> 847
, 4_1(854) -> 697
, 4_1(860) -> 859
, 4_1(866) -> 865
, 4_1(876) -> 657
, 4_1(888) -> 120
, 4_1(892) -> 891
, 4_1(896) -> 895
, 4_1(903) -> 902
, 4_1(904) -> 903
, 4_1(922) -> 120
, 4_1(925) -> 924
, 4_1(960) -> 959
, 4_1(963) -> 120
, 4_1(964) -> 963
, 4_1(974) -> 120
, 4_1(975) -> 120
, 4_1(983) -> 1
, 4_1(986) -> 985
, 4_1(989) -> 988
, 4_1(1016) -> 1015
, 4_1(1024) -> 1023
, 4_1(1026) -> 120
, 4_1(1036) -> 1035
, 4_1(1037) -> 5
, 4_1(1037) -> 51
, 4_1(1037) -> 346
, 4_1(1046) -> 1045
, 4_1(1047) -> 1046
, 4_1(1061) -> 1060
, 4_1(1070) -> 1069
, 4_1(1072) -> 1071
, 4_1(1077) -> 120
, 4_1(1078) -> 120
, 4_1(1088) -> 1087
, 4_1(1093) -> 1092
, 4_1(1112) -> 120
, 4_1(1120) -> 1119
, 4_1(1123) -> 1122
, 4_1(1129) -> 1128
, 4_1(1131) -> 1130
, 4_1(1139) -> 1
, 4_1(1151) -> 120
, 4_1(1152) -> 1
, 4_1(1153) -> 120
, 4_1(1162) -> 120
, 3_0(1) -> 3
, 3_0(2) -> 3
, 3_0(3) -> 3
, 3_0(4) -> 3
, 3_0(5) -> 3
, 3_0(6) -> 3
, 3_1(1) -> 134
, 3_1(2) -> 134
, 3_1(3) -> 134
, 3_1(4) -> 134
, 3_1(5) -> 134
, 3_1(6) -> 134
, 3_1(8) -> 7
, 3_1(15) -> 14
, 3_1(20) -> 19
, 3_1(22) -> 231
, 3_1(30) -> 29
, 3_1(32) -> 31
, 3_1(36) -> 334
, 3_1(37) -> 36
, 3_1(38) -> 134
, 3_1(43) -> 42
, 3_1(51) -> 50
, 3_1(52) -> 1
, 3_1(52) -> 22
, 3_1(52) -> 78
, 3_1(52) -> 543
, 3_1(52) -> 934
, 3_1(52) -> 973
, 3_1(55) -> 54
, 3_1(59) -> 58
, 3_1(65) -> 64
, 3_1(66) -> 134
, 3_1(69) -> 68
, 3_1(74) -> 73
, 3_1(78) -> 77
, 3_1(79) -> 146
, 3_1(80) -> 134
, 3_1(81) -> 134
, 3_1(82) -> 81
, 3_1(84) -> 83
, 3_1(85) -> 84
, 3_1(86) -> 85
, 3_1(90) -> 89
, 3_1(95) -> 94
, 3_1(96) -> 134
, 3_1(97) -> 96
, 3_1(98) -> 97
, 3_1(100) -> 99
, 3_1(120) -> 376
, 3_1(121) -> 22
, 3_1(124) -> 123
, 3_1(130) -> 129
, 3_1(134) -> 195
, 3_1(147) -> 66
, 3_1(153) -> 152
, 3_1(159) -> 53
, 3_1(161) -> 160
, 3_1(168) -> 167
, 3_1(169) -> 168
, 3_1(173) -> 172
, 3_1(181) -> 428
, 3_1(184) -> 183
, 3_1(201) -> 200
, 3_1(203) -> 202
, 3_1(204) -> 203
, 3_1(205) -> 204
, 3_1(208) -> 207
, 3_1(213) -> 212
, 3_1(216) -> 215
, 3_1(220) -> 219
, 3_1(221) -> 2
, 3_1(221) -> 95
, 3_1(221) -> 120
, 3_1(221) -> 257
, 3_1(221) -> 270
, 3_1(221) -> 620
, 3_1(221) -> 822
, 3_1(221) -> 1076
, 3_1(222) -> 134
, 3_1(225) -> 224
, 3_1(228) -> 227
, 3_1(232) -> 231
, 3_1(233) -> 134
, 3_1(236) -> 235
, 3_1(240) -> 239
, 3_1(245) -> 797
, 3_1(247) -> 246
, 3_1(248) -> 247
, 3_1(259) -> 258
, 3_1(268) -> 267
, 3_1(270) -> 19
, 3_1(271) -> 134
, 3_1(272) -> 134
, 3_1(273) -> 1
, 3_1(276) -> 275
, 3_1(278) -> 277
, 3_1(281) -> 280
, 3_1(282) -> 281
, 3_1(283) -> 282
, 3_1(284) -> 283
, 3_1(285) -> 233
, 3_1(289) -> 288
, 3_1(297) -> 1
, 3_1(301) -> 300
, 3_1(309) -> 567
, 3_1(312) -> 311
, 3_1(321) -> 320
, 3_1(323) -> 134
, 3_1(327) -> 326
, 3_1(329) -> 328
, 3_1(330) -> 329
, 3_1(333) -> 332
, 3_1(349) -> 348
, 3_1(356) -> 355
, 3_1(357) -> 356
, 3_1(362) -> 221
, 3_1(365) -> 364
, 3_1(370) -> 369
, 3_1(379) -> 378
, 3_1(383) -> 382
, 3_1(387) -> 1009
, 3_1(390) -> 3
, 3_1(390) -> 19
, 3_1(390) -> 50
, 3_1(390) -> 134
, 3_1(390) -> 195
, 3_1(390) -> 231
, 3_1(390) -> 376
, 3_1(396) -> 395
, 3_1(407) -> 406
, 3_1(412) -> 411
, 3_1(414) -> 134
, 3_1(415) -> 134
, 3_1(416) -> 415
, 3_1(418) -> 417
, 3_1(419) -> 418
, 3_1(428) -> 427
, 3_1(431) -> 430
, 3_1(433) -> 432
, 3_1(435) -> 434
, 3_1(439) -> 773
, 3_1(440) -> 134
, 3_1(447) -> 446
, 3_1(454) -> 900
, 3_1(458) -> 457
, 3_1(466) -> 1064
, 3_1(483) -> 482
, 3_1(485) -> 484
, 3_1(508) -> 507
, 3_1(511) -> 982
, 3_1(532) -> 391
, 3_1(536) -> 535
, 3_1(539) -> 538
, 3_1(547) -> 546
, 3_1(551) -> 550
, 3_1(556) -> 134
, 3_1(557) -> 556
, 3_1(565) -> 564
, 3_1(568) -> 567
, 3_1(578) -> 577
, 3_1(586) -> 585
, 3_1(588) -> 587
, 3_1(595) -> 594
, 3_1(596) -> 414
, 3_1(603) -> 602
, 3_1(608) -> 607
, 3_1(622) -> 621
, 3_1(642) -> 641
, 3_1(644) -> 643
, 3_1(647) -> 646
, 3_1(652) -> 651
, 3_1(654) -> 653
, 3_1(656) -> 655
, 3_1(657) -> 134
, 3_1(668) -> 134
, 3_1(669) -> 668
, 3_1(670) -> 134
, 3_1(672) -> 671
, 3_1(674) -> 673
, 3_1(677) -> 676
, 3_1(682) -> 134
, 3_1(685) -> 684
, 3_1(689) -> 688
, 3_1(690) -> 689
, 3_1(691) -> 690
, 3_1(697) -> 696
, 3_1(698) -> 697
, 3_1(706) -> 134
, 3_1(707) -> 706
, 3_1(729) -> 728
, 3_1(731) -> 134
, 3_1(732) -> 731
, 3_1(733) -> 134
, 3_1(734) -> 134
, 3_1(738) -> 737
, 3_1(740) -> 739
, 3_1(741) -> 134
, 3_1(745) -> 744
, 3_1(750) -> 749
, 3_1(753) -> 752
, 3_1(755) -> 682
, 3_1(759) -> 758
, 3_1(761) -> 760
, 3_1(764) -> 4
, 3_1(764) -> 169
, 3_1(764) -> 208
, 3_1(764) -> 359
, 3_1(764) -> 467
, 3_1(764) -> 809
, 3_1(764) -> 1109
, 3_1(767) -> 766
, 3_1(771) -> 770
, 3_1(773) -> 772
, 3_1(774) -> 773
, 3_1(776) -> 134
, 3_1(788) -> 776
, 3_1(790) -> 789
, 3_1(800) -> 799
, 3_1(808) -> 807
, 3_1(810) -> 657
, 3_1(823) -> 659
, 3_1(835) -> 755
, 3_1(838) -> 837
, 3_1(841) -> 840
, 3_1(843) -> 842
, 3_1(846) -> 741
, 3_1(852) -> 851
, 3_1(857) -> 856
, 3_1(862) -> 764
, 3_1(863) -> 862
, 3_1(864) -> 863
, 3_1(876) -> 1
, 3_1(879) -> 878
, 3_1(882) -> 881
, 3_1(883) -> 882
, 3_1(884) -> 883
, 3_1(888) -> 134
, 3_1(894) -> 893
, 3_1(908) -> 907
, 3_1(912) -> 1099
, 3_1(916) -> 915
, 3_1(921) -> 920
, 3_1(931) -> 930
, 3_1(934) -> 77
, 3_1(938) -> 937
, 3_1(948) -> 947
, 3_1(950) -> 949
, 3_1(954) -> 683
, 3_1(956) -> 955
, 3_1(959) -> 958
, 3_1(967) -> 966
, 3_1(974) -> 134
, 3_1(976) -> 975
, 3_1(982) -> 981
, 3_1(983) -> 6
, 3_1(983) -> 37
, 3_1(983) -> 479
, 3_1(983) -> 512
, 3_1(983) -> 570
, 3_1(983) -> 595
, 3_1(983) -> 681
, 3_1(984) -> 983
, 3_1(991) -> 990
, 3_1(993) -> 992
, 3_1(995) -> 994
, 3_1(1003) -> 134
, 3_1(1004) -> 1003
, 3_1(1010) -> 1009
, 3_1(1014) -> 1013
, 3_1(1017) -> 1016
, 3_1(1020) -> 1019
, 3_1(1024) -> 752
, 3_1(1029) -> 1028
, 3_1(1037) -> 1
, 3_1(1038) -> 1037
, 3_1(1040) -> 1039
, 3_1(1041) -> 1040
, 3_1(1051) -> 134
, 3_1(1053) -> 1052
, 3_1(1073) -> 1072
, 3_1(1077) -> 134
, 3_1(1081) -> 1080
, 3_1(1089) -> 1088
, 3_1(1092) -> 1091
, 3_1(1095) -> 1094
, 3_1(1100) -> 1051
, 3_1(1101) -> 1100
, 3_1(1102) -> 1101
, 3_1(1108) -> 1107
, 3_1(1109) -> 1108
, 3_1(1116) -> 1115
, 3_1(1122) -> 1121
, 3_1(1125) -> 1124
, 3_1(1139) -> 5
, 3_1(1139) -> 51
, 3_1(1139) -> 310
, 3_1(1139) -> 680
, 3_1(1139) -> 775
, 3_1(1139) -> 860
, 3_1(1140) -> 1139
, 3_1(1147) -> 1146
, 3_1(1148) -> 1147
, 3_1(1151) -> 134
, 3_1(1152) -> 1151
, 3_1(1154) -> 1153
, 3_1(1160) -> 1159
, 3_1(1161) -> 1160
, 3_1(1162) -> 134
, 3_1(1163) -> 134
, 3_1(1165) -> 1164
, 2_0(1) -> 4
, 2_0(2) -> 4
, 2_0(3) -> 4
, 2_0(4) -> 4
, 2_0(5) -> 4
, 2_0(6) -> 4
, 2_1(1) -> 208
, 2_1(2) -> 208
, 2_1(3) -> 208
, 2_1(4) -> 208
, 2_1(5) -> 208
, 2_1(6) -> 208
, 2_1(7) -> 208
, 2_1(19) -> 18
, 2_1(20) -> 269
, 2_1(21) -> 467
, 2_1(22) -> 21
, 2_1(23) -> 208
, 2_1(33) -> 32
, 2_1(35) -> 34
, 2_1(37) -> 1109
, 2_1(38) -> 208
, 2_1(44) -> 43
, 2_1(48) -> 47
, 2_1(49) -> 48
, 2_1(50) -> 49
, 2_1(51) -> 642
, 2_1(52) -> 208
, 2_1(53) -> 208
, 2_1(58) -> 57
, 2_1(65) -> 531
, 2_1(66) -> 1
, 2_1(66) -> 22
, 2_1(66) -> 934
, 2_1(66) -> 973
, 2_1(68) -> 67
, 2_1(76) -> 75
, 2_1(79) -> 843
, 2_1(80) -> 208
, 2_1(81) -> 80
, 2_1(97) -> 208
, 2_1(99) -> 98
, 2_1(107) -> 106
, 2_1(109) -> 208
, 2_1(112) -> 111
, 2_1(118) -> 117
, 2_1(120) -> 169
, 2_1(122) -> 121
, 2_1(132) -> 131
, 2_1(133) -> 193
, 2_1(134) -> 133
, 2_1(135) -> 97
, 2_1(147) -> 208
, 2_1(157) -> 156
, 2_1(166) -> 165
, 2_1(170) -> 39
, 2_1(178) -> 177
, 2_1(185) -> 184
, 2_1(189) -> 188
, 2_1(194) -> 193
, 2_1(195) -> 194
, 2_1(196) -> 208
, 2_1(208) -> 467
, 2_1(209) -> 96
, 2_1(221) -> 208
, 2_1(222) -> 208
, 2_1(226) -> 225
, 2_1(227) -> 226
, 2_1(233) -> 2
, 2_1(233) -> 20
, 2_1(233) -> 120
, 2_1(233) -> 257
, 2_1(233) -> 270
, 2_1(233) -> 436
, 2_1(233) -> 620
, 2_1(245) -> 244
, 2_1(246) -> 223
, 2_1(250) -> 249
, 2_1(257) -> 359
, 2_1(258) -> 208
, 2_1(263) -> 262
, 2_1(269) -> 1036
, 2_1(270) -> 269
, 2_1(273) -> 208
, 2_1(279) -> 278
, 2_1(284) -> 438
, 2_1(285) -> 208
, 2_1(295) -> 131
, 2_1(296) -> 221
, 2_1(297) -> 208
, 2_1(303) -> 302
, 2_1(311) -> 208
, 2_1(316) -> 315
, 2_1(323) -> 208
, 2_1(324) -> 323
, 2_1(325) -> 324
, 2_1(326) -> 325
, 2_1(334) -> 1161
, 2_1(335) -> 208
, 2_1(340) -> 339
, 2_1(342) -> 341
, 2_1(346) -> 642
, 2_1(347) -> 208
, 2_1(360) -> 359
, 2_1(361) -> 1109
, 2_1(362) -> 208
, 2_1(366) -> 365
, 2_1(369) -> 368
, 2_1(374) -> 521
, 2_1(376) -> 1125
, 2_1(380) -> 379
, 2_1(384) -> 383
, 2_1(385) -> 384
, 2_1(389) -> 763
, 2_1(390) -> 208
, 2_1(391) -> 390
, 2_1(392) -> 391
, 2_1(406) -> 405
, 2_1(409) -> 408
, 2_1(411) -> 410
, 2_1(425) -> 424
, 2_1(426) -> 425
, 2_1(429) -> 208
, 2_1(430) -> 208
, 2_1(439) -> 438
, 2_1(440) -> 208
, 2_1(455) -> 441
, 2_1(460) -> 459
, 2_1(465) -> 464
, 2_1(468) -> 208
, 2_1(474) -> 473
, 2_1(478) -> 500
, 2_1(480) -> 443
, 2_1(489) -> 488
, 2_1(490) -> 208
, 2_1(503) -> 502
, 2_1(522) -> 440
, 2_1(525) -> 524
, 2_1(531) -> 530
, 2_1(534) -> 533
, 2_1(544) -> 414
, 2_1(545) -> 208
, 2_1(556) -> 21
, 2_1(558) -> 208
, 2_1(560) -> 559
, 2_1(564) -> 563
, 2_1(570) -> 809
, 2_1(574) -> 573
, 2_1(577) -> 576
, 2_1(596) -> 208
, 2_1(605) -> 604
, 2_1(616) -> 615
, 2_1(618) -> 617
, 2_1(621) -> 208
, 2_1(625) -> 624
, 2_1(631) -> 630
, 2_1(632) -> 468
, 2_1(637) -> 636
, 2_1(643) -> 208
, 2_1(656) -> 131
, 2_1(657) -> 4
, 2_1(657) -> 21
, 2_1(657) -> 208
, 2_1(657) -> 467
, 2_1(657) -> 1109
, 2_1(662) -> 661
, 2_1(664) -> 663
, 2_1(666) -> 1002
, 2_1(668) -> 21
, 2_1(670) -> 21
, 2_1(673) -> 672
, 2_1(675) -> 674
, 2_1(683) -> 208
, 2_1(699) -> 698
, 2_1(702) -> 701
, 2_1(715) -> 714
, 2_1(717) -> 643
, 2_1(730) -> 208
, 2_1(731) -> 21
, 2_1(733) -> 208
, 2_1(746) -> 745
, 2_1(749) -> 748
, 2_1(755) -> 208
, 2_1(756) -> 755
, 2_1(760) -> 759
, 2_1(764) -> 208
, 2_1(776) -> 208
, 2_1(780) -> 779
, 2_1(781) -> 780
, 2_1(791) -> 790
, 2_1(793) -> 792
, 2_1(795) -> 794
, 2_1(797) -> 796
, 2_1(804) -> 803
, 2_1(805) -> 804
, 2_1(810) -> 208
, 2_1(815) -> 814
, 2_1(819) -> 818
, 2_1(820) -> 819
, 2_1(825) -> 824
, 2_1(826) -> 825
, 2_1(829) -> 828
, 2_1(833) -> 832
, 2_1(842) -> 841
, 2_1(844) -> 843
, 2_1(850) -> 849
, 2_1(862) -> 208
, 2_1(875) -> 874
, 2_1(876) -> 208
, 2_1(877) -> 208
, 2_1(887) -> 886
, 2_1(888) -> 21
, 2_1(897) -> 896
, 2_1(902) -> 901
, 2_1(911) -> 910
, 2_1(915) -> 914
, 2_1(922) -> 208
, 2_1(923) -> 922
, 2_1(929) -> 928
, 2_1(933) -> 932
, 2_1(942) -> 941
, 2_1(945) -> 944
, 2_1(958) -> 957
, 2_1(961) -> 960
, 2_1(963) -> 208
, 2_1(965) -> 964
, 2_1(969) -> 968
, 2_1(974) -> 6
, 2_1(974) -> 37
, 2_1(974) -> 845
, 2_1(975) -> 208
, 2_1(979) -> 978
, 2_1(981) -> 980
, 2_1(983) -> 208
, 2_1(984) -> 208
, 2_1(992) -> 1170
, 2_1(1003) -> 208
, 2_1(1012) -> 21
, 2_1(1015) -> 1014
, 2_1(1018) -> 1017
, 2_1(1021) -> 1020
, 2_1(1025) -> 21
, 2_1(1037) -> 208
, 2_1(1038) -> 208
, 2_1(1045) -> 1044
, 2_1(1051) -> 21
, 2_1(1054) -> 1053
, 2_1(1062) -> 1061
, 2_1(1077) -> 5
, 2_1(1077) -> 51
, 2_1(1077) -> 295
, 2_1(1078) -> 208
, 2_1(1079) -> 21
, 2_1(1097) -> 1096
, 2_1(1098) -> 1097
, 2_1(1099) -> 1098
, 2_1(1110) -> 1109
, 2_1(1112) -> 208
, 2_1(1117) -> 1116
, 2_1(1132) -> 1131
, 2_1(1135) -> 1134
, 2_1(1137) -> 1136
, 2_1(1138) -> 1137
, 2_1(1139) -> 208
, 2_1(1140) -> 208
, 2_1(1142) -> 1141
, 2_1(1151) -> 21
, 2_1(1153) -> 1152
, 2_1(1158) -> 1157
, 2_1(1162) -> 208
, 0_0(1) -> 5
, 0_0(2) -> 5
, 0_0(3) -> 5
, 0_0(4) -> 5
, 0_0(5) -> 5
, 0_0(6) -> 5
, 0_1(1) -> 51
, 0_1(2) -> 51
, 0_1(3) -> 51
, 0_1(4) -> 51
, 0_1(5) -> 51
, 0_1(6) -> 51
, 0_1(7) -> 51
, 0_1(8) -> 51
, 0_1(9) -> 8
, 0_1(12) -> 11
, 0_1(13) -> 12
, 0_1(17) -> 16
, 0_1(18) -> 17
, 0_1(21) -> 656
, 0_1(22) -> 346
, 0_1(23) -> 7
, 0_1(24) -> 23
, 0_1(25) -> 24
, 0_1(29) -> 28
, 0_1(31) -> 30
, 0_1(35) -> 489
, 0_1(36) -> 35
, 0_1(37) -> 310
, 0_1(38) -> 1
, 0_1(38) -> 22
, 0_1(38) -> 934
, 0_1(38) -> 1111
, 0_1(39) -> 38
, 0_1(42) -> 41
, 0_1(45) -> 44
, 0_1(49) -> 887
, 0_1(51) -> 65
, 0_1(52) -> 51
, 0_1(53) -> 51
, 0_1(54) -> 51
, 0_1(60) -> 59
, 0_1(62) -> 61
, 0_1(64) -> 63
, 0_1(65) -> 389
, 0_1(66) -> 51
, 0_1(67) -> 66
, 0_1(70) -> 69
, 0_1(71) -> 70
, 0_1(77) -> 76
, 0_1(79) -> 666
, 0_1(80) -> 51
, 0_1(81) -> 51
, 0_1(87) -> 86
, 0_1(88) -> 87
, 0_1(92) -> 91
, 0_1(93) -> 92
, 0_1(94) -> 93
, 0_1(95) -> 108
, 0_1(96) -> 51
, 0_1(97) -> 51
, 0_1(106) -> 105
, 0_1(108) -> 107
, 0_1(109) -> 51
, 0_1(111) -> 110
, 0_1(113) -> 112
, 0_1(116) -> 115
, 0_1(119) -> 1138
, 0_1(120) -> 119
, 0_1(121) -> 51
, 0_1(123) -> 122
, 0_1(127) -> 126
, 0_1(128) -> 127
, 0_1(129) -> 128
, 0_1(133) -> 132
, 0_1(134) -> 245
, 0_1(140) -> 139
, 0_1(142) -> 141
, 0_1(143) -> 142
, 0_1(144) -> 143
, 0_1(145) -> 144
, 0_1(149) -> 148
, 0_1(151) -> 150
, 0_1(152) -> 151
, 0_1(159) -> 51
, 0_1(163) -> 162
, 0_1(164) -> 163
, 0_1(167) -> 166
, 0_1(171) -> 170
, 0_1(174) -> 173
, 0_1(179) -> 178
, 0_1(180) -> 179
, 0_1(181) -> 180
, 0_1(182) -> 51
, 0_1(183) -> 182
, 0_1(187) -> 186
, 0_1(188) -> 187
, 0_1(190) -> 189
, 0_1(191) -> 190
, 0_1(196) -> 96
, 0_1(197) -> 196
, 0_1(198) -> 197
, 0_1(199) -> 198
, 0_1(206) -> 205
, 0_1(207) -> 206
, 0_1(208) -> 295
, 0_1(210) -> 209
, 0_1(218) -> 217
, 0_1(219) -> 218
, 0_1(221) -> 51
, 0_1(222) -> 51
, 0_1(229) -> 228
, 0_1(230) -> 229
, 0_1(231) -> 76
, 0_1(232) -> 255
, 0_1(233) -> 51
, 0_1(234) -> 233
, 0_1(235) -> 234
, 0_1(238) -> 237
, 0_1(241) -> 240
, 0_1(245) -> 754
, 0_1(251) -> 250
, 0_1(252) -> 251
, 0_1(253) -> 252
, 0_1(254) -> 253
, 0_1(255) -> 254
, 0_1(256) -> 255
, 0_1(258) -> 51
, 0_1(259) -> 51
, 0_1(262) -> 261
, 0_1(264) -> 263
, 0_1(265) -> 264
, 0_1(266) -> 265
, 0_1(267) -> 266
, 0_1(269) -> 268
, 0_1(271) -> 51
, 0_1(272) -> 51
, 0_1(273) -> 51
, 0_1(275) -> 274
, 0_1(287) -> 286
, 0_1(288) -> 287
, 0_1(295) -> 454
, 0_1(296) -> 51
, 0_1(297) -> 51
, 0_1(298) -> 297
, 0_1(299) -> 298
, 0_1(302) -> 301
, 0_1(305) -> 304
, 0_1(306) -> 305
, 0_1(307) -> 306
, 0_1(310) -> 953
, 0_1(311) -> 51
, 0_1(312) -> 51
, 0_1(313) -> 312
, 0_1(319) -> 318
, 0_1(322) -> 321
, 0_1(323) -> 2
, 0_1(323) -> 120
, 0_1(323) -> 257
, 0_1(324) -> 51
, 0_1(328) -> 327
, 0_1(331) -> 330
, 0_1(332) -> 331
, 0_1(337) -> 336
, 0_1(339) -> 338
, 0_1(341) -> 340
, 0_1(343) -> 342
, 0_1(345) -> 344
, 0_1(346) -> 254
, 0_1(347) -> 51
, 0_1(351) -> 350
, 0_1(354) -> 353
, 0_1(355) -> 354
, 0_1(359) -> 358
, 0_1(361) -> 775
, 0_1(362) -> 51
, 0_1(363) -> 362
, 0_1(364) -> 363
, 0_1(367) -> 366
, 0_1(372) -> 371
, 0_1(373) -> 372
, 0_1(374) -> 373
, 0_1(376) -> 375
, 0_1(377) -> 272
, 0_1(386) -> 385
, 0_1(388) -> 387
, 0_1(389) -> 608
, 0_1(390) -> 51
, 0_1(391) -> 51
, 0_1(393) -> 392
, 0_1(394) -> 393
, 0_1(395) -> 394
, 0_1(399) -> 398
, 0_1(400) -> 399
, 0_1(402) -> 401
, 0_1(405) -> 391
, 0_1(408) -> 407
, 0_1(414) -> 51
, 0_1(415) -> 51
, 0_1(420) -> 419
, 0_1(421) -> 420
, 0_1(422) -> 421
, 0_1(423) -> 422
, 0_1(427) -> 426
, 0_1(429) -> 51
, 0_1(430) -> 429
, 0_1(440) -> 3
, 0_1(440) -> 36
, 0_1(440) -> 94
, 0_1(440) -> 134
, 0_1(440) -> 195
, 0_1(440) -> 376
, 0_1(440) -> 428
, 0_1(440) -> 653
, 0_1(441) -> 440
, 0_1(442) -> 441
, 0_1(449) -> 448
, 0_1(454) -> 453
, 0_1(456) -> 455
, 0_1(463) -> 462
, 0_1(464) -> 463
, 0_1(467) -> 466
, 0_1(468) -> 390
, 0_1(472) -> 471
, 0_1(473) -> 472
, 0_1(478) -> 477
, 0_1(479) -> 554
, 0_1(481) -> 480
, 0_1(484) -> 483
, 0_1(486) -> 485
, 0_1(487) -> 486
, 0_1(488) -> 487
, 0_1(490) -> 414
, 0_1(491) -> 490
, 0_1(492) -> 491
, 0_1(493) -> 492
, 0_1(495) -> 494
, 0_1(496) -> 495
, 0_1(498) -> 497
, 0_1(499) -> 498
, 0_1(504) -> 503
, 0_1(505) -> 504
, 0_1(506) -> 505
, 0_1(509) -> 508
, 0_1(513) -> 456
, 0_1(514) -> 513
, 0_1(520) -> 519
, 0_1(522) -> 51
, 0_1(524) -> 523
, 0_1(529) -> 528
, 0_1(541) -> 540
, 0_1(542) -> 541
, 0_1(543) -> 542
, 0_1(545) -> 51
, 0_1(549) -> 548
, 0_1(550) -> 549
, 0_1(552) -> 551
, 0_1(553) -> 552
, 0_1(554) -> 553
, 0_1(555) -> 554
, 0_1(556) -> 51
, 0_1(557) -> 51
, 0_1(558) -> 557
, 0_1(559) -> 558
, 0_1(566) -> 565
, 0_1(567) -> 566
, 0_1(570) -> 569
, 0_1(572) -> 571
, 0_1(573) -> 572
, 0_1(575) -> 574
, 0_1(576) -> 575
, 0_1(579) -> 578
, 0_1(581) -> 580
, 0_1(584) -> 583
, 0_1(585) -> 573
, 0_1(592) -> 591
, 0_1(596) -> 51
, 0_1(600) -> 599
, 0_1(601) -> 600
, 0_1(606) -> 605
, 0_1(607) -> 606
, 0_1(610) -> 609
, 0_1(611) -> 610
, 0_1(613) -> 612
, 0_1(614) -> 613
, 0_1(617) -> 616
, 0_1(620) -> 619
, 0_1(621) -> 51
, 0_1(622) -> 51
, 0_1(628) -> 627
, 0_1(634) -> 633
, 0_1(636) -> 635
, 0_1(638) -> 637
, 0_1(643) -> 51
, 0_1(644) -> 51
, 0_1(650) -> 649
, 0_1(656) -> 454
, 0_1(657) -> 51
, 0_1(658) -> 657
, 0_1(659) -> 658
, 0_1(660) -> 659
, 0_1(666) -> 665
, 0_1(667) -> 666
, 0_1(668) -> 51
, 0_1(669) -> 51
, 0_1(670) -> 51
, 0_1(679) -> 678
, 0_1(680) -> 679
, 0_1(681) -> 680
, 0_1(682) -> 51
, 0_1(683) -> 682
, 0_1(687) -> 686
, 0_1(693) -> 692
, 0_1(694) -> 693
, 0_1(695) -> 694
, 0_1(696) -> 51
, 0_1(705) -> 704
, 0_1(707) -> 51
, 0_1(716) -> 715
, 0_1(717) -> 51
, 0_1(718) -> 717
, 0_1(719) -> 718
, 0_1(720) -> 719
, 0_1(725) -> 724
, 0_1(726) -> 725
, 0_1(727) -> 726
, 0_1(728) -> 727
, 0_1(730) -> 51
, 0_1(731) -> 51
, 0_1(732) -> 51
, 0_1(733) -> 51
, 0_1(734) -> 733
, 0_1(735) -> 734
, 0_1(736) -> 735
, 0_1(737) -> 736
, 0_1(741) -> 668
, 0_1(743) -> 742
, 0_1(744) -> 743
, 0_1(747) -> 746
, 0_1(748) -> 747
, 0_1(752) -> 751
, 0_1(755) -> 51
, 0_1(762) -> 761
, 0_1(763) -> 762
, 0_1(764) -> 51
, 0_1(765) -> 51
, 0_1(766) -> 765
, 0_1(770) -> 769
, 0_1(772) -> 771
, 0_1(776) -> 4
, 0_1(776) -> 18
, 0_1(776) -> 49
, 0_1(776) -> 133
, 0_1(776) -> 208
, 0_1(776) -> 1109
, 0_1(776) -> 1125
, 0_1(778) -> 777
, 0_1(779) -> 778
, 0_1(785) -> 784
, 0_1(789) -> 51
, 0_1(792) -> 791
, 0_1(803) -> 802
, 0_1(806) -> 805
, 0_1(807) -> 806
, 0_1(813) -> 812
, 0_1(816) -> 815
, 0_1(817) -> 816
, 0_1(821) -> 820
, 0_1(822) -> 821
, 0_1(828) -> 827
, 0_1(830) -> 829
, 0_1(831) -> 830
, 0_1(837) -> 836
, 0_1(839) -> 838
, 0_1(855) -> 854
, 0_1(858) -> 857
, 0_1(859) -> 858
, 0_1(861) -> 860
, 0_1(862) -> 51
, 0_1(865) -> 864
, 0_1(870) -> 869
, 0_1(872) -> 871
, 0_1(873) -> 872
, 0_1(874) -> 873
, 0_1(876) -> 51
, 0_1(877) -> 876
, 0_1(888) -> 51
, 0_1(889) -> 888
, 0_1(891) -> 890
, 0_1(893) -> 892
, 0_1(895) -> 894
, 0_1(898) -> 897
, 0_1(905) -> 904
, 0_1(906) -> 905
, 0_1(909) -> 908
, 0_1(910) -> 909
, 0_1(913) -> 912
, 0_1(914) -> 810
, 0_1(918) -> 917
, 0_1(920) -> 919
, 0_1(922) -> 51
, 0_1(924) -> 923
, 0_1(927) -> 926
, 0_1(928) -> 927
, 0_1(932) -> 931
, 0_1(935) -> 683
, 0_1(936) -> 935
, 0_1(937) -> 936
, 0_1(940) -> 939
, 0_1(941) -> 940
, 0_1(944) -> 943
, 0_1(946) -> 684
, 0_1(947) -> 946
, 0_1(951) -> 950
, 0_1(952) -> 551
, 0_1(953) -> 952
, 0_1(957) -> 956
, 0_1(963) -> 51
, 0_1(964) -> 51
, 0_1(966) -> 965
, 0_1(968) -> 967
, 0_1(971) -> 970
, 0_1(973) -> 970
, 0_1(974) -> 51
, 0_1(975) -> 51
, 0_1(977) -> 976
, 0_1(978) -> 977
, 0_1(983) -> 51
, 0_1(984) -> 51
, 0_1(985) -> 984
, 0_1(987) -> 986
, 0_1(988) -> 987
, 0_1(992) -> 991
, 0_1(998) -> 997
, 0_1(999) -> 998
, 0_1(1001) -> 1000
, 0_1(1002) -> 1001
, 0_1(1003) -> 6
, 0_1(1003) -> 37
, 0_1(1003) -> 79
, 0_1(1003) -> 357
, 0_1(1003) -> 681
, 0_1(1003) -> 861
, 0_1(1008) -> 1007
, 0_1(1011) -> 1010
, 0_1(1012) -> 983
, 0_1(1013) -> 1012
, 0_1(1022) -> 1021
, 0_1(1023) -> 1022
, 0_1(1027) -> 1026
, 0_1(1031) -> 1030
, 0_1(1032) -> 1031
, 0_1(1034) -> 1033
, 0_1(1035) -> 1034
, 0_1(1037) -> 51
, 0_1(1038) -> 51
, 0_1(1044) -> 1043
, 0_1(1048) -> 1047
, 0_1(1049) -> 1048
, 0_1(1051) -> 5
, 0_1(1051) -> 51
, 0_1(1051) -> 119
, 0_1(1051) -> 295
, 0_1(1052) -> 1051
, 0_1(1055) -> 1054
, 0_1(1056) -> 1055
, 0_1(1059) -> 1058
, 0_1(1060) -> 1059
, 0_1(1064) -> 1063
, 0_1(1065) -> 1052
, 0_1(1068) -> 1067
, 0_1(1075) -> 1074
, 0_1(1077) -> 51
, 0_1(1078) -> 51
, 0_1(1079) -> 1078
, 0_1(1080) -> 1079
, 0_1(1083) -> 1082
, 0_1(1084) -> 1083
, 0_1(1087) -> 1086
, 0_1(1094) -> 1093
, 0_1(1104) -> 1103
, 0_1(1107) -> 1106
, 0_1(1112) -> 51
, 0_1(1113) -> 51
, 0_1(1114) -> 1113
, 0_1(1115) -> 1114
, 0_1(1118) -> 1117
, 0_1(1119) -> 1118
, 0_1(1121) -> 1120
, 0_1(1124) -> 1123
, 0_1(1126) -> 51
, 0_1(1127) -> 1126
, 0_1(1128) -> 1127
, 0_1(1133) -> 1132
, 0_1(1137) -> 105
, 0_1(1139) -> 51
, 0_1(1140) -> 51
, 0_1(1141) -> 1140
, 0_1(1143) -> 1142
, 0_1(1145) -> 1144
, 0_1(1151) -> 51
, 0_1(1152) -> 51
, 0_1(1153) -> 51
, 0_1(1155) -> 1154
, 0_1(1156) -> 1155
, 0_1(1159) -> 1158
, 0_1(1162) -> 51
, 0_1(1163) -> 1162
, 0_1(1164) -> 1163
, 0_1(1168) -> 1167
, 0_1(1169) -> 1168
, 1_0(1) -> 6
, 1_0(2) -> 6
, 1_0(3) -> 6
, 1_0(4) -> 6
, 1_0(5) -> 6
, 1_0(6) -> 6
, 1_1(1) -> 37
, 1_1(2) -> 37
, 1_1(3) -> 37
, 1_1(4) -> 37
, 1_1(5) -> 37
, 1_1(6) -> 37
, 1_1(7) -> 1
, 1_1(7) -> 22
, 1_1(7) -> 1111
, 1_1(8) -> 37
, 1_1(22) -> 361
, 1_1(35) -> 413
, 1_1(37) -> 79
, 1_1(38) -> 37
, 1_1(39) -> 37
, 1_1(47) -> 46
, 1_1(51) -> 681
, 1_1(52) -> 37
, 1_1(53) -> 52
, 1_1(54) -> 53
, 1_1(64) -> 158
, 1_1(65) -> 993
, 1_1(66) -> 37
, 1_1(73) -> 72
, 1_1(75) -> 74
, 1_1(79) -> 667
, 1_1(80) -> 37
, 1_1(83) -> 82
, 1_1(96) -> 37
, 1_1(97) -> 37
, 1_1(103) -> 102
, 1_1(104) -> 103
, 1_1(109) -> 37
, 1_1(110) -> 109
, 1_1(115) -> 114
, 1_1(119) -> 595
, 1_1(120) -> 845
, 1_1(125) -> 124
, 1_1(132) -> 861
, 1_1(134) -> 479
, 1_1(137) -> 136
, 1_1(139) -> 138
, 1_1(145) -> 1150
, 1_1(148) -> 147
, 1_1(155) -> 154
, 1_1(158) -> 157
, 1_1(159) -> 37
, 1_1(176) -> 175
, 1_1(182) -> 37
, 1_1(195) -> 555
, 1_1(207) -> 512
, 1_1(208) -> 570
, 1_1(209) -> 37
, 1_1(212) -> 211
, 1_1(214) -> 213
, 1_1(221) -> 37
, 1_1(222) -> 37
, 1_1(224) -> 223
, 1_1(233) -> 37
, 1_1(258) -> 221
, 1_1(259) -> 37
, 1_1(271) -> 37
, 1_1(272) -> 37
, 1_1(273) -> 37
, 1_1(277) -> 276
, 1_1(283) -> 695
, 1_1(284) -> 853
, 1_1(290) -> 289
, 1_1(291) -> 290
, 1_1(294) -> 293
, 1_1(295) -> 861
, 1_1(296) -> 37
, 1_1(297) -> 37
, 1_1(299) -> 37
, 1_1(304) -> 303
, 1_1(308) -> 307
, 1_1(310) -> 962
, 1_1(311) -> 2
, 1_1(311) -> 120
, 1_1(311) -> 257
, 1_1(311) -> 360
, 1_1(312) -> 37
, 1_1(317) -> 316
, 1_1(320) -> 319
, 1_1(323) -> 37
, 1_1(334) -> 333
, 1_1(346) -> 404
, 1_1(347) -> 37
, 1_1(348) -> 347
, 1_1(353) -> 352
, 1_1(358) -> 357
, 1_1(362) -> 37
, 1_1(364) -> 37
, 1_1(371) -> 370
, 1_1(375) -> 374
, 1_1(377) -> 37
, 1_1(378) -> 377
, 1_1(381) -> 380
, 1_1(382) -> 381
, 1_1(389) -> 993
, 1_1(390) -> 37
, 1_1(391) -> 37
, 1_1(401) -> 400
, 1_1(404) -> 403
, 1_1(413) -> 412
, 1_1(414) -> 37
, 1_1(415) -> 37
, 1_1(417) -> 416
, 1_1(429) -> 3
, 1_1(429) -> 134
, 1_1(429) -> 231
, 1_1(440) -> 37
, 1_1(441) -> 37
, 1_1(443) -> 442
, 1_1(446) -> 445
, 1_1(448) -> 447
, 1_1(452) -> 451
, 1_1(453) -> 452
, 1_1(461) -> 460
, 1_1(462) -> 461
, 1_1(466) -> 465
, 1_1(471) -> 470
, 1_1(476) -> 475
, 1_1(479) -> 478
, 1_1(497) -> 496
, 1_1(500) -> 499
, 1_1(501) -> 440
, 1_1(502) -> 501
, 1_1(510) -> 509
, 1_1(511) -> 510
, 1_1(517) -> 516
, 1_1(519) -> 518
, 1_1(526) -> 525
, 1_1(530) -> 1135
, 1_1(535) -> 534
, 1_1(538) -> 537
, 1_1(540) -> 539
, 1_1(544) -> 37
, 1_1(545) -> 37
, 1_1(546) -> 545
, 1_1(556) -> 37
, 1_1(557) -> 37
, 1_1(571) -> 556
, 1_1(587) -> 586
, 1_1(589) -> 588
, 1_1(590) -> 589
, 1_1(596) -> 37
, 1_1(597) -> 596
, 1_1(602) -> 601
, 1_1(604) -> 603
, 1_1(607) -> 631
, 1_1(619) -> 618
, 1_1(621) -> 390
, 1_1(622) -> 37
, 1_1(623) -> 622
, 1_1(624) -> 623
, 1_1(626) -> 625
, 1_1(630) -> 629
, 1_1(633) -> 632
, 1_1(643) -> 4
, 1_1(643) -> 21
, 1_1(643) -> 169
, 1_1(643) -> 208
, 1_1(643) -> 438
, 1_1(643) -> 467
, 1_1(644) -> 37
, 1_1(645) -> 644
, 1_1(646) -> 645
, 1_1(648) -> 647
, 1_1(649) -> 648
, 1_1(655) -> 654
, 1_1(656) -> 861
, 1_1(657) -> 37
, 1_1(668) -> 37
, 1_1(669) -> 37
, 1_1(670) -> 37
, 1_1(676) -> 675
, 1_1(681) -> 403
, 1_1(682) -> 37
, 1_1(688) -> 687
, 1_1(696) -> 643
, 1_1(706) -> 37
, 1_1(708) -> 707
, 1_1(709) -> 708
, 1_1(712) -> 711
, 1_1(713) -> 712
, 1_1(723) -> 722
, 1_1(730) -> 1
, 1_1(731) -> 730
, 1_1(732) -> 37
, 1_1(733) -> 732
, 1_1(734) -> 37
, 1_1(739) -> 738
, 1_1(741) -> 37
, 1_1(751) -> 750
, 1_1(755) -> 37
, 1_1(764) -> 37
, 1_1(765) -> 37
, 1_1(768) -> 767
, 1_1(769) -> 768
, 1_1(776) -> 37
, 1_1(782) -> 781
, 1_1(786) -> 785
, 1_1(788) -> 37
, 1_1(789) -> 37
, 1_1(794) -> 793
, 1_1(798) -> 668
, 1_1(799) -> 798
, 1_1(801) -> 800
, 1_1(802) -> 801
, 1_1(834) -> 833
, 1_1(836) -> 835
, 1_1(845) -> 844
, 1_1(847) -> 846
, 1_1(851) -> 850
, 1_1(853) -> 852
, 1_1(856) -> 855
, 1_1(862) -> 37
, 1_1(868) -> 867
, 1_1(869) -> 868
, 1_1(871) -> 870
, 1_1(876) -> 37
, 1_1(878) -> 877
, 1_1(880) -> 879
, 1_1(881) -> 880
, 1_1(885) -> 884
, 1_1(886) -> 885
, 1_1(888) -> 37
, 1_1(889) -> 37
, 1_1(900) -> 899
, 1_1(901) -> 788
, 1_1(912) -> 911
, 1_1(917) -> 916
, 1_1(922) -> 764
, 1_1(934) -> 933
, 1_1(939) -> 938
, 1_1(943) -> 942
, 1_1(949) -> 948
, 1_1(952) -> 951
, 1_1(954) -> 37
, 1_1(955) -> 954
, 1_1(963) -> 6
, 1_1(963) -> 37
, 1_1(963) -> 361
, 1_1(963) -> 933
, 1_1(965) -> 37
, 1_1(973) -> 972
, 1_1(974) -> 37
, 1_1(975) -> 974
, 1_1(980) -> 979
, 1_1(983) -> 37
, 1_1(984) -> 37
, 1_1(1003) -> 37
, 1_1(1004) -> 37
, 1_1(1005) -> 1004
, 1_1(1006) -> 1005
, 1_1(1007) -> 1006
, 1_1(1013) -> 37
, 1_1(1019) -> 1018
, 1_1(1026) -> 1025
, 1_1(1028) -> 1027
, 1_1(1030) -> 1029
, 1_1(1037) -> 37
, 1_1(1038) -> 37
, 1_1(1039) -> 1038
, 1_1(1042) -> 1041
, 1_1(1043) -> 1042
, 1_1(1051) -> 37
, 1_1(1052) -> 37
, 1_1(1058) -> 1057
, 1_1(1063) -> 1062
, 1_1(1066) -> 1065
, 1_1(1067) -> 1066
, 1_1(1069) -> 1068
, 1_1(1074) -> 1073
, 1_1(1076) -> 1075
, 1_1(1077) -> 37
, 1_1(1078) -> 1077
, 1_1(1082) -> 1081
, 1_1(1085) -> 1084
, 1_1(1090) -> 1051
, 1_1(1091) -> 1090
, 1_1(1100) -> 37
, 1_1(1103) -> 1102
, 1_1(1106) -> 1105
, 1_1(1111) -> 1110
, 1_1(1112) -> 5
, 1_1(1112) -> 51
, 1_1(1112) -> 310
, 1_1(1112) -> 775
, 1_1(1113) -> 37
, 1_1(1126) -> 1112
, 1_1(1136) -> 1135
, 1_1(1139) -> 37
, 1_1(1140) -> 37
, 1_1(1150) -> 1149
, 1_1(1151) -> 37
, 1_1(1152) -> 37
, 1_1(1153) -> 37
, 1_1(1162) -> 1139
, 1_1(1163) -> 37
, 1_1(1166) -> 1165
, 1_1(1167) -> 1166
, 1_1(1170) -> 1169}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(5(2(2(2(5(3(2(4(0(5(x1)))))))))))) ->
1(3(0(4(4(0(0(4(3(5(0(0(2(3(4(2(5(x1)))))))))))))))))
, 5(5(4(3(3(5(2(2(4(3(5(4(x1)))))))))))) ->
1(0(0(0(5(4(5(0(3(0(3(2(4(2(0(3(1(x1)))))))))))))))))
, 5(5(2(5(2(4(3(2(3(5(5(3(x1)))))))))))) ->
0(0(4(4(0(3(2(0(5(1(2(2(2(3(0(x1)))))))))))))))
, 5(3(2(3(5(1(2(2(2(2(2(1(x1)))))))))))) ->
3(1(1(3(5(4(2(3(0(4(0(5(0(3(0(0(x1))))))))))))))))
, 5(2(3(1(5(2(5(5(5(0(3(5(x1)))))))))))) ->
2(0(2(3(0(0(5(1(3(1(2(0(3(5(1(1(x1))))))))))))))))
, 5(2(2(5(5(2(2(4(1(4(3(4(x1)))))))))))) ->
5(2(3(1(3(3(3(0(0(5(3(4(0(0(0(3(4(5(x1))))))))))))))))))
, 5(2(2(4(3(3(5(5(5(4(1(1(x1)))))))))))) ->
4(3(3(2(3(4(5(1(1(4(0(2(0(0(4(5(x1))))))))))))))))
, 5(2(2(2(2(2(5(0(3(0(5(1(x1)))))))))))) ->
2(5(1(0(2(0(4(1(0(4(2(4(0(4(x1))))))))))))))
, 5(2(1(5(4(1(1(1(5(4(2(4(x1)))))))))))) ->
2(4(2(0(3(1(4(0(0(0(3(5(2(0(2(3(x1))))))))))))))))
, 5(2(1(4(1(2(3(2(0(1(4(2(x1)))))))))))) ->
4(3(2(5(1(5(1(0(5(0(0(0(0(5(3(1(1(x1)))))))))))))))))
, 5(1(5(5(2(2(5(5(2(1(3(3(x1)))))))))))) ->
2(3(1(0(5(0(0(3(4(1(4(2(1(1(3(0(0(x1)))))))))))))))))
, 5(1(5(2(5(4(0(1(3(5(4(2(x1)))))))))))) ->
3(1(3(5(3(4(0(0(4(2(0(3(3(2(4(x1)))))))))))))))
, 5(1(4(1(2(5(3(1(3(0(3(5(x1)))))))))))) ->
0(0(2(0(5(3(0(5(1(5(2(0(0(0(4(0(x1))))))))))))))))
, 5(1(1(5(2(5(5(0(2(2(5(4(x1)))))))))))) ->
3(4(0(3(2(5(0(0(2(0(0(4(5(2(2(3(3(x1)))))))))))))))))
, 5(0(4(3(3(2(0(1(1(2(4(3(x1)))))))))))) ->
4(0(0(0(0(5(3(4(3(3(3(0(0(3(2(x1)))))))))))))))
, 5(0(4(1(5(5(4(1(2(5(2(1(x1)))))))))))) ->
4(2(0(5(1(3(1(4(3(5(0(0(3(5(0(3(2(x1)))))))))))))))))
, 4(5(4(4(5(2(2(1(4(2(2(4(x1)))))))))))) ->
3(5(5(1(3(2(2(3(0(0(4(3(5(4(x1))))))))))))))
, 4(4(2(5(0(2(5(2(5(1(5(2(x1)))))))))))) ->
2(0(0(3(5(0(5(3(0(4(4(4(2(0(3(x1)))))))))))))))
, 4(4(1(2(2(5(3(1(2(4(1(5(x1)))))))))))) ->
3(5(5(2(3(3(5(2(0(0(0(0(0(0(5(4(1(x1)))))))))))))))))
, 4(4(1(2(2(5(2(1(4(4(2(5(x1)))))))))))) ->
3(1(3(4(4(0(2(0(0(0(0(3(0(2(4(2(x1))))))))))))))))
, 4(3(5(2(2(5(2(5(5(5(2(4(x1)))))))))))) ->
4(5(4(4(0(3(1(3(2(4(3(3(3(3(5(0(4(x1)))))))))))))))))
, 4(2(5(2(4(1(2(0(5(5(3(5(x1)))))))))))) ->
2(3(5(0(0(3(1(1(5(5(1(4(0(2(x1))))))))))))))
, 4(2(3(4(1(2(5(4(2(2(4(5(x1)))))))))))) ->
3(2(4(0(0(5(3(0(2(1(0(0(0(1(4(4(0(1(x1))))))))))))))))))
, 4(1(5(5(4(1(2(2(5(4(4(4(x1)))))))))))) ->
1(3(0(5(4(2(1(5(0(1(3(0(4(3(0(x1)))))))))))))))
, 4(1(4(2(1(4(0(2(2(2(2(2(x1)))))))))))) ->
0(2(2(2(3(0(3(3(0(0(3(1(3(3(1(x1)))))))))))))))
, 4(1(2(5(2(2(2(4(3(4(4(0(x1)))))))))))) ->
0(5(4(0(5(0(2(0(2(0(4(0(4(0(5(x1)))))))))))))))
, 4(1(2(4(1(2(5(5(2(2(4(1(x1)))))))))))) ->
2(5(1(3(4(0(5(1(0(0(3(3(1(0(2(4(1(5(x1))))))))))))))))))
, 4(1(1(2(0(4(1(5(4(4(4(1(x1)))))))))))) ->
3(3(0(0(3(2(0(4(2(3(1(0(0(0(1(0(3(4(x1))))))))))))))))))
, 4(0(4(1(5(4(1(5(5(2(2(1(x1)))))))))))) ->
4(5(0(1(3(2(1(1(3(2(2(0(5(0(5(0(0(0(x1))))))))))))))))))
, 3(5(5(5(5(1(1(4(1(4(5(1(x1)))))))))))) ->
3(2(2(0(0(0(3(5(4(0(0(1(0(4(1(1(0(5(x1))))))))))))))))))
, 3(5(5(2(2(3(5(2(4(3(0(0(x1)))))))))))) ->
3(2(0(2(3(0(2(5(2(3(1(1(0(3(1(x1)))))))))))))))
, 3(5(4(3(1(5(5(4(1(2(2(5(x1)))))))))))) ->
4(5(3(1(3(3(0(0(0(0(4(2(2(0(3(3(4(0(x1))))))))))))))))))
, 3(5(2(5(2(2(4(5(5(5(3(1(x1)))))))))))) ->
1(0(3(5(3(5(3(5(4(4(2(5(0(1(x1))))))))))))))
, 3(4(5(3(3(2(5(2(4(1(0(5(x1)))))))))))) ->
0(0(0(1(4(4(1(3(1(0(4(4(1(1(0(0(0(2(x1))))))))))))))))))
, 3(4(4(5(3(1(2(2(5(4(4(1(x1)))))))))))) ->
0(0(2(0(5(3(4(2(1(1(0(0(2(1(0(2(2(x1)))))))))))))))))
, 3(4(2(0(2(4(1(5(5(2(5(2(x1)))))))))))) ->
3(0(5(5(1(0(0(2(5(1(4(0(1(1(3(x1)))))))))))))))
, 3(4(1(5(2(3(5(3(1(1(5(4(x1)))))))))))) ->
0(0(0(1(2(0(5(3(0(3(0(0(0(2(0(0(3(1(x1))))))))))))))))))
, 3(4(1(2(1(5(0(1(0(2(4(5(x1)))))))))))) ->
4(0(0(0(0(5(0(0(1(0(0(1(2(1(1(3(x1))))))))))))))))
, 3(4(0(5(3(2(1(2(2(2(2(3(x1)))))))))))) ->
0(1(1(2(0(0(0(5(3(0(1(1(5(1(3(2(x1))))))))))))))))
, 3(4(0(2(5(4(0(1(4(1(4(5(x1)))))))))))) ->
0(0(2(0(0(0(4(4(1(5(1(0(4(2(1(0(3(4(x1))))))))))))))))))
, 3(3(5(1(4(1(3(1(5(4(2(5(x1)))))))))))) ->
0(2(5(0(2(1(4(4(0(4(2(2(0(0(x1))))))))))))))
, 3(3(4(3(5(2(4(2(2(2(5(0(x1)))))))))))) ->
3(2(3(4(2(1(3(5(1(3(1(0(0(0(5(3(x1))))))))))))))))
, 3(3(4(3(4(1(3(3(2(5(4(3(x1)))))))))))) ->
4(2(5(1(3(5(0(0(3(0(0(0(0(1(3(3(x1))))))))))))))))
, 3(2(5(5(3(1(2(4(4(2(5(2(x1)))))))))))) ->
5(3(0(0(2(4(5(4(2(3(0(0(3(4(0(1(2(x1)))))))))))))))))
, 3(2(5(4(3(5(1(2(5(0(4(4(x1)))))))))))) ->
5(1(0(0(2(0(0(2(3(0(5(0(4(4(0(5(3(1(x1))))))))))))))))))
, 3(2(2(5(1(1(2(2(3(2(4(5(x1)))))))))))) ->
5(1(0(0(0(3(1(3(1(1(5(0(4(5(3(1(0(4(x1))))))))))))))))))
, 3(1(5(5(2(2(1(0(5(5(5(3(x1)))))))))))) ->
4(3(1(4(4(0(0(1(3(1(2(0(0(3(0(0(0(0(x1))))))))))))))))))
, 3(1(3(0(2(5(2(2(2(5(4(1(x1)))))))))))) ->
0(0(4(0(0(4(0(0(5(2(0(2(1(0(4(4(x1))))))))))))))))
, 3(0(5(5(2(5(4(1(1(2(5(3(x1)))))))))))) ->
3(1(3(1(1(2(1(4(0(5(1(2(1(3(0(0(0(0(x1))))))))))))))))))
, 3(0(4(3(2(1(2(2(2(1(4(1(x1)))))))))))) ->
3(0(2(1(0(5(0(2(0(5(4(4(3(2(0(5(x1))))))))))))))))
, 2(5(5(4(3(5(1(2(4(1(2(3(x1)))))))))))) ->
1(3(1(1(3(1(1(0(4(3(5(3(1(3(0(2(5(x1)))))))))))))))))
, 2(5(5(0(1(1(5(0(2(0(5(5(x1)))))))))))) ->
2(0(0(0(4(2(4(2(5(0(0(1(1(1(x1))))))))))))))
, 2(5(2(5(2(4(2(4(1(1(1(5(x1)))))))))))) ->
5(3(5(5(3(2(3(2(1(3(5(0(0(0(1(0(x1))))))))))))))))
, 2(5(2(2(5(4(5(1(2(5(4(3(x1)))))))))))) ->
4(0(5(3(5(0(1(3(3(3(5(0(0(0(1(3(5(0(x1))))))))))))))))))
, 2(5(0(1(4(3(1(4(1(4(1(1(x1)))))))))))) ->
1(1(3(3(2(4(4(2(4(5(0(5(3(0(0(x1)))))))))))))))
, 2(4(3(1(5(2(2(2(4(1(5(1(x1)))))))))))) ->
5(4(3(1(1(4(5(1(1(4(2(0(4(0(1(1(1(x1)))))))))))))))))
, 2(4(3(0(5(2(5(5(2(4(4(3(x1)))))))))))) ->
1(2(0(0(0(4(4(1(5(0(0(0(0(3(5(4(2(x1)))))))))))))))))
, 2(4(2(5(2(5(2(1(4(2(2(3(x1)))))))))))) ->
5(5(1(3(1(0(0(0(0(3(1(3(5(2(0(0(4(5(x1))))))))))))))))))
, 2(4(2(0(1(3(4(3(5(1(5(4(x1)))))))))))) ->
5(0(4(0(0(3(2(0(0(2(3(1(0(3(4(0(0(3(x1))))))))))))))))))
, 2(4(1(5(4(2(2(0(1(1(4(5(x1)))))))))))) ->
4(3(2(4(5(3(2(3(0(0(2(0(0(0(x1))))))))))))))
, 2(4(1(1(2(4(5(5(4(3(4(1(x1)))))))))))) ->
3(4(0(3(1(1(0(3(0(3(3(5(0(1(5(x1)))))))))))))))
, 2(3(4(2(5(5(5(5(0(4(1(3(x1)))))))))))) ->
0(4(0(0(2(2(1(4(5(0(1(4(5(5(0(0(0(x1)))))))))))))))))
, 2(3(0(2(2(5(5(4(2(4(2(3(x1)))))))))))) ->
0(3(5(3(2(0(2(1(2(4(2(3(0(3(x1))))))))))))))
, 2(2(5(5(2(5(5(3(0(3(2(1(x1)))))))))))) ->
5(1(1(3(1(1(0(2(2(0(0(3(4(2(1(2(x1))))))))))))))))
, 2(2(5(5(2(4(5(5(2(2(4(3(x1)))))))))))) ->
2(3(5(4(0(5(2(0(0(4(2(2(0(0(4(4(1(x1)))))))))))))))))
, 2(2(5(2(5(5(2(4(1(0(4(1(x1)))))))))))) ->
2(0(0(3(5(2(2(4(0(2(0(0(4(2(1(4(5(0(x1))))))))))))))))))
, 2(2(5(1(2(2(2(4(3(5(2(4(x1)))))))))))) ->
4(3(3(1(0(3(0(5(3(2(3(2(1(1(4(x1)))))))))))))))
, 2(2(4(2(3(4(4(3(3(1(5(3(x1)))))))))))) ->
5(0(3(1(4(5(2(1(3(1(1(5(0(4(x1))))))))))))))
, 2(2(4(1(3(2(0(1(5(4(5(4(x1)))))))))))) ->
1(1(3(4(0(1(3(0(0(4(0(1(0(2(3(x1)))))))))))))))
, 2(2(4(1(2(1(1(5(4(1(4(4(x1)))))))))))) ->
3(3(3(3(0(4(5(1(1(0(1(0(0(0(2(5(0(0(x1))))))))))))))))))
, 2(2(2(5(2(2(2(3(1(4(1(4(x1)))))))))))) ->
2(4(0(1(3(1(1(3(3(3(1(1(2(0(2(3(0(x1)))))))))))))))))
, 2(2(2(4(1(2(2(4(2(2(4(0(x1)))))))))))) ->
3(5(0(5(0(4(0(3(0(4(2(0(5(1(3(0(0(2(x1))))))))))))))))))
, 2(1(5(5(2(5(5(0(3(0(5(2(x1)))))))))))) ->
0(3(1(2(4(4(0(0(5(3(0(0(2(1(0(5(1(0(x1))))))))))))))))))
, 2(1(4(1(5(5(1(0(2(4(2(5(x1)))))))))))) ->
2(3(0(2(3(1(0(5(0(3(5(4(0(1(x1))))))))))))))
, 2(1(2(5(2(4(2(5(2(2(4(4(x1)))))))))))) ->
3(1(2(0(4(5(0(0(2(5(3(0(2(1(5(1(x1))))))))))))))))
, 2(0(5(2(2(5(1(4(1(1(1(2(x1)))))))))))) ->
4(0(0(0(0(3(1(0(0(2(1(0(2(4(4(3(0(x1)))))))))))))))))
, 2(0(3(5(3(4(4(3(2(4(0(3(x1)))))))))))) ->
4(0(5(0(0(3(1(3(0(1(0(0(0(1(x1))))))))))))))
, 2(0(0(5(5(2(0(1(4(4(5(0(x1)))))))))))) ->
4(0(3(1(3(0(2(3(4(2(5(1(0(1(x1))))))))))))))
, 1(5(1(4(3(3(5(5(2(4(1(5(x1)))))))))))) ->
1(4(2(0(3(0(2(5(0(5(1(5(1(5(x1))))))))))))))
, 1(4(0(4(1(1(1(4(1(2(4(1(x1)))))))))))) ->
2(1(3(0(0(2(1(2(3(3(5(1(3(2(x1))))))))))))))
, 1(3(2(4(4(2(3(2(2(3(2(0(x1)))))))))))) ->
3(3(0(4(0(0(4(5(3(0(3(1(0(0(0(x1)))))))))))))))
, 1(2(1(4(3(5(2(2(1(5(5(4(x1)))))))))))) ->
3(3(5(3(5(5(0(0(5(0(0(2(0(1(1(x1)))))))))))))))
, 1(1(2(5(4(1(2(3(5(1(3(2(x1)))))))))))) ->
0(3(1(1(1(0(5(3(0(5(0(0(0(2(x1))))))))))))))
, 1(0(4(1(4(3(2(5(5(3(2(4(x1)))))))))))) ->
3(0(0(3(2(4(3(2(1(3(2(0(0(4(4(0(0(x1)))))))))))))))))
, 1(0(2(4(1(5(5(4(1(2(1(0(x1)))))))))))) ->
0(5(1(0(1(3(1(0(0(5(0(0(4(2(2(4(2(x1)))))))))))))))))
, 0(5(2(5(0(3(0(1(2(5(5(4(x1)))))))))))) ->
4(3(1(3(3(1(1(0(2(4(4(0(0(5(4(4(4(x1)))))))))))))))))
, 0(4(1(5(2(5(3(3(3(5(2(5(x1)))))))))))) ->
0(0(3(2(0(0(5(1(0(0(4(2(1(0(3(0(2(2(x1))))))))))))))))))
, 0(4(1(2(5(2(1(1(2(2(5(1(x1)))))))))))) ->
0(0(0(1(1(0(1(4(5(4(3(1(0(1(4(5(4(x1)))))))))))))))))
, 0(2(4(3(5(1(5(4(1(4(1(5(x1)))))))))))) ->
2(1(0(0(3(1(0(0(1(5(0(4(3(5(5(0(0(x1)))))))))))))))))
, 0(2(4(3(2(5(5(5(2(5(0(2(x1)))))))))))) ->
0(1(1(3(4(0(3(5(2(2(2(3(0(5(1(0(x1))))))))))))))))
, 0(2(0(5(5(5(3(5(5(3(5(5(x1)))))))))))) ->
0(3(3(3(1(0(5(1(0(3(3(2(1(5(5(x1)))))))))))))))
, 0(1(5(5(5(2(3(2(2(2(2(1(x1)))))))))))) ->
1(5(0(0(3(2(0(0(4(0(3(4(0(3(2(3(4(x1)))))))))))))))))
, 0(1(5(2(2(1(2(5(2(3(1(4(x1)))))))))))) ->
1(1(0(0(4(5(4(2(0(5(2(1(2(2(0(0(4(x1)))))))))))))))))
, 0(1(5(1(4(1(2(4(1(4(1(3(x1)))))))))))) ->
3(3(0(2(0(5(0(5(3(3(5(1(1(5(3(1(1(x1)))))))))))))))))
, 0(1(3(1(5(1(1(5(2(4(1(3(x1)))))))))))) ->
5(3(2(3(0(0(5(2(0(3(3(2(3(3(1(x1)))))))))))))))
, 0(1(0(2(2(3(5(3(4(4(4(5(x1)))))))))))) ->
3(1(0(0(3(1(1(0(0(1(2(3(1(0(0(x1)))))))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(5(2(2(2(5(3(2(4(0(5(x1)))))))))))) ->
1(3(0(4(4(0(0(4(3(5(0(0(2(3(4(2(5(x1)))))))))))))))))
, 5(5(4(3(3(5(2(2(4(3(5(4(x1)))))))))))) ->
1(0(0(0(5(4(5(0(3(0(3(2(4(2(0(3(1(x1)))))))))))))))))
, 5(5(2(5(2(4(3(2(3(5(5(3(x1)))))))))))) ->
0(0(4(4(0(3(2(0(5(1(2(2(2(3(0(x1)))))))))))))))
, 5(3(2(3(5(1(2(2(2(2(2(1(x1)))))))))))) ->
3(1(1(3(5(4(2(3(0(4(0(5(0(3(0(0(x1))))))))))))))))
, 5(2(3(1(5(2(5(5(5(0(3(5(x1)))))))))))) ->
2(0(2(3(0(0(5(1(3(1(2(0(3(5(1(1(x1))))))))))))))))
, 5(2(2(5(5(2(2(4(1(4(3(4(x1)))))))))))) ->
5(2(3(1(3(3(3(0(0(5(3(4(0(0(0(3(4(5(x1))))))))))))))))))
, 5(2(2(4(3(3(5(5(5(4(1(1(x1)))))))))))) ->
4(3(3(2(3(4(5(1(1(4(0(2(0(0(4(5(x1))))))))))))))))
, 5(2(2(2(2(2(5(0(3(0(5(1(x1)))))))))))) ->
2(5(1(0(2(0(4(1(0(4(2(4(0(4(x1))))))))))))))
, 5(2(1(5(4(1(1(1(5(4(2(4(x1)))))))))))) ->
2(4(2(0(3(1(4(0(0(0(3(5(2(0(2(3(x1))))))))))))))))
, 5(2(1(4(1(2(3(2(0(1(4(2(x1)))))))))))) ->
4(3(2(5(1(5(1(0(5(0(0(0(0(5(3(1(1(x1)))))))))))))))))
, 5(1(5(5(2(2(5(5(2(1(3(3(x1)))))))))))) ->
2(3(1(0(5(0(0(3(4(1(4(2(1(1(3(0(0(x1)))))))))))))))))
, 5(1(5(2(5(4(0(1(3(5(4(2(x1)))))))))))) ->
3(1(3(5(3(4(0(0(4(2(0(3(3(2(4(x1)))))))))))))))
, 5(1(4(1(2(5(3(1(3(0(3(5(x1)))))))))))) ->
0(0(2(0(5(3(0(5(1(5(2(0(0(0(4(0(x1))))))))))))))))
, 5(1(1(5(2(5(5(0(2(2(5(4(x1)))))))))))) ->
3(4(0(3(2(5(0(0(2(0(0(4(5(2(2(3(3(x1)))))))))))))))))
, 5(0(4(3(3(2(0(1(1(2(4(3(x1)))))))))))) ->
4(0(0(0(0(5(3(4(3(3(3(0(0(3(2(x1)))))))))))))))
, 5(0(4(1(5(5(4(1(2(5(2(1(x1)))))))))))) ->
4(2(0(5(1(3(1(4(3(5(0(0(3(5(0(3(2(x1)))))))))))))))))
, 4(5(4(4(5(2(2(1(4(2(2(4(x1)))))))))))) ->
3(5(5(1(3(2(2(3(0(0(4(3(5(4(x1))))))))))))))
, 4(4(2(5(0(2(5(2(5(1(5(2(x1)))))))))))) ->
2(0(0(3(5(0(5(3(0(4(4(4(2(0(3(x1)))))))))))))))
, 4(4(1(2(2(5(3(1(2(4(1(5(x1)))))))))))) ->
3(5(5(2(3(3(5(2(0(0(0(0(0(0(5(4(1(x1)))))))))))))))))
, 4(4(1(2(2(5(2(1(4(4(2(5(x1)))))))))))) ->
3(1(3(4(4(0(2(0(0(0(0(3(0(2(4(2(x1))))))))))))))))
, 4(3(5(2(2(5(2(5(5(5(2(4(x1)))))))))))) ->
4(5(4(4(0(3(1(3(2(4(3(3(3(3(5(0(4(x1)))))))))))))))))
, 4(2(5(2(4(1(2(0(5(5(3(5(x1)))))))))))) ->
2(3(5(0(0(3(1(1(5(5(1(4(0(2(x1))))))))))))))
, 4(2(3(4(1(2(5(4(2(2(4(5(x1)))))))))))) ->
3(2(4(0(0(5(3(0(2(1(0(0(0(1(4(4(0(1(x1))))))))))))))))))
, 4(1(5(5(4(1(2(2(5(4(4(4(x1)))))))))))) ->
1(3(0(5(4(2(1(5(0(1(3(0(4(3(0(x1)))))))))))))))
, 4(1(4(2(1(4(0(2(2(2(2(2(x1)))))))))))) ->
0(2(2(2(3(0(3(3(0(0(3(1(3(3(1(x1)))))))))))))))
, 4(1(2(5(2(2(2(4(3(4(4(0(x1)))))))))))) ->
0(5(4(0(5(0(2(0(2(0(4(0(4(0(5(x1)))))))))))))))
, 4(1(2(4(1(2(5(5(2(2(4(1(x1)))))))))))) ->
2(5(1(3(4(0(5(1(0(0(3(3(1(0(2(4(1(5(x1))))))))))))))))))
, 4(1(1(2(0(4(1(5(4(4(4(1(x1)))))))))))) ->
3(3(0(0(3(2(0(4(2(3(1(0(0(0(1(0(3(4(x1))))))))))))))))))
, 4(0(4(1(5(4(1(5(5(2(2(1(x1)))))))))))) ->
4(5(0(1(3(2(1(1(3(2(2(0(5(0(5(0(0(0(x1))))))))))))))))))
, 3(5(5(5(5(1(1(4(1(4(5(1(x1)))))))))))) ->
3(2(2(0(0(0(3(5(4(0(0(1(0(4(1(1(0(5(x1))))))))))))))))))
, 3(5(5(2(2(3(5(2(4(3(0(0(x1)))))))))))) ->
3(2(0(2(3(0(2(5(2(3(1(1(0(3(1(x1)))))))))))))))
, 3(5(4(3(1(5(5(4(1(2(2(5(x1)))))))))))) ->
4(5(3(1(3(3(0(0(0(0(4(2(2(0(3(3(4(0(x1))))))))))))))))))
, 3(5(2(5(2(2(4(5(5(5(3(1(x1)))))))))))) ->
1(0(3(5(3(5(3(5(4(4(2(5(0(1(x1))))))))))))))
, 3(4(5(3(3(2(5(2(4(1(0(5(x1)))))))))))) ->
0(0(0(1(4(4(1(3(1(0(4(4(1(1(0(0(0(2(x1))))))))))))))))))
, 3(4(4(5(3(1(2(2(5(4(4(1(x1)))))))))))) ->
0(0(2(0(5(3(4(2(1(1(0(0(2(1(0(2(2(x1)))))))))))))))))
, 3(4(2(0(2(4(1(5(5(2(5(2(x1)))))))))))) ->
3(0(5(5(1(0(0(2(5(1(4(0(1(1(3(x1)))))))))))))))
, 3(4(1(5(2(3(5(3(1(1(5(4(x1)))))))))))) ->
0(0(0(1(2(0(5(3(0(3(0(0(0(2(0(0(3(1(x1))))))))))))))))))
, 3(4(1(2(1(5(0(1(0(2(4(5(x1)))))))))))) ->
4(0(0(0(0(5(0(0(1(0(0(1(2(1(1(3(x1))))))))))))))))
, 3(4(0(5(3(2(1(2(2(2(2(3(x1)))))))))))) ->
0(1(1(2(0(0(0(5(3(0(1(1(5(1(3(2(x1))))))))))))))))
, 3(4(0(2(5(4(0(1(4(1(4(5(x1)))))))))))) ->
0(0(2(0(0(0(4(4(1(5(1(0(4(2(1(0(3(4(x1))))))))))))))))))
, 3(3(5(1(4(1(3(1(5(4(2(5(x1)))))))))))) ->
0(2(5(0(2(1(4(4(0(4(2(2(0(0(x1))))))))))))))
, 3(3(4(3(5(2(4(2(2(2(5(0(x1)))))))))))) ->
3(2(3(4(2(1(3(5(1(3(1(0(0(0(5(3(x1))))))))))))))))
, 3(3(4(3(4(1(3(3(2(5(4(3(x1)))))))))))) ->
4(2(5(1(3(5(0(0(3(0(0(0(0(1(3(3(x1))))))))))))))))
, 3(2(5(5(3(1(2(4(4(2(5(2(x1)))))))))))) ->
5(3(0(0(2(4(5(4(2(3(0(0(3(4(0(1(2(x1)))))))))))))))))
, 3(2(5(4(3(5(1(2(5(0(4(4(x1)))))))))))) ->
5(1(0(0(2(0(0(2(3(0(5(0(4(4(0(5(3(1(x1))))))))))))))))))
, 3(2(2(5(1(1(2(2(3(2(4(5(x1)))))))))))) ->
5(1(0(0(0(3(1(3(1(1(5(0(4(5(3(1(0(4(x1))))))))))))))))))
, 3(1(5(5(2(2(1(0(5(5(5(3(x1)))))))))))) ->
4(3(1(4(4(0(0(1(3(1(2(0(0(3(0(0(0(0(x1))))))))))))))))))
, 3(1(3(0(2(5(2(2(2(5(4(1(x1)))))))))))) ->
0(0(4(0(0(4(0(0(5(2(0(2(1(0(4(4(x1))))))))))))))))
, 3(0(5(5(2(5(4(1(1(2(5(3(x1)))))))))))) ->
3(1(3(1(1(2(1(4(0(5(1(2(1(3(0(0(0(0(x1))))))))))))))))))
, 3(0(4(3(2(1(2(2(2(1(4(1(x1)))))))))))) ->
3(0(2(1(0(5(0(2(0(5(4(4(3(2(0(5(x1))))))))))))))))
, 2(5(5(4(3(5(1(2(4(1(2(3(x1)))))))))))) ->
1(3(1(1(3(1(1(0(4(3(5(3(1(3(0(2(5(x1)))))))))))))))))
, 2(5(5(0(1(1(5(0(2(0(5(5(x1)))))))))))) ->
2(0(0(0(4(2(4(2(5(0(0(1(1(1(x1))))))))))))))
, 2(5(2(5(2(4(2(4(1(1(1(5(x1)))))))))))) ->
5(3(5(5(3(2(3(2(1(3(5(0(0(0(1(0(x1))))))))))))))))
, 2(5(2(2(5(4(5(1(2(5(4(3(x1)))))))))))) ->
4(0(5(3(5(0(1(3(3(3(5(0(0(0(1(3(5(0(x1))))))))))))))))))
, 2(5(0(1(4(3(1(4(1(4(1(1(x1)))))))))))) ->
1(1(3(3(2(4(4(2(4(5(0(5(3(0(0(x1)))))))))))))))
, 2(4(3(1(5(2(2(2(4(1(5(1(x1)))))))))))) ->
5(4(3(1(1(4(5(1(1(4(2(0(4(0(1(1(1(x1)))))))))))))))))
, 2(4(3(0(5(2(5(5(2(4(4(3(x1)))))))))))) ->
1(2(0(0(0(4(4(1(5(0(0(0(0(3(5(4(2(x1)))))))))))))))))
, 2(4(2(5(2(5(2(1(4(2(2(3(x1)))))))))))) ->
5(5(1(3(1(0(0(0(0(3(1(3(5(2(0(0(4(5(x1))))))))))))))))))
, 2(4(2(0(1(3(4(3(5(1(5(4(x1)))))))))))) ->
5(0(4(0(0(3(2(0(0(2(3(1(0(3(4(0(0(3(x1))))))))))))))))))
, 2(4(1(5(4(2(2(0(1(1(4(5(x1)))))))))))) ->
4(3(2(4(5(3(2(3(0(0(2(0(0(0(x1))))))))))))))
, 2(4(1(1(2(4(5(5(4(3(4(1(x1)))))))))))) ->
3(4(0(3(1(1(0(3(0(3(3(5(0(1(5(x1)))))))))))))))
, 2(3(4(2(5(5(5(5(0(4(1(3(x1)))))))))))) ->
0(4(0(0(2(2(1(4(5(0(1(4(5(5(0(0(0(x1)))))))))))))))))
, 2(3(0(2(2(5(5(4(2(4(2(3(x1)))))))))))) ->
0(3(5(3(2(0(2(1(2(4(2(3(0(3(x1))))))))))))))
, 2(2(5(5(2(5(5(3(0(3(2(1(x1)))))))))))) ->
5(1(1(3(1(1(0(2(2(0(0(3(4(2(1(2(x1))))))))))))))))
, 2(2(5(5(2(4(5(5(2(2(4(3(x1)))))))))))) ->
2(3(5(4(0(5(2(0(0(4(2(2(0(0(4(4(1(x1)))))))))))))))))
, 2(2(5(2(5(5(2(4(1(0(4(1(x1)))))))))))) ->
2(0(0(3(5(2(2(4(0(2(0(0(4(2(1(4(5(0(x1))))))))))))))))))
, 2(2(5(1(2(2(2(4(3(5(2(4(x1)))))))))))) ->
4(3(3(1(0(3(0(5(3(2(3(2(1(1(4(x1)))))))))))))))
, 2(2(4(2(3(4(4(3(3(1(5(3(x1)))))))))))) ->
5(0(3(1(4(5(2(1(3(1(1(5(0(4(x1))))))))))))))
, 2(2(4(1(3(2(0(1(5(4(5(4(x1)))))))))))) ->
1(1(3(4(0(1(3(0(0(4(0(1(0(2(3(x1)))))))))))))))
, 2(2(4(1(2(1(1(5(4(1(4(4(x1)))))))))))) ->
3(3(3(3(0(4(5(1(1(0(1(0(0(0(2(5(0(0(x1))))))))))))))))))
, 2(2(2(5(2(2(2(3(1(4(1(4(x1)))))))))))) ->
2(4(0(1(3(1(1(3(3(3(1(1(2(0(2(3(0(x1)))))))))))))))))
, 2(2(2(4(1(2(2(4(2(2(4(0(x1)))))))))))) ->
3(5(0(5(0(4(0(3(0(4(2(0(5(1(3(0(0(2(x1))))))))))))))))))
, 2(1(5(5(2(5(5(0(3(0(5(2(x1)))))))))))) ->
0(3(1(2(4(4(0(0(5(3(0(0(2(1(0(5(1(0(x1))))))))))))))))))
, 2(1(4(1(5(5(1(0(2(4(2(5(x1)))))))))))) ->
2(3(0(2(3(1(0(5(0(3(5(4(0(1(x1))))))))))))))
, 2(1(2(5(2(4(2(5(2(2(4(4(x1)))))))))))) ->
3(1(2(0(4(5(0(0(2(5(3(0(2(1(5(1(x1))))))))))))))))
, 2(0(5(2(2(5(1(4(1(1(1(2(x1)))))))))))) ->
4(0(0(0(0(3(1(0(0(2(1(0(2(4(4(3(0(x1)))))))))))))))))
, 2(0(3(5(3(4(4(3(2(4(0(3(x1)))))))))))) ->
4(0(5(0(0(3(1(3(0(1(0(0(0(1(x1))))))))))))))
, 2(0(0(5(5(2(0(1(4(4(5(0(x1)))))))))))) ->
4(0(3(1(3(0(2(3(4(2(5(1(0(1(x1))))))))))))))
, 1(5(1(4(3(3(5(5(2(4(1(5(x1)))))))))))) ->
1(4(2(0(3(0(2(5(0(5(1(5(1(5(x1))))))))))))))
, 1(4(0(4(1(1(1(4(1(2(4(1(x1)))))))))))) ->
2(1(3(0(0(2(1(2(3(3(5(1(3(2(x1))))))))))))))
, 1(3(2(4(4(2(3(2(2(3(2(0(x1)))))))))))) ->
3(3(0(4(0(0(4(5(3(0(3(1(0(0(0(x1)))))))))))))))
, 1(2(1(4(3(5(2(2(1(5(5(4(x1)))))))))))) ->
3(3(5(3(5(5(0(0(5(0(0(2(0(1(1(x1)))))))))))))))
, 1(1(2(5(4(1(2(3(5(1(3(2(x1)))))))))))) ->
0(3(1(1(1(0(5(3(0(5(0(0(0(2(x1))))))))))))))
, 1(0(4(1(4(3(2(5(5(3(2(4(x1)))))))))))) ->
3(0(0(3(2(4(3(2(1(3(2(0(0(4(4(0(0(x1)))))))))))))))))
, 1(0(2(4(1(5(5(4(1(2(1(0(x1)))))))))))) ->
0(5(1(0(1(3(1(0(0(5(0(0(4(2(2(4(2(x1)))))))))))))))))
, 0(5(2(5(0(3(0(1(2(5(5(4(x1)))))))))))) ->
4(3(1(3(3(1(1(0(2(4(4(0(0(5(4(4(4(x1)))))))))))))))))
, 0(4(1(5(2(5(3(3(3(5(2(5(x1)))))))))))) ->
0(0(3(2(0(0(5(1(0(0(4(2(1(0(3(0(2(2(x1))))))))))))))))))
, 0(4(1(2(5(2(1(1(2(2(5(1(x1)))))))))))) ->
0(0(0(1(1(0(1(4(5(4(3(1(0(1(4(5(4(x1)))))))))))))))))
, 0(2(4(3(5(1(5(4(1(4(1(5(x1)))))))))))) ->
2(1(0(0(3(1(0(0(1(5(0(4(3(5(5(0(0(x1)))))))))))))))))
, 0(2(4(3(2(5(5(5(2(5(0(2(x1)))))))))))) ->
0(1(1(3(4(0(3(5(2(2(2(3(0(5(1(0(x1))))))))))))))))
, 0(2(0(5(5(5(3(5(5(3(5(5(x1)))))))))))) ->
0(3(3(3(1(0(5(1(0(3(3(2(1(5(5(x1)))))))))))))))
, 0(1(5(5(5(2(3(2(2(2(2(1(x1)))))))))))) ->
1(5(0(0(3(2(0(0(4(0(3(4(0(3(2(3(4(x1)))))))))))))))))
, 0(1(5(2(2(1(2(5(2(3(1(4(x1)))))))))))) ->
1(1(0(0(4(5(4(2(0(5(2(1(2(2(0(0(4(x1)))))))))))))))))
, 0(1(5(1(4(1(2(4(1(4(1(3(x1)))))))))))) ->
3(3(0(2(0(5(0(5(3(3(5(1(1(5(3(1(1(x1)))))))))))))))))
, 0(1(3(1(5(1(1(5(2(4(1(3(x1)))))))))))) ->
5(3(2(3(0(0(5(2(0(3(3(2(3(3(1(x1)))))))))))))))
, 0(1(0(2(2(3(5(3(4(4(4(5(x1)))))))))))) ->
3(1(0(0(3(1(1(0(0(1(2(3(1(0(0(x1)))))))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(5(2(2(2(5(3(2(4(0(5(x1)))))))))))) ->
1(3(0(4(4(0(0(4(3(5(0(0(2(3(4(2(5(x1)))))))))))))))))
, 5(5(4(3(3(5(2(2(4(3(5(4(x1)))))))))))) ->
1(0(0(0(5(4(5(0(3(0(3(2(4(2(0(3(1(x1)))))))))))))))))
, 5(5(2(5(2(4(3(2(3(5(5(3(x1)))))))))))) ->
0(0(4(4(0(3(2(0(5(1(2(2(2(3(0(x1)))))))))))))))
, 5(3(2(3(5(1(2(2(2(2(2(1(x1)))))))))))) ->
3(1(1(3(5(4(2(3(0(4(0(5(0(3(0(0(x1))))))))))))))))
, 5(2(3(1(5(2(5(5(5(0(3(5(x1)))))))))))) ->
2(0(2(3(0(0(5(1(3(1(2(0(3(5(1(1(x1))))))))))))))))
, 5(2(2(5(5(2(2(4(1(4(3(4(x1)))))))))))) ->
5(2(3(1(3(3(3(0(0(5(3(4(0(0(0(3(4(5(x1))))))))))))))))))
, 5(2(2(4(3(3(5(5(5(4(1(1(x1)))))))))))) ->
4(3(3(2(3(4(5(1(1(4(0(2(0(0(4(5(x1))))))))))))))))
, 5(2(2(2(2(2(5(0(3(0(5(1(x1)))))))))))) ->
2(5(1(0(2(0(4(1(0(4(2(4(0(4(x1))))))))))))))
, 5(2(1(5(4(1(1(1(5(4(2(4(x1)))))))))))) ->
2(4(2(0(3(1(4(0(0(0(3(5(2(0(2(3(x1))))))))))))))))
, 5(2(1(4(1(2(3(2(0(1(4(2(x1)))))))))))) ->
4(3(2(5(1(5(1(0(5(0(0(0(0(5(3(1(1(x1)))))))))))))))))
, 5(1(5(5(2(2(5(5(2(1(3(3(x1)))))))))))) ->
2(3(1(0(5(0(0(3(4(1(4(2(1(1(3(0(0(x1)))))))))))))))))
, 5(1(5(2(5(4(0(1(3(5(4(2(x1)))))))))))) ->
3(1(3(5(3(4(0(0(4(2(0(3(3(2(4(x1)))))))))))))))
, 5(1(4(1(2(5(3(1(3(0(3(5(x1)))))))))))) ->
0(0(2(0(5(3(0(5(1(5(2(0(0(0(4(0(x1))))))))))))))))
, 5(1(1(5(2(5(5(0(2(2(5(4(x1)))))))))))) ->
3(4(0(3(2(5(0(0(2(0(0(4(5(2(2(3(3(x1)))))))))))))))))
, 5(0(4(3(3(2(0(1(1(2(4(3(x1)))))))))))) ->
4(0(0(0(0(5(3(4(3(3(3(0(0(3(2(x1)))))))))))))))
, 5(0(4(1(5(5(4(1(2(5(2(1(x1)))))))))))) ->
4(2(0(5(1(3(1(4(3(5(0(0(3(5(0(3(2(x1)))))))))))))))))
, 4(5(4(4(5(2(2(1(4(2(2(4(x1)))))))))))) ->
3(5(5(1(3(2(2(3(0(0(4(3(5(4(x1))))))))))))))
, 4(4(2(5(0(2(5(2(5(1(5(2(x1)))))))))))) ->
2(0(0(3(5(0(5(3(0(4(4(4(2(0(3(x1)))))))))))))))
, 4(4(1(2(2(5(3(1(2(4(1(5(x1)))))))))))) ->
3(5(5(2(3(3(5(2(0(0(0(0(0(0(5(4(1(x1)))))))))))))))))
, 4(4(1(2(2(5(2(1(4(4(2(5(x1)))))))))))) ->
3(1(3(4(4(0(2(0(0(0(0(3(0(2(4(2(x1))))))))))))))))
, 4(3(5(2(2(5(2(5(5(5(2(4(x1)))))))))))) ->
4(5(4(4(0(3(1(3(2(4(3(3(3(3(5(0(4(x1)))))))))))))))))
, 4(2(5(2(4(1(2(0(5(5(3(5(x1)))))))))))) ->
2(3(5(0(0(3(1(1(5(5(1(4(0(2(x1))))))))))))))
, 4(2(3(4(1(2(5(4(2(2(4(5(x1)))))))))))) ->
3(2(4(0(0(5(3(0(2(1(0(0(0(1(4(4(0(1(x1))))))))))))))))))
, 4(1(5(5(4(1(2(2(5(4(4(4(x1)))))))))))) ->
1(3(0(5(4(2(1(5(0(1(3(0(4(3(0(x1)))))))))))))))
, 4(1(4(2(1(4(0(2(2(2(2(2(x1)))))))))))) ->
0(2(2(2(3(0(3(3(0(0(3(1(3(3(1(x1)))))))))))))))
, 4(1(2(5(2(2(2(4(3(4(4(0(x1)))))))))))) ->
0(5(4(0(5(0(2(0(2(0(4(0(4(0(5(x1)))))))))))))))
, 4(1(2(4(1(2(5(5(2(2(4(1(x1)))))))))))) ->
2(5(1(3(4(0(5(1(0(0(3(3(1(0(2(4(1(5(x1))))))))))))))))))
, 4(1(1(2(0(4(1(5(4(4(4(1(x1)))))))))))) ->
3(3(0(0(3(2(0(4(2(3(1(0(0(0(1(0(3(4(x1))))))))))))))))))
, 4(0(4(1(5(4(1(5(5(2(2(1(x1)))))))))))) ->
4(5(0(1(3(2(1(1(3(2(2(0(5(0(5(0(0(0(x1))))))))))))))))))
, 3(5(5(5(5(1(1(4(1(4(5(1(x1)))))))))))) ->
3(2(2(0(0(0(3(5(4(0(0(1(0(4(1(1(0(5(x1))))))))))))))))))
, 3(5(5(2(2(3(5(2(4(3(0(0(x1)))))))))))) ->
3(2(0(2(3(0(2(5(2(3(1(1(0(3(1(x1)))))))))))))))
, 3(5(4(3(1(5(5(4(1(2(2(5(x1)))))))))))) ->
4(5(3(1(3(3(0(0(0(0(4(2(2(0(3(3(4(0(x1))))))))))))))))))
, 3(5(2(5(2(2(4(5(5(5(3(1(x1)))))))))))) ->
1(0(3(5(3(5(3(5(4(4(2(5(0(1(x1))))))))))))))
, 3(4(5(3(3(2(5(2(4(1(0(5(x1)))))))))))) ->
0(0(0(1(4(4(1(3(1(0(4(4(1(1(0(0(0(2(x1))))))))))))))))))
, 3(4(4(5(3(1(2(2(5(4(4(1(x1)))))))))))) ->
0(0(2(0(5(3(4(2(1(1(0(0(2(1(0(2(2(x1)))))))))))))))))
, 3(4(2(0(2(4(1(5(5(2(5(2(x1)))))))))))) ->
3(0(5(5(1(0(0(2(5(1(4(0(1(1(3(x1)))))))))))))))
, 3(4(1(5(2(3(5(3(1(1(5(4(x1)))))))))))) ->
0(0(0(1(2(0(5(3(0(3(0(0(0(2(0(0(3(1(x1))))))))))))))))))
, 3(4(1(2(1(5(0(1(0(2(4(5(x1)))))))))))) ->
4(0(0(0(0(5(0(0(1(0(0(1(2(1(1(3(x1))))))))))))))))
, 3(4(0(5(3(2(1(2(2(2(2(3(x1)))))))))))) ->
0(1(1(2(0(0(0(5(3(0(1(1(5(1(3(2(x1))))))))))))))))
, 3(4(0(2(5(4(0(1(4(1(4(5(x1)))))))))))) ->
0(0(2(0(0(0(4(4(1(5(1(0(4(2(1(0(3(4(x1))))))))))))))))))
, 3(3(5(1(4(1(3(1(5(4(2(5(x1)))))))))))) ->
0(2(5(0(2(1(4(4(0(4(2(2(0(0(x1))))))))))))))
, 3(3(4(3(5(2(4(2(2(2(5(0(x1)))))))))))) ->
3(2(3(4(2(1(3(5(1(3(1(0(0(0(5(3(x1))))))))))))))))
, 3(3(4(3(4(1(3(3(2(5(4(3(x1)))))))))))) ->
4(2(5(1(3(5(0(0(3(0(0(0(0(1(3(3(x1))))))))))))))))
, 3(2(5(5(3(1(2(4(4(2(5(2(x1)))))))))))) ->
5(3(0(0(2(4(5(4(2(3(0(0(3(4(0(1(2(x1)))))))))))))))))
, 3(2(5(4(3(5(1(2(5(0(4(4(x1)))))))))))) ->
5(1(0(0(2(0(0(2(3(0(5(0(4(4(0(5(3(1(x1))))))))))))))))))
, 3(2(2(5(1(1(2(2(3(2(4(5(x1)))))))))))) ->
5(1(0(0(0(3(1(3(1(1(5(0(4(5(3(1(0(4(x1))))))))))))))))))
, 3(1(5(5(2(2(1(0(5(5(5(3(x1)))))))))))) ->
4(3(1(4(4(0(0(1(3(1(2(0(0(3(0(0(0(0(x1))))))))))))))))))
, 3(1(3(0(2(5(2(2(2(5(4(1(x1)))))))))))) ->
0(0(4(0(0(4(0(0(5(2(0(2(1(0(4(4(x1))))))))))))))))
, 3(0(5(5(2(5(4(1(1(2(5(3(x1)))))))))))) ->
3(1(3(1(1(2(1(4(0(5(1(2(1(3(0(0(0(0(x1))))))))))))))))))
, 3(0(4(3(2(1(2(2(2(1(4(1(x1)))))))))))) ->
3(0(2(1(0(5(0(2(0(5(4(4(3(2(0(5(x1))))))))))))))))
, 2(5(5(4(3(5(1(2(4(1(2(3(x1)))))))))))) ->
1(3(1(1(3(1(1(0(4(3(5(3(1(3(0(2(5(x1)))))))))))))))))
, 2(5(5(0(1(1(5(0(2(0(5(5(x1)))))))))))) ->
2(0(0(0(4(2(4(2(5(0(0(1(1(1(x1))))))))))))))
, 2(5(2(5(2(4(2(4(1(1(1(5(x1)))))))))))) ->
5(3(5(5(3(2(3(2(1(3(5(0(0(0(1(0(x1))))))))))))))))
, 2(5(2(2(5(4(5(1(2(5(4(3(x1)))))))))))) ->
4(0(5(3(5(0(1(3(3(3(5(0(0(0(1(3(5(0(x1))))))))))))))))))
, 2(5(0(1(4(3(1(4(1(4(1(1(x1)))))))))))) ->
1(1(3(3(2(4(4(2(4(5(0(5(3(0(0(x1)))))))))))))))
, 2(4(3(1(5(2(2(2(4(1(5(1(x1)))))))))))) ->
5(4(3(1(1(4(5(1(1(4(2(0(4(0(1(1(1(x1)))))))))))))))))
, 2(4(3(0(5(2(5(5(2(4(4(3(x1)))))))))))) ->
1(2(0(0(0(4(4(1(5(0(0(0(0(3(5(4(2(x1)))))))))))))))))
, 2(4(2(5(2(5(2(1(4(2(2(3(x1)))))))))))) ->
5(5(1(3(1(0(0(0(0(3(1(3(5(2(0(0(4(5(x1))))))))))))))))))
, 2(4(2(0(1(3(4(3(5(1(5(4(x1)))))))))))) ->
5(0(4(0(0(3(2(0(0(2(3(1(0(3(4(0(0(3(x1))))))))))))))))))
, 2(4(1(5(4(2(2(0(1(1(4(5(x1)))))))))))) ->
4(3(2(4(5(3(2(3(0(0(2(0(0(0(x1))))))))))))))
, 2(4(1(1(2(4(5(5(4(3(4(1(x1)))))))))))) ->
3(4(0(3(1(1(0(3(0(3(3(5(0(1(5(x1)))))))))))))))
, 2(3(4(2(5(5(5(5(0(4(1(3(x1)))))))))))) ->
0(4(0(0(2(2(1(4(5(0(1(4(5(5(0(0(0(x1)))))))))))))))))
, 2(3(0(2(2(5(5(4(2(4(2(3(x1)))))))))))) ->
0(3(5(3(2(0(2(1(2(4(2(3(0(3(x1))))))))))))))
, 2(2(5(5(2(5(5(3(0(3(2(1(x1)))))))))))) ->
5(1(1(3(1(1(0(2(2(0(0(3(4(2(1(2(x1))))))))))))))))
, 2(2(5(5(2(4(5(5(2(2(4(3(x1)))))))))))) ->
2(3(5(4(0(5(2(0(0(4(2(2(0(0(4(4(1(x1)))))))))))))))))
, 2(2(5(2(5(5(2(4(1(0(4(1(x1)))))))))))) ->
2(0(0(3(5(2(2(4(0(2(0(0(4(2(1(4(5(0(x1))))))))))))))))))
, 2(2(5(1(2(2(2(4(3(5(2(4(x1)))))))))))) ->
4(3(3(1(0(3(0(5(3(2(3(2(1(1(4(x1)))))))))))))))
, 2(2(4(2(3(4(4(3(3(1(5(3(x1)))))))))))) ->
5(0(3(1(4(5(2(1(3(1(1(5(0(4(x1))))))))))))))
, 2(2(4(1(3(2(0(1(5(4(5(4(x1)))))))))))) ->
1(1(3(4(0(1(3(0(0(4(0(1(0(2(3(x1)))))))))))))))
, 2(2(4(1(2(1(1(5(4(1(4(4(x1)))))))))))) ->
3(3(3(3(0(4(5(1(1(0(1(0(0(0(2(5(0(0(x1))))))))))))))))))
, 2(2(2(5(2(2(2(3(1(4(1(4(x1)))))))))))) ->
2(4(0(1(3(1(1(3(3(3(1(1(2(0(2(3(0(x1)))))))))))))))))
, 2(2(2(4(1(2(2(4(2(2(4(0(x1)))))))))))) ->
3(5(0(5(0(4(0(3(0(4(2(0(5(1(3(0(0(2(x1))))))))))))))))))
, 2(1(5(5(2(5(5(0(3(0(5(2(x1)))))))))))) ->
0(3(1(2(4(4(0(0(5(3(0(0(2(1(0(5(1(0(x1))))))))))))))))))
, 2(1(4(1(5(5(1(0(2(4(2(5(x1)))))))))))) ->
2(3(0(2(3(1(0(5(0(3(5(4(0(1(x1))))))))))))))
, 2(1(2(5(2(4(2(5(2(2(4(4(x1)))))))))))) ->
3(1(2(0(4(5(0(0(2(5(3(0(2(1(5(1(x1))))))))))))))))
, 2(0(5(2(2(5(1(4(1(1(1(2(x1)))))))))))) ->
4(0(0(0(0(3(1(0(0(2(1(0(2(4(4(3(0(x1)))))))))))))))))
, 2(0(3(5(3(4(4(3(2(4(0(3(x1)))))))))))) ->
4(0(5(0(0(3(1(3(0(1(0(0(0(1(x1))))))))))))))
, 2(0(0(5(5(2(0(1(4(4(5(0(x1)))))))))))) ->
4(0(3(1(3(0(2(3(4(2(5(1(0(1(x1))))))))))))))
, 1(5(1(4(3(3(5(5(2(4(1(5(x1)))))))))))) ->
1(4(2(0(3(0(2(5(0(5(1(5(1(5(x1))))))))))))))
, 1(4(0(4(1(1(1(4(1(2(4(1(x1)))))))))))) ->
2(1(3(0(0(2(1(2(3(3(5(1(3(2(x1))))))))))))))
, 1(3(2(4(4(2(3(2(2(3(2(0(x1)))))))))))) ->
3(3(0(4(0(0(4(5(3(0(3(1(0(0(0(x1)))))))))))))))
, 1(2(1(4(3(5(2(2(1(5(5(4(x1)))))))))))) ->
3(3(5(3(5(5(0(0(5(0(0(2(0(1(1(x1)))))))))))))))
, 1(1(2(5(4(1(2(3(5(1(3(2(x1)))))))))))) ->
0(3(1(1(1(0(5(3(0(5(0(0(0(2(x1))))))))))))))
, 1(0(4(1(4(3(2(5(5(3(2(4(x1)))))))))))) ->
3(0(0(3(2(4(3(2(1(3(2(0(0(4(4(0(0(x1)))))))))))))))))
, 1(0(2(4(1(5(5(4(1(2(1(0(x1)))))))))))) ->
0(5(1(0(1(3(1(0(0(5(0(0(4(2(2(4(2(x1)))))))))))))))))
, 0(5(2(5(0(3(0(1(2(5(5(4(x1)))))))))))) ->
4(3(1(3(3(1(1(0(2(4(4(0(0(5(4(4(4(x1)))))))))))))))))
, 0(4(1(5(2(5(3(3(3(5(2(5(x1)))))))))))) ->
0(0(3(2(0(0(5(1(0(0(4(2(1(0(3(0(2(2(x1))))))))))))))))))
, 0(4(1(2(5(2(1(1(2(2(5(1(x1)))))))))))) ->
0(0(0(1(1(0(1(4(5(4(3(1(0(1(4(5(4(x1)))))))))))))))))
, 0(2(4(3(5(1(5(4(1(4(1(5(x1)))))))))))) ->
2(1(0(0(3(1(0(0(1(5(0(4(3(5(5(0(0(x1)))))))))))))))))
, 0(2(4(3(2(5(5(5(2(5(0(2(x1)))))))))))) ->
0(1(1(3(4(0(3(5(2(2(2(3(0(5(1(0(x1))))))))))))))))
, 0(2(0(5(5(5(3(5(5(3(5(5(x1)))))))))))) ->
0(3(3(3(1(0(5(1(0(3(3(2(1(5(5(x1)))))))))))))))
, 0(1(5(5(5(2(3(2(2(2(2(1(x1)))))))))))) ->
1(5(0(0(3(2(0(0(4(0(3(4(0(3(2(3(4(x1)))))))))))))))))
, 0(1(5(2(2(1(2(5(2(3(1(4(x1)))))))))))) ->
1(1(0(0(4(5(4(2(0(5(2(1(2(2(0(0(4(x1)))))))))))))))))
, 0(1(5(1(4(1(2(4(1(4(1(3(x1)))))))))))) ->
3(3(0(2(0(5(0(5(3(3(5(1(1(5(3(1(1(x1)))))))))))))))))
, 0(1(3(1(5(1(1(5(2(4(1(3(x1)))))))))))) ->
5(3(2(3(0(0(5(2(0(3(3(2(3(3(1(x1)))))))))))))))
, 0(1(0(2(2(3(5(3(4(4(4(5(x1)))))))))))) ->
3(1(0(0(3(1(1(0(0(1(2(3(1(0(0(x1)))))))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..