Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 5(2(0(3(2(x1))))) -> 0(2(5(2(3(1(x1))))))
, 5(1(0(5(2(x1))))) -> 5(0(2(1(5(5(x1))))))
, 5(1(0(5(2(x1))))) -> 3(5(5(0(2(1(x1))))))
, 5(1(0(3(2(x1))))) -> 5(3(1(1(0(2(x1))))))
, 5(1(0(3(2(x1))))) -> 0(4(3(5(1(2(x1))))))
, 5(0(4(2(2(x1))))) -> 2(0(2(4(1(5(x1))))))
, 5(0(3(1(2(x1))))) -> 0(2(1(4(3(5(x1))))))
, 5(0(1(3(2(x1))))) -> 3(5(0(2(1(3(x1))))))
, 4(5(1(4(2(x1))))) -> 2(4(4(4(1(5(x1))))))
, 3(0(3(4(2(x1))))) -> 1(3(4(0(2(3(x1))))))
, 3(0(3(1(2(x1))))) -> 1(3(3(0(2(3(x1))))))
, 0(5(5(2(2(x1))))) -> 0(2(1(5(5(2(x1))))))
, 0(5(0(3(2(x1))))) -> 0(5(0(0(2(3(x1))))))
, 0(5(0(1(2(x1))))) -> 0(4(5(0(2(1(x1))))))
, 0(1(5(5(2(x1))))) -> 0(2(1(5(5(1(x1))))))
, 0(1(5(1(2(x1))))) -> 1(0(2(1(1(5(x1))))))
, 0(1(2(5(2(x1))))) -> 2(0(2(1(5(4(x1))))))
, 0(1(2(4(2(x1))))) -> 4(2(1(0(2(1(x1))))))
, 5(1(2(2(x1)))) -> 2(1(5(2(1(1(x1))))))
, 5(1(2(2(x1)))) -> 0(2(1(5(2(1(x1))))))
, 5(0(3(2(x1)))) -> 3(0(2(1(4(5(x1))))))
, 5(0(2(2(x1)))) -> 2(0(2(4(1(5(x1))))))
, 5(0(1(2(x1)))) -> 0(2(1(3(4(5(x1))))))
, 4(5(2(2(x1)))) -> 2(5(0(2(4(1(x1))))))
, 3(3(5(2(x1)))) -> 3(0(2(1(5(3(x1))))))
, 3(1(5(2(x1)))) -> 0(2(1(5(3(x1)))))
, 3(0(3(2(x1)))) -> 3(0(0(0(2(3(x1))))))
, 2(0(3(2(x1)))) -> 1(3(0(2(2(x1)))))
, 0(3(2(2(x1)))) -> 0(0(4(2(3(2(x1))))))
, 0(3(2(2(x1)))) -> 0(0(2(3(2(x1)))))
, 0(1(5(2(x1)))) -> 5(0(2(1(1(x1)))))
, 0(1(3(2(x1)))) -> 3(0(2(4(1(1(x1))))))
, 0(1(3(2(x1)))) -> 3(3(0(2(1(x1)))))
, 0(1(3(2(x1)))) -> 0(2(1(4(3(x1)))))
, 0(1(2(2(x1)))) -> 0(2(3(2(1(x1)))))
, 0(1(2(2(x1)))) -> 0(2(2(1(1(x1)))))
, 0(1(1(2(x1)))) -> 0(2(1(1(3(x1)))))
, 0(3(2(x1))) -> 0(0(2(1(1(3(x1))))))
, 0(3(2(x1))) -> 0(2(1(1(3(x1)))))
, 0(3(2(x1))) -> 0(2(1(3(x1))))
, 0(1(2(x1))) -> 0(2(4(1(3(x1)))))
, 0(1(2(x1))) -> 0(2(4(1(1(x1)))))
, 0(1(2(x1))) -> 0(2(1(1(3(x1)))))
, 0(1(2(x1))) -> 0(2(1(3(x1))))
, 0(1(2(x1))) -> 0(2(1(1(x1))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ 2_0(1) -> 1
, 2_1(1) -> 19
, 2_1(3) -> 2
, 2_1(5) -> 4
, 2_1(6) -> 15
, 2_1(9) -> 8
, 2_1(19) -> 75
, 2_1(23) -> 1
, 2_1(23) -> 11
, 2_1(23) -> 21
, 2_1(23) -> 50
, 2_1(23) -> 67
, 2_1(25) -> 24
, 2_1(30) -> 29
, 2_1(31) -> 36
, 2_1(48) -> 47
, 2_1(52) -> 51
, 2_1(54) -> 2
, 2_1(55) -> 54
, 2_1(66) -> 65
, 2_1(70) -> 69
, 2_1(80) -> 79
, 2_2(23) -> 113
, 2_2(56) -> 21
, 2_2(59) -> 58
, 2_2(60) -> 64
, 2_2(62) -> 61
, 2_2(72) -> 71
, 2_2(95) -> 94
, 2_2(101) -> 67
, 2_2(110) -> 109
, 2_2(114) -> 10
, 2_2(114) -> 11
, 2_2(114) -> 27
, 2_2(116) -> 115
, 1_0(1) -> 1
, 1_1(1) -> 6
, 1_1(6) -> 55
, 1_1(10) -> 9
, 1_1(11) -> 26
, 1_1(14) -> 52
, 1_1(17) -> 16
, 1_1(18) -> 17
, 1_1(19) -> 22
, 1_1(23) -> 6
, 1_1(26) -> 48
, 1_1(27) -> 3
, 1_1(30) -> 3
, 1_1(31) -> 30
, 1_1(33) -> 1
, 1_1(33) -> 19
, 1_1(33) -> 31
, 1_1(49) -> 25
, 1_1(52) -> 6
, 1_1(53) -> 23
, 1_1(67) -> 66
, 1_2(23) -> 60
, 1_2(57) -> 56
, 1_2(60) -> 59
, 1_2(63) -> 62
, 1_2(73) -> 72
, 1_2(96) -> 95
, 1_2(105) -> 104
, 1_2(111) -> 110
, 1_2(118) -> 117
, 0_0(1) -> 1
, 0_1(2) -> 1
, 0_1(2) -> 11
, 0_1(2) -> 37
, 0_1(8) -> 1
, 0_1(8) -> 7
, 0_1(8) -> 11
, 0_1(8) -> 21
, 0_1(11) -> 1
, 0_1(15) -> 14
, 0_1(19) -> 18
, 0_1(24) -> 23
, 0_1(27) -> 1
, 0_1(27) -> 11
, 0_1(29) -> 1
, 0_1(29) -> 13
, 0_1(35) -> 1
, 0_1(35) -> 38
, 0_1(36) -> 35
, 0_1(38) -> 12
, 0_1(47) -> 33
, 0_1(54) -> 1
, 0_1(54) -> 7
, 0_1(65) -> 1
, 0_1(65) -> 5
, 0_1(65) -> 12
, 0_1(65) -> 31
, 0_1(69) -> 68
, 0_1(75) -> 34
, 0_1(76) -> 2
, 0_1(79) -> 2
, 0_2(61) -> 21
, 0_2(64) -> 100
, 0_2(71) -> 31
, 0_2(94) -> 93
, 0_2(109) -> 1
, 0_2(109) -> 11
, 0_2(115) -> 114
, 3_0(1) -> 1
, 3_1(1) -> 31
, 3_1(6) -> 5
, 3_1(11) -> 28
, 3_1(12) -> 1
, 3_1(12) -> 11
, 3_1(12) -> 31
, 3_1(14) -> 12
, 3_1(15) -> 3
, 3_1(16) -> 7
, 3_1(18) -> 33
, 3_1(19) -> 80
, 3_1(21) -> 20
, 3_1(23) -> 31
, 3_1(34) -> 33
, 3_1(35) -> 34
, 3_1(52) -> 31
, 3_1(55) -> 7
, 3_1(67) -> 10
, 3_2(55) -> 74
, 3_2(98) -> 11
, 4_0(1) -> 1
, 4_1(1) -> 50
, 4_1(6) -> 70
, 4_1(11) -> 67
, 4_1(13) -> 2
, 4_1(20) -> 2
, 4_1(23) -> 50
, 4_1(25) -> 32
, 4_1(26) -> 25
, 4_1(28) -> 27
, 4_1(30) -> 3
, 4_1(31) -> 10
, 4_1(32) -> 23
, 4_1(35) -> 34
, 4_1(36) -> 76
, 4_1(51) -> 1
, 4_1(55) -> 66
, 4_1(79) -> 76
, 4_2(102) -> 101
, 4_2(103) -> 102
, 4_2(104) -> 103
, 4_2(117) -> 116
, 5_0(1) -> 1
, 5_1(1) -> 11
, 5_1(4) -> 3
, 5_1(6) -> 11
, 5_1(7) -> 1
, 5_1(7) -> 11
, 5_1(11) -> 10
, 5_1(13) -> 12
, 5_1(14) -> 13
, 5_1(15) -> 10
, 5_1(19) -> 37
, 5_1(22) -> 21
, 5_1(23) -> 11
, 5_1(31) -> 67
, 5_1(37) -> 27
, 5_1(38) -> 2
, 5_1(50) -> 49
, 5_1(52) -> 11
, 5_1(54) -> 53
, 5_1(55) -> 11
, 5_1(68) -> 23
, 5_2(23) -> 97
, 5_2(52) -> 105
, 5_2(55) -> 118
, 5_2(58) -> 57
, 5_2(64) -> 63
, 5_2(74) -> 73
, 5_2(93) -> 11
, 5_2(97) -> 96
, 5_2(99) -> 98
, 5_2(100) -> 99
, 5_2(112) -> 111
, 5_2(113) -> 112}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(2(0(3(2(x1))))) -> 0(2(5(2(3(1(x1))))))
, 5(1(0(5(2(x1))))) -> 5(0(2(1(5(5(x1))))))
, 5(1(0(5(2(x1))))) -> 3(5(5(0(2(1(x1))))))
, 5(1(0(3(2(x1))))) -> 5(3(1(1(0(2(x1))))))
, 5(1(0(3(2(x1))))) -> 0(4(3(5(1(2(x1))))))
, 5(0(4(2(2(x1))))) -> 2(0(2(4(1(5(x1))))))
, 5(0(3(1(2(x1))))) -> 0(2(1(4(3(5(x1))))))
, 5(0(1(3(2(x1))))) -> 3(5(0(2(1(3(x1))))))
, 4(5(1(4(2(x1))))) -> 2(4(4(4(1(5(x1))))))
, 3(0(3(4(2(x1))))) -> 1(3(4(0(2(3(x1))))))
, 3(0(3(1(2(x1))))) -> 1(3(3(0(2(3(x1))))))
, 0(5(5(2(2(x1))))) -> 0(2(1(5(5(2(x1))))))
, 0(5(0(3(2(x1))))) -> 0(5(0(0(2(3(x1))))))
, 0(5(0(1(2(x1))))) -> 0(4(5(0(2(1(x1))))))
, 0(1(5(5(2(x1))))) -> 0(2(1(5(5(1(x1))))))
, 0(1(5(1(2(x1))))) -> 1(0(2(1(1(5(x1))))))
, 0(1(2(5(2(x1))))) -> 2(0(2(1(5(4(x1))))))
, 0(1(2(4(2(x1))))) -> 4(2(1(0(2(1(x1))))))
, 5(1(2(2(x1)))) -> 2(1(5(2(1(1(x1))))))
, 5(1(2(2(x1)))) -> 0(2(1(5(2(1(x1))))))
, 5(0(3(2(x1)))) -> 3(0(2(1(4(5(x1))))))
, 5(0(2(2(x1)))) -> 2(0(2(4(1(5(x1))))))
, 5(0(1(2(x1)))) -> 0(2(1(3(4(5(x1))))))
, 4(5(2(2(x1)))) -> 2(5(0(2(4(1(x1))))))
, 3(3(5(2(x1)))) -> 3(0(2(1(5(3(x1))))))
, 3(1(5(2(x1)))) -> 0(2(1(5(3(x1)))))
, 3(0(3(2(x1)))) -> 3(0(0(0(2(3(x1))))))
, 2(0(3(2(x1)))) -> 1(3(0(2(2(x1)))))
, 0(3(2(2(x1)))) -> 0(0(4(2(3(2(x1))))))
, 0(3(2(2(x1)))) -> 0(0(2(3(2(x1)))))
, 0(1(5(2(x1)))) -> 5(0(2(1(1(x1)))))
, 0(1(3(2(x1)))) -> 3(0(2(4(1(1(x1))))))
, 0(1(3(2(x1)))) -> 3(3(0(2(1(x1)))))
, 0(1(3(2(x1)))) -> 0(2(1(4(3(x1)))))
, 0(1(2(2(x1)))) -> 0(2(3(2(1(x1)))))
, 0(1(2(2(x1)))) -> 0(2(2(1(1(x1)))))
, 0(1(1(2(x1)))) -> 0(2(1(1(3(x1)))))
, 0(3(2(x1))) -> 0(0(2(1(1(3(x1))))))
, 0(3(2(x1))) -> 0(2(1(1(3(x1)))))
, 0(3(2(x1))) -> 0(2(1(3(x1))))
, 0(1(2(x1))) -> 0(2(4(1(3(x1)))))
, 0(1(2(x1))) -> 0(2(4(1(1(x1)))))
, 0(1(2(x1))) -> 0(2(1(1(3(x1)))))
, 0(1(2(x1))) -> 0(2(1(3(x1))))
, 0(1(2(x1))) -> 0(2(1(1(x1))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(2(0(3(2(x1))))) -> 0(2(5(2(3(1(x1))))))
, 5(1(0(5(2(x1))))) -> 5(0(2(1(5(5(x1))))))
, 5(1(0(5(2(x1))))) -> 3(5(5(0(2(1(x1))))))
, 5(1(0(3(2(x1))))) -> 5(3(1(1(0(2(x1))))))
, 5(1(0(3(2(x1))))) -> 0(4(3(5(1(2(x1))))))
, 5(0(4(2(2(x1))))) -> 2(0(2(4(1(5(x1))))))
, 5(0(3(1(2(x1))))) -> 0(2(1(4(3(5(x1))))))
, 5(0(1(3(2(x1))))) -> 3(5(0(2(1(3(x1))))))
, 4(5(1(4(2(x1))))) -> 2(4(4(4(1(5(x1))))))
, 3(0(3(4(2(x1))))) -> 1(3(4(0(2(3(x1))))))
, 3(0(3(1(2(x1))))) -> 1(3(3(0(2(3(x1))))))
, 0(5(5(2(2(x1))))) -> 0(2(1(5(5(2(x1))))))
, 0(5(0(3(2(x1))))) -> 0(5(0(0(2(3(x1))))))
, 0(5(0(1(2(x1))))) -> 0(4(5(0(2(1(x1))))))
, 0(1(5(5(2(x1))))) -> 0(2(1(5(5(1(x1))))))
, 0(1(5(1(2(x1))))) -> 1(0(2(1(1(5(x1))))))
, 0(1(2(5(2(x1))))) -> 2(0(2(1(5(4(x1))))))
, 0(1(2(4(2(x1))))) -> 4(2(1(0(2(1(x1))))))
, 5(1(2(2(x1)))) -> 2(1(5(2(1(1(x1))))))
, 5(1(2(2(x1)))) -> 0(2(1(5(2(1(x1))))))
, 5(0(3(2(x1)))) -> 3(0(2(1(4(5(x1))))))
, 5(0(2(2(x1)))) -> 2(0(2(4(1(5(x1))))))
, 5(0(1(2(x1)))) -> 0(2(1(3(4(5(x1))))))
, 4(5(2(2(x1)))) -> 2(5(0(2(4(1(x1))))))
, 3(3(5(2(x1)))) -> 3(0(2(1(5(3(x1))))))
, 3(1(5(2(x1)))) -> 0(2(1(5(3(x1)))))
, 3(0(3(2(x1)))) -> 3(0(0(0(2(3(x1))))))
, 2(0(3(2(x1)))) -> 1(3(0(2(2(x1)))))
, 0(3(2(2(x1)))) -> 0(0(4(2(3(2(x1))))))
, 0(3(2(2(x1)))) -> 0(0(2(3(2(x1)))))
, 0(1(5(2(x1)))) -> 5(0(2(1(1(x1)))))
, 0(1(3(2(x1)))) -> 3(0(2(4(1(1(x1))))))
, 0(1(3(2(x1)))) -> 3(3(0(2(1(x1)))))
, 0(1(3(2(x1)))) -> 0(2(1(4(3(x1)))))
, 0(1(2(2(x1)))) -> 0(2(3(2(1(x1)))))
, 0(1(2(2(x1)))) -> 0(2(2(1(1(x1)))))
, 0(1(1(2(x1)))) -> 0(2(1(1(3(x1)))))
, 0(3(2(x1))) -> 0(0(2(1(1(3(x1))))))
, 0(3(2(x1))) -> 0(2(1(1(3(x1)))))
, 0(3(2(x1))) -> 0(2(1(3(x1))))
, 0(1(2(x1))) -> 0(2(4(1(3(x1)))))
, 0(1(2(x1))) -> 0(2(4(1(1(x1)))))
, 0(1(2(x1))) -> 0(2(1(1(3(x1)))))
, 0(1(2(x1))) -> 0(2(1(3(x1))))
, 0(1(2(x1))) -> 0(2(1(1(x1))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(2(0(3(2(x1))))) -> 0(2(5(2(3(1(x1))))))
, 5(1(0(5(2(x1))))) -> 5(0(2(1(5(5(x1))))))
, 5(1(0(5(2(x1))))) -> 3(5(5(0(2(1(x1))))))
, 5(1(0(3(2(x1))))) -> 5(3(1(1(0(2(x1))))))
, 5(1(0(3(2(x1))))) -> 0(4(3(5(1(2(x1))))))
, 5(0(4(2(2(x1))))) -> 2(0(2(4(1(5(x1))))))
, 5(0(3(1(2(x1))))) -> 0(2(1(4(3(5(x1))))))
, 5(0(1(3(2(x1))))) -> 3(5(0(2(1(3(x1))))))
, 4(5(1(4(2(x1))))) -> 2(4(4(4(1(5(x1))))))
, 3(0(3(4(2(x1))))) -> 1(3(4(0(2(3(x1))))))
, 3(0(3(1(2(x1))))) -> 1(3(3(0(2(3(x1))))))
, 0(5(5(2(2(x1))))) -> 0(2(1(5(5(2(x1))))))
, 0(5(0(3(2(x1))))) -> 0(5(0(0(2(3(x1))))))
, 0(5(0(1(2(x1))))) -> 0(4(5(0(2(1(x1))))))
, 0(1(5(5(2(x1))))) -> 0(2(1(5(5(1(x1))))))
, 0(1(5(1(2(x1))))) -> 1(0(2(1(1(5(x1))))))
, 0(1(2(5(2(x1))))) -> 2(0(2(1(5(4(x1))))))
, 0(1(2(4(2(x1))))) -> 4(2(1(0(2(1(x1))))))
, 5(1(2(2(x1)))) -> 2(1(5(2(1(1(x1))))))
, 5(1(2(2(x1)))) -> 0(2(1(5(2(1(x1))))))
, 5(0(3(2(x1)))) -> 3(0(2(1(4(5(x1))))))
, 5(0(2(2(x1)))) -> 2(0(2(4(1(5(x1))))))
, 5(0(1(2(x1)))) -> 0(2(1(3(4(5(x1))))))
, 4(5(2(2(x1)))) -> 2(5(0(2(4(1(x1))))))
, 3(3(5(2(x1)))) -> 3(0(2(1(5(3(x1))))))
, 3(1(5(2(x1)))) -> 0(2(1(5(3(x1)))))
, 3(0(3(2(x1)))) -> 3(0(0(0(2(3(x1))))))
, 2(0(3(2(x1)))) -> 1(3(0(2(2(x1)))))
, 0(3(2(2(x1)))) -> 0(0(4(2(3(2(x1))))))
, 0(3(2(2(x1)))) -> 0(0(2(3(2(x1)))))
, 0(1(5(2(x1)))) -> 5(0(2(1(1(x1)))))
, 0(1(3(2(x1)))) -> 3(0(2(4(1(1(x1))))))
, 0(1(3(2(x1)))) -> 3(3(0(2(1(x1)))))
, 0(1(3(2(x1)))) -> 0(2(1(4(3(x1)))))
, 0(1(2(2(x1)))) -> 0(2(3(2(1(x1)))))
, 0(1(2(2(x1)))) -> 0(2(2(1(1(x1)))))
, 0(1(1(2(x1)))) -> 0(2(1(1(3(x1)))))
, 0(3(2(x1))) -> 0(0(2(1(1(3(x1))))))
, 0(3(2(x1))) -> 0(2(1(1(3(x1)))))
, 0(3(2(x1))) -> 0(2(1(3(x1))))
, 0(1(2(x1))) -> 0(2(4(1(3(x1)))))
, 0(1(2(x1))) -> 0(2(4(1(1(x1)))))
, 0(1(2(x1))) -> 0(2(1(1(3(x1)))))
, 0(1(2(x1))) -> 0(2(1(3(x1))))
, 0(1(2(x1))) -> 0(2(1(1(x1))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI2
stdout:
MAYBE
We consider the following Problem:
Strict Trs:
{ 5(2(0(3(2(x1))))) -> 0(2(5(2(3(1(x1))))))
, 5(1(0(5(2(x1))))) -> 5(0(2(1(5(5(x1))))))
, 5(1(0(5(2(x1))))) -> 3(5(5(0(2(1(x1))))))
, 5(1(0(3(2(x1))))) -> 5(3(1(1(0(2(x1))))))
, 5(1(0(3(2(x1))))) -> 0(4(3(5(1(2(x1))))))
, 5(0(4(2(2(x1))))) -> 2(0(2(4(1(5(x1))))))
, 5(0(3(1(2(x1))))) -> 0(2(1(4(3(5(x1))))))
, 5(0(1(3(2(x1))))) -> 3(5(0(2(1(3(x1))))))
, 4(5(1(4(2(x1))))) -> 2(4(4(4(1(5(x1))))))
, 3(0(3(4(2(x1))))) -> 1(3(4(0(2(3(x1))))))
, 3(0(3(1(2(x1))))) -> 1(3(3(0(2(3(x1))))))
, 0(5(5(2(2(x1))))) -> 0(2(1(5(5(2(x1))))))
, 0(5(0(3(2(x1))))) -> 0(5(0(0(2(3(x1))))))
, 0(5(0(1(2(x1))))) -> 0(4(5(0(2(1(x1))))))
, 0(1(5(5(2(x1))))) -> 0(2(1(5(5(1(x1))))))
, 0(1(5(1(2(x1))))) -> 1(0(2(1(1(5(x1))))))
, 0(1(2(5(2(x1))))) -> 2(0(2(1(5(4(x1))))))
, 0(1(2(4(2(x1))))) -> 4(2(1(0(2(1(x1))))))
, 5(1(2(2(x1)))) -> 2(1(5(2(1(1(x1))))))
, 5(1(2(2(x1)))) -> 0(2(1(5(2(1(x1))))))
, 5(0(3(2(x1)))) -> 3(0(2(1(4(5(x1))))))
, 5(0(2(2(x1)))) -> 2(0(2(4(1(5(x1))))))
, 5(0(1(2(x1)))) -> 0(2(1(3(4(5(x1))))))
, 4(5(2(2(x1)))) -> 2(5(0(2(4(1(x1))))))
, 3(3(5(2(x1)))) -> 3(0(2(1(5(3(x1))))))
, 3(1(5(2(x1)))) -> 0(2(1(5(3(x1)))))
, 3(0(3(2(x1)))) -> 3(0(0(0(2(3(x1))))))
, 2(0(3(2(x1)))) -> 1(3(0(2(2(x1)))))
, 0(3(2(2(x1)))) -> 0(0(4(2(3(2(x1))))))
, 0(3(2(2(x1)))) -> 0(0(2(3(2(x1)))))
, 0(1(5(2(x1)))) -> 5(0(2(1(1(x1)))))
, 0(1(3(2(x1)))) -> 3(0(2(4(1(1(x1))))))
, 0(1(3(2(x1)))) -> 3(3(0(2(1(x1)))))
, 0(1(3(2(x1)))) -> 0(2(1(4(3(x1)))))
, 0(1(2(2(x1)))) -> 0(2(3(2(1(x1)))))
, 0(1(2(2(x1)))) -> 0(2(2(1(1(x1)))))
, 0(1(1(2(x1)))) -> 0(2(1(1(3(x1)))))
, 0(3(2(x1))) -> 0(0(2(1(1(3(x1))))))
, 0(3(2(x1))) -> 0(2(1(1(3(x1)))))
, 0(3(2(x1))) -> 0(2(1(3(x1))))
, 0(1(2(x1))) -> 0(2(4(1(3(x1)))))
, 0(1(2(x1))) -> 0(2(4(1(1(x1)))))
, 0(1(2(x1))) -> 0(2(1(1(3(x1)))))
, 0(1(2(x1))) -> 0(2(1(3(x1))))
, 0(1(2(x1))) -> 0(2(1(1(x1))))}
StartTerms: all
Strategy: none
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..