Problem ICFP 2010 212421

Tool Bounds

Execution Time0.72550106ms
Answer
YES(?,O(n^1))
InputICFP 2010 212421

stdout:

YES(?,O(n^1))

We consider the following Problem:

  Strict Trs:
    {  5(0(4(4(2(x1))))) -> 0(5(2(5(4(4(x1))))))
     , 5(0(2(4(2(x1))))) -> 0(2(2(5(1(4(x1))))))
     , 5(0(1(2(2(x1))))) -> 5(0(2(2(1(2(x1))))))
     , 0(4(5(1(2(x1))))) -> 4(0(2(5(1(1(x1))))))
     , 0(4(5(1(2(x1))))) -> 1(4(2(0(5(5(x1))))))
     , 0(4(2(5(2(x1))))) -> 5(4(3(2(2(0(x1))))))
     , 0(4(2(1(4(x1))))) -> 0(2(1(4(4(4(x1))))))
     , 0(4(2(1(2(x1))))) -> 4(1(3(2(0(2(x1))))))
     , 0(4(1(2(5(x1))))) -> 3(4(1(0(2(5(x1))))))
     , 0(4(1(2(2(x1))))) -> 4(1(0(2(2(3(x1))))))
     , 0(4(1(1(2(x1))))) -> 3(1(4(0(2(1(x1))))))
     , 0(4(0(4(2(x1))))) -> 4(4(0(0(2(2(x1))))))
     , 0(3(5(1(2(x1))))) -> 5(5(3(2(1(0(x1))))))
     , 0(3(4(1(4(x1))))) -> 0(5(3(1(4(4(x1))))))
     , 0(3(1(5(2(x1))))) -> 0(3(2(5(1(2(x1))))))
     , 0(3(1(2(5(x1))))) -> 2(3(1(3(0(5(x1))))))
     , 0(2(3(4(2(x1))))) -> 3(2(2(3(4(0(x1))))))
     , 0(1(1(2(5(x1))))) -> 5(0(2(5(1(1(x1))))))
     , 5(0(1(2(x1)))) -> 5(0(2(1(3(3(x1))))))
     , 5(0(1(2(x1)))) -> 1(3(2(5(0(x1)))))
     , 0(3(4(2(x1)))) -> 0(2(2(3(4(x1)))))
     , 0(3(1(2(x1)))) -> 0(3(2(3(1(3(x1))))))
     , 0(3(1(2(x1)))) -> 3(2(2(1(0(x1)))))
     , 0(3(1(2(x1)))) -> 3(0(2(2(1(x1)))))
     , 0(3(1(2(x1)))) -> 1(5(0(2(3(x1)))))
     , 0(3(1(2(x1)))) -> 1(0(2(5(3(x1)))))
     , 0(3(1(2(x1)))) -> 0(2(1(3(2(x1)))))
     , 0(2(4(2(x1)))) -> 0(5(4(3(2(2(x1))))))
     , 0(1(5(2(x1)))) -> 5(5(0(2(1(3(x1))))))
     , 0(1(5(2(x1)))) -> 0(2(2(1(0(5(x1))))))
     , 0(1(5(2(x1)))) -> 1(5(0(2(3(x1)))))
     , 0(1(4(2(x1)))) -> 0(5(2(1(4(x1)))))
     , 0(1(2(5(x1)))) -> 3(5(5(2(1(0(x1))))))
     , 0(1(2(4(x1)))) -> 4(0(5(5(2(1(x1))))))
     , 0(1(2(4(x1)))) -> 4(0(2(2(1(1(x1))))))
     , 0(1(2(4(x1)))) -> 0(1(4(2(3(x1)))))
     , 0(1(2(2(x1)))) -> 1(3(0(2(2(x1)))))
     , 0(1(2(2(x1)))) -> 0(2(1(0(2(x1)))))
     , 0(0(4(2(x1)))) -> 0(0(2(2(3(4(x1))))))
     , 0(4(2(x1))) -> 4(0(5(5(2(x1)))))
     , 0(4(2(x1))) -> 4(0(2(3(x1))))
     , 0(2(4(x1))) -> 0(2(1(4(3(x1)))))
     , 0(1(2(x1))) -> 5(1(0(5(2(3(x1))))))
     , 0(1(2(x1))) -> 0(2(2(1(4(x1)))))
     , 0(1(2(x1))) -> 0(2(2(1(x1))))
     , 0(1(2(x1))) -> 0(2(1(3(x1))))
     , 0(1(2(x1))) -> 0(2(1(0(x1))))
     , 0(1(2(x1))) -> 0(1(3(2(x1))))}
  StartTerms: all
  Strategy: none

Certificate: YES(?,O(n^1))

Proof:
  The problem is match-bounded by 2.
  The enriched problem is compatible with the following automaton:
  {  2_0(1) -> 1
   , 2_0(2) -> 1
   , 2_0(3) -> 1
   , 2_0(4) -> 1
   , 2_0(5) -> 1
   , 2_0(6) -> 1
   , 2_1(1) -> 19
   , 2_1(2) -> 19
   , 2_1(3) -> 19
   , 2_1(4) -> 19
   , 2_1(5) -> 19
   , 2_1(6) -> 19
   , 2_1(9) -> 8
   , 2_1(10) -> 46
   , 2_1(12) -> 7
   , 2_1(13) -> 12
   , 2_1(14) -> 37
   , 2_1(17) -> 16
   , 2_1(18) -> 17
   , 2_1(19) -> 53
   , 2_1(22) -> 21
   , 2_1(23) -> 22
   , 2_1(24) -> 50
   , 2_1(27) -> 26
   , 2_1(29) -> 44
   , 2_1(33) -> 32
   , 2_1(34) -> 33
   , 2_1(36) -> 35
   , 2_1(37) -> 35
   , 2_1(40) -> 39
   , 2_1(42) -> 35
   , 2_1(46) -> 45
   , 2_1(47) -> 46
   , 2_1(50) -> 81
   , 2_1(54) -> 46
   , 2_1(55) -> 41
   , 2_1(56) -> 55
   , 2_1(57) -> 46
   , 2_1(59) -> 58
   , 2_1(60) -> 3
   , 2_1(60) -> 34
   , 2_1(62) -> 10
   , 2_1(64) -> 41
   , 2_1(65) -> 64
   , 2_1(78) -> 77
   , 2_1(79) -> 36
   , 2_1(80) -> 35
   , 2_1(84) -> 83
   , 2_2(14) -> 439
   , 2_2(60) -> 136
   , 2_2(62) -> 439
   , 2_2(79) -> 136
   , 2_2(94) -> 93
   , 2_2(101) -> 100
   , 2_2(113) -> 112
   , 2_2(115) -> 435
   , 2_2(122) -> 121
   , 2_2(136) -> 135
   , 2_2(160) -> 159
   , 2_2(161) -> 160
   , 2_2(177) -> 176
   , 2_2(179) -> 435
   , 2_2(182) -> 181
   , 2_2(280) -> 279
   , 2_2(284) -> 283
   , 2_2(429) -> 278
   , 2_2(436) -> 429
   , 2_2(439) -> 135
   , 2_2(441) -> 440
   , 2_2(442) -> 441
   , 2_2(444) -> 443
   , 2_2(445) -> 444
   , 2_2(446) -> 184
   , 2_2(697) -> 696
   , 2_2(703) -> 702
   , 2_2(704) -> 703
   , 1_0(1) -> 2
   , 1_0(2) -> 2
   , 1_0(3) -> 2
   , 1_0(4) -> 2
   , 1_0(5) -> 2
   , 1_0(6) -> 2
   , 1_1(1) -> 24
   , 1_1(2) -> 24
   , 1_1(3) -> 24
   , 1_1(4) -> 24
   , 1_1(5) -> 24
   , 1_1(6) -> 24
   , 1_1(10) -> 36
   , 1_1(11) -> 14
   , 1_1(14) -> 14
   , 1_1(15) -> 24
   , 1_1(18) -> 23
   , 1_1(19) -> 18
   , 1_1(20) -> 24
   , 1_1(24) -> 23
   , 1_1(25) -> 3
   , 1_1(25) -> 34
   , 1_1(30) -> 24
   , 1_1(34) -> 56
   , 1_1(35) -> 18
   , 1_1(37) -> 36
   , 1_1(38) -> 20
   , 1_1(40) -> 42
   , 1_1(41) -> 18
   , 1_1(43) -> 42
   , 1_1(47) -> 80
   , 1_1(48) -> 41
   , 1_1(54) -> 17
   , 1_1(56) -> 14
   , 1_1(57) -> 14
   , 1_1(59) -> 14
   , 1_1(60) -> 24
   , 1_1(62) -> 61
   , 1_1(63) -> 79
   , 1_1(75) -> 17
   , 1_1(76) -> 6
   , 1_1(76) -> 29
   , 1_1(76) -> 78
   , 1_1(78) -> 18
   , 1_1(82) -> 1
   , 1_1(98) -> 35
   , 1_1(432) -> 18
   , 1_2(14) -> 436
   , 1_2(62) -> 436
   , 1_2(95) -> 94
   , 1_2(114) -> 113
   , 1_2(115) -> 429
   , 1_2(124) -> 284
   , 1_2(178) -> 177
   , 1_2(179) -> 429
   , 1_2(180) -> 29
   , 1_2(180) -> 78
   , 1_2(183) -> 429
   , 1_2(281) -> 280
   , 1_2(430) -> 429
   , 1_2(433) -> 432
   , 1_2(437) -> 436
   , 1_2(438) -> 278
   , 1_2(447) -> 446
   , 1_2(465) -> 464
   , 1_2(698) -> 697
   , 0_0(1) -> 3
   , 0_0(2) -> 3
   , 0_0(3) -> 3
   , 0_0(4) -> 3
   , 0_0(5) -> 3
   , 0_0(6) -> 3
   , 0_1(1) -> 34
   , 0_1(2) -> 34
   , 0_1(3) -> 34
   , 0_1(4) -> 34
   , 0_1(5) -> 34
   , 0_1(6) -> 34
   , 0_1(7) -> 6
   , 0_1(7) -> 29
   , 0_1(7) -> 78
   , 0_1(13) -> 1
   , 0_1(14) -> 15
   , 0_1(15) -> 34
   , 0_1(16) -> 15
   , 0_1(19) -> 40
   , 0_1(20) -> 34
   , 0_1(21) -> 20
   , 0_1(28) -> 27
   , 0_1(29) -> 63
   , 0_1(30) -> 34
   , 0_1(35) -> 3
   , 0_1(35) -> 15
   , 0_1(35) -> 34
   , 0_1(35) -> 40
   , 0_1(35) -> 183
   , 0_1(36) -> 3
   , 0_1(36) -> 34
   , 0_1(37) -> 34
   , 0_1(40) -> 3
   , 0_1(41) -> 34
   , 0_1(42) -> 34
   , 0_1(44) -> 43
   , 0_1(45) -> 38
   , 0_1(46) -> 82
   , 0_1(50) -> 49
   , 0_1(52) -> 51
   , 0_1(53) -> 52
   , 0_1(55) -> 3
   , 0_1(55) -> 34
   , 0_1(58) -> 82
   , 0_1(60) -> 34
   , 0_1(62) -> 15
   , 0_1(64) -> 34
   , 0_1(78) -> 34
   , 0_1(80) -> 3
   , 0_1(80) -> 34
   , 0_1(81) -> 3
   , 0_1(81) -> 34
   , 0_1(81) -> 41
   , 0_1(82) -> 1
   , 0_1(83) -> 25
   , 0_1(96) -> 1
   , 0_1(432) -> 34
   , 0_2(14) -> 183
   , 0_2(27) -> 706
   , 0_2(60) -> 163
   , 0_2(62) -> 15
   , 0_2(62) -> 115
   , 0_2(92) -> 34
   , 0_2(100) -> 99
   , 0_2(112) -> 3
   , 0_2(112) -> 15
   , 0_2(112) -> 34
   , 0_2(112) -> 40
   , 0_2(112) -> 82
   , 0_2(112) -> 183
   , 0_2(120) -> 78
   , 0_2(134) -> 133
   , 0_2(135) -> 134
   , 0_2(176) -> 175
   , 0_2(278) -> 3
   , 0_2(278) -> 15
   , 0_2(278) -> 34
   , 0_2(278) -> 40
   , 0_2(278) -> 115
   , 0_2(278) -> 183
   , 0_2(282) -> 15
   , 0_2(282) -> 183
   , 0_2(434) -> 433
   , 0_2(435) -> 99
   , 0_2(440) -> 6
   , 0_2(440) -> 29
   , 0_2(440) -> 78
   , 0_2(440) -> 182
   , 0_2(443) -> 25
   , 0_2(463) -> 698
   , 3_0(1) -> 4
   , 3_0(2) -> 4
   , 3_0(3) -> 4
   , 3_0(4) -> 4
   , 3_0(5) -> 4
   , 3_0(6) -> 4
   , 3_1(1) -> 47
   , 3_1(2) -> 47
   , 3_1(3) -> 47
   , 3_1(4) -> 47
   , 3_1(5) -> 47
   , 3_1(6) -> 47
   , 3_1(11) -> 79
   , 3_1(14) -> 57
   , 3_1(19) -> 10
   , 3_1(20) -> 47
   , 3_1(32) -> 31
   , 3_1(33) -> 25
   , 3_1(34) -> 62
   , 3_1(36) -> 57
   , 3_1(37) -> 10
   , 3_1(39) -> 38
   , 3_1(40) -> 25
   , 3_1(41) -> 3
   , 3_1(41) -> 34
   , 3_1(41) -> 40
   , 3_1(42) -> 10
   , 3_1(45) -> 82
   , 3_1(46) -> 99
   , 3_1(47) -> 75
   , 3_1(52) -> 25
   , 3_1(53) -> 85
   , 3_1(55) -> 54
   , 3_1(57) -> 75
   , 3_1(58) -> 35
   , 3_1(60) -> 47
   , 3_1(61) -> 60
   , 3_1(62) -> 1
   , 3_1(63) -> 62
   , 3_1(64) -> 10
   , 3_1(66) -> 65
   , 3_1(77) -> 76
   , 3_1(80) -> 59
   , 3_1(82) -> 10
   , 3_2(10) -> 431
   , 3_2(11) -> 115
   , 3_2(14) -> 179
   , 3_2(20) -> 115
   , 3_2(25) -> 115
   , 3_2(34) -> 115
   , 3_2(36) -> 115
   , 3_2(47) -> 115
   , 3_2(60) -> 101
   , 3_2(62) -> 115
   , 3_2(79) -> 115
   , 3_2(82) -> 115
   , 3_2(85) -> 115
   , 3_2(114) -> 161
   , 3_2(115) -> 178
   , 3_2(124) -> 436
   , 3_2(135) -> 185
   , 3_2(159) -> 3
   , 3_2(159) -> 34
   , 3_2(159) -> 82
   , 3_2(159) -> 99
   , 3_2(162) -> 161
   , 3_2(179) -> 178
   , 3_2(181) -> 180
   , 3_2(439) -> 438
   , 3_2(464) -> 463
   , 3_2(702) -> 99
   , 3_2(705) -> 704
   , 4_0(1) -> 5
   , 4_0(2) -> 5
   , 4_0(3) -> 5
   , 4_0(4) -> 5
   , 4_0(5) -> 5
   , 4_0(6) -> 5
   , 4_1(1) -> 11
   , 4_1(2) -> 11
   , 4_1(3) -> 11
   , 4_1(4) -> 11
   , 4_1(5) -> 11
   , 4_1(6) -> 11
   , 4_1(10) -> 37
   , 4_1(11) -> 3
   , 4_1(11) -> 10
   , 4_1(11) -> 34
   , 4_1(20) -> 3
   , 4_1(20) -> 34
   , 4_1(25) -> 10
   , 4_1(26) -> 25
   , 4_1(27) -> 11
   , 4_1(31) -> 30
   , 4_1(34) -> 3
   , 4_1(34) -> 34
   , 4_1(34) -> 66
   , 4_1(36) -> 10
   , 4_1(42) -> 41
   , 4_1(46) -> 98
   , 4_1(47) -> 10
   , 4_1(49) -> 48
   , 4_1(51) -> 20
   , 4_1(60) -> 11
   , 4_1(62) -> 10
   , 4_1(79) -> 10
   , 4_1(82) -> 3
   , 4_1(82) -> 34
   , 4_1(85) -> 57
   , 4_2(10) -> 281
   , 4_2(14) -> 437
   , 4_2(26) -> 466
   , 4_2(27) -> 95
   , 4_2(47) -> 281
   , 4_2(54) -> 281
   , 4_2(57) -> 281
   , 4_2(60) -> 124
   , 4_2(62) -> 437
   , 4_2(79) -> 447
   , 4_2(99) -> 34
   , 4_2(115) -> 114
   , 4_2(124) -> 123
   , 4_2(133) -> 99
   , 4_2(163) -> 162
   , 4_2(185) -> 184
   , 4_2(431) -> 430
   , 4_2(447) -> 123
   , 4_2(466) -> 465
   , 4_2(706) -> 705
   , 5_0(1) -> 6
   , 5_0(2) -> 6
   , 5_0(3) -> 6
   , 5_0(4) -> 6
   , 5_0(5) -> 6
   , 5_0(6) -> 6
   , 5_1(1) -> 29
   , 5_1(2) -> 29
   , 5_1(3) -> 29
   , 5_1(4) -> 29
   , 5_1(5) -> 29
   , 5_1(6) -> 29
   , 5_1(8) -> 7
   , 5_1(10) -> 9
   , 5_1(14) -> 13
   , 5_1(15) -> 6
   , 5_1(15) -> 29
   , 5_1(15) -> 78
   , 5_1(18) -> 59
   , 5_1(19) -> 97
   , 5_1(20) -> 3
   , 5_1(20) -> 34
   , 5_1(23) -> 22
   , 5_1(29) -> 28
   , 5_1(30) -> 3
   , 5_1(30) -> 34
   , 5_1(34) -> 78
   , 5_1(35) -> 1
   , 5_1(36) -> 13
   , 5_1(37) -> 35
   , 5_1(41) -> 6
   , 5_1(42) -> 7
   , 5_1(46) -> 45
   , 5_1(47) -> 84
   , 5_1(50) -> 97
   , 5_1(54) -> 30
   , 5_1(55) -> 96
   , 5_1(56) -> 55
   , 5_1(57) -> 35
   , 5_1(60) -> 29
   , 5_1(64) -> 7
   , 5_1(78) -> 3
   , 5_1(78) -> 34
   , 5_1(80) -> 7
   , 5_1(82) -> 25
   , 5_1(96) -> 41
   , 5_1(97) -> 21
   , 5_1(432) -> 1
   , 5_2(93) -> 92
   , 5_2(115) -> 182
   , 5_2(121) -> 120
   , 5_2(123) -> 122
   , 5_2(136) -> 422
   , 5_2(175) -> 29
   , 5_2(175) -> 78
   , 5_2(183) -> 182
   , 5_2(184) -> 112
   , 5_2(279) -> 278
   , 5_2(283) -> 282
   , 5_2(422) -> 100
   , 5_2(429) -> 112
   , 5_2(432) -> 3
   , 5_2(432) -> 34
   , 5_2(435) -> 434
   , 5_2(436) -> 442
   , 5_2(439) -> 422
   , 5_2(446) -> 445
   , 5_2(463) -> 62
   , 5_2(695) -> 159
   , 5_2(696) -> 695}

Hurray, we answered YES(?,O(n^1))

Tool CDI

Execution Time60.049923ms
Answer
TIMEOUT
InputICFP 2010 212421

stdout:

TIMEOUT

Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0

Tool EDA

Execution Time60.11125ms
Answer
TIMEOUT
InputICFP 2010 212421

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  5(0(4(4(2(x1))))) -> 0(5(2(5(4(4(x1))))))
     , 5(0(2(4(2(x1))))) -> 0(2(2(5(1(4(x1))))))
     , 5(0(1(2(2(x1))))) -> 5(0(2(2(1(2(x1))))))
     , 0(4(5(1(2(x1))))) -> 4(0(2(5(1(1(x1))))))
     , 0(4(5(1(2(x1))))) -> 1(4(2(0(5(5(x1))))))
     , 0(4(2(5(2(x1))))) -> 5(4(3(2(2(0(x1))))))
     , 0(4(2(1(4(x1))))) -> 0(2(1(4(4(4(x1))))))
     , 0(4(2(1(2(x1))))) -> 4(1(3(2(0(2(x1))))))
     , 0(4(1(2(5(x1))))) -> 3(4(1(0(2(5(x1))))))
     , 0(4(1(2(2(x1))))) -> 4(1(0(2(2(3(x1))))))
     , 0(4(1(1(2(x1))))) -> 3(1(4(0(2(1(x1))))))
     , 0(4(0(4(2(x1))))) -> 4(4(0(0(2(2(x1))))))
     , 0(3(5(1(2(x1))))) -> 5(5(3(2(1(0(x1))))))
     , 0(3(4(1(4(x1))))) -> 0(5(3(1(4(4(x1))))))
     , 0(3(1(5(2(x1))))) -> 0(3(2(5(1(2(x1))))))
     , 0(3(1(2(5(x1))))) -> 2(3(1(3(0(5(x1))))))
     , 0(2(3(4(2(x1))))) -> 3(2(2(3(4(0(x1))))))
     , 0(1(1(2(5(x1))))) -> 5(0(2(5(1(1(x1))))))
     , 5(0(1(2(x1)))) -> 5(0(2(1(3(3(x1))))))
     , 5(0(1(2(x1)))) -> 1(3(2(5(0(x1)))))
     , 0(3(4(2(x1)))) -> 0(2(2(3(4(x1)))))
     , 0(3(1(2(x1)))) -> 0(3(2(3(1(3(x1))))))
     , 0(3(1(2(x1)))) -> 3(2(2(1(0(x1)))))
     , 0(3(1(2(x1)))) -> 3(0(2(2(1(x1)))))
     , 0(3(1(2(x1)))) -> 1(5(0(2(3(x1)))))
     , 0(3(1(2(x1)))) -> 1(0(2(5(3(x1)))))
     , 0(3(1(2(x1)))) -> 0(2(1(3(2(x1)))))
     , 0(2(4(2(x1)))) -> 0(5(4(3(2(2(x1))))))
     , 0(1(5(2(x1)))) -> 5(5(0(2(1(3(x1))))))
     , 0(1(5(2(x1)))) -> 0(2(2(1(0(5(x1))))))
     , 0(1(5(2(x1)))) -> 1(5(0(2(3(x1)))))
     , 0(1(4(2(x1)))) -> 0(5(2(1(4(x1)))))
     , 0(1(2(5(x1)))) -> 3(5(5(2(1(0(x1))))))
     , 0(1(2(4(x1)))) -> 4(0(5(5(2(1(x1))))))
     , 0(1(2(4(x1)))) -> 4(0(2(2(1(1(x1))))))
     , 0(1(2(4(x1)))) -> 0(1(4(2(3(x1)))))
     , 0(1(2(2(x1)))) -> 1(3(0(2(2(x1)))))
     , 0(1(2(2(x1)))) -> 0(2(1(0(2(x1)))))
     , 0(0(4(2(x1)))) -> 0(0(2(2(3(4(x1))))))
     , 0(4(2(x1))) -> 4(0(5(5(2(x1)))))
     , 0(4(2(x1))) -> 4(0(2(3(x1))))
     , 0(2(4(x1))) -> 0(2(1(4(3(x1)))))
     , 0(1(2(x1))) -> 5(1(0(5(2(3(x1))))))
     , 0(1(2(x1))) -> 0(2(2(1(4(x1)))))
     , 0(1(2(x1))) -> 0(2(2(1(x1))))
     , 0(1(2(x1))) -> 0(2(1(3(x1))))
     , 0(1(2(x1))) -> 0(2(1(0(x1))))
     , 0(1(2(x1))) -> 0(1(3(2(x1))))}
  StartTerms: all
  Strategy: none

Certificate: TIMEOUT

Proof:
  Computation stopped due to timeout after 60.0 seconds.

Arrrr..

Tool IDA

Execution Time60.54799ms
Answer
TIMEOUT
InputICFP 2010 212421

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  5(0(4(4(2(x1))))) -> 0(5(2(5(4(4(x1))))))
     , 5(0(2(4(2(x1))))) -> 0(2(2(5(1(4(x1))))))
     , 5(0(1(2(2(x1))))) -> 5(0(2(2(1(2(x1))))))
     , 0(4(5(1(2(x1))))) -> 4(0(2(5(1(1(x1))))))
     , 0(4(5(1(2(x1))))) -> 1(4(2(0(5(5(x1))))))
     , 0(4(2(5(2(x1))))) -> 5(4(3(2(2(0(x1))))))
     , 0(4(2(1(4(x1))))) -> 0(2(1(4(4(4(x1))))))
     , 0(4(2(1(2(x1))))) -> 4(1(3(2(0(2(x1))))))
     , 0(4(1(2(5(x1))))) -> 3(4(1(0(2(5(x1))))))
     , 0(4(1(2(2(x1))))) -> 4(1(0(2(2(3(x1))))))
     , 0(4(1(1(2(x1))))) -> 3(1(4(0(2(1(x1))))))
     , 0(4(0(4(2(x1))))) -> 4(4(0(0(2(2(x1))))))
     , 0(3(5(1(2(x1))))) -> 5(5(3(2(1(0(x1))))))
     , 0(3(4(1(4(x1))))) -> 0(5(3(1(4(4(x1))))))
     , 0(3(1(5(2(x1))))) -> 0(3(2(5(1(2(x1))))))
     , 0(3(1(2(5(x1))))) -> 2(3(1(3(0(5(x1))))))
     , 0(2(3(4(2(x1))))) -> 3(2(2(3(4(0(x1))))))
     , 0(1(1(2(5(x1))))) -> 5(0(2(5(1(1(x1))))))
     , 5(0(1(2(x1)))) -> 5(0(2(1(3(3(x1))))))
     , 5(0(1(2(x1)))) -> 1(3(2(5(0(x1)))))
     , 0(3(4(2(x1)))) -> 0(2(2(3(4(x1)))))
     , 0(3(1(2(x1)))) -> 0(3(2(3(1(3(x1))))))
     , 0(3(1(2(x1)))) -> 3(2(2(1(0(x1)))))
     , 0(3(1(2(x1)))) -> 3(0(2(2(1(x1)))))
     , 0(3(1(2(x1)))) -> 1(5(0(2(3(x1)))))
     , 0(3(1(2(x1)))) -> 1(0(2(5(3(x1)))))
     , 0(3(1(2(x1)))) -> 0(2(1(3(2(x1)))))
     , 0(2(4(2(x1)))) -> 0(5(4(3(2(2(x1))))))
     , 0(1(5(2(x1)))) -> 5(5(0(2(1(3(x1))))))
     , 0(1(5(2(x1)))) -> 0(2(2(1(0(5(x1))))))
     , 0(1(5(2(x1)))) -> 1(5(0(2(3(x1)))))
     , 0(1(4(2(x1)))) -> 0(5(2(1(4(x1)))))
     , 0(1(2(5(x1)))) -> 3(5(5(2(1(0(x1))))))
     , 0(1(2(4(x1)))) -> 4(0(5(5(2(1(x1))))))
     , 0(1(2(4(x1)))) -> 4(0(2(2(1(1(x1))))))
     , 0(1(2(4(x1)))) -> 0(1(4(2(3(x1)))))
     , 0(1(2(2(x1)))) -> 1(3(0(2(2(x1)))))
     , 0(1(2(2(x1)))) -> 0(2(1(0(2(x1)))))
     , 0(0(4(2(x1)))) -> 0(0(2(2(3(4(x1))))))
     , 0(4(2(x1))) -> 4(0(5(5(2(x1)))))
     , 0(4(2(x1))) -> 4(0(2(3(x1))))
     , 0(2(4(x1))) -> 0(2(1(4(3(x1)))))
     , 0(1(2(x1))) -> 5(1(0(5(2(3(x1))))))
     , 0(1(2(x1))) -> 0(2(2(1(4(x1)))))
     , 0(1(2(x1))) -> 0(2(2(1(x1))))
     , 0(1(2(x1))) -> 0(2(1(3(x1))))
     , 0(1(2(x1))) -> 0(2(1(0(x1))))
     , 0(1(2(x1))) -> 0(1(3(2(x1))))}
  StartTerms: all
  Strategy: none

Certificate: TIMEOUT

Proof:
  Computation stopped due to timeout after 60.0 seconds.

Arrrr..

Tool TRI

Execution Time60.12187ms
Answer
TIMEOUT
InputICFP 2010 212421

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  5(0(4(4(2(x1))))) -> 0(5(2(5(4(4(x1))))))
     , 5(0(2(4(2(x1))))) -> 0(2(2(5(1(4(x1))))))
     , 5(0(1(2(2(x1))))) -> 5(0(2(2(1(2(x1))))))
     , 0(4(5(1(2(x1))))) -> 4(0(2(5(1(1(x1))))))
     , 0(4(5(1(2(x1))))) -> 1(4(2(0(5(5(x1))))))
     , 0(4(2(5(2(x1))))) -> 5(4(3(2(2(0(x1))))))
     , 0(4(2(1(4(x1))))) -> 0(2(1(4(4(4(x1))))))
     , 0(4(2(1(2(x1))))) -> 4(1(3(2(0(2(x1))))))
     , 0(4(1(2(5(x1))))) -> 3(4(1(0(2(5(x1))))))
     , 0(4(1(2(2(x1))))) -> 4(1(0(2(2(3(x1))))))
     , 0(4(1(1(2(x1))))) -> 3(1(4(0(2(1(x1))))))
     , 0(4(0(4(2(x1))))) -> 4(4(0(0(2(2(x1))))))
     , 0(3(5(1(2(x1))))) -> 5(5(3(2(1(0(x1))))))
     , 0(3(4(1(4(x1))))) -> 0(5(3(1(4(4(x1))))))
     , 0(3(1(5(2(x1))))) -> 0(3(2(5(1(2(x1))))))
     , 0(3(1(2(5(x1))))) -> 2(3(1(3(0(5(x1))))))
     , 0(2(3(4(2(x1))))) -> 3(2(2(3(4(0(x1))))))
     , 0(1(1(2(5(x1))))) -> 5(0(2(5(1(1(x1))))))
     , 5(0(1(2(x1)))) -> 5(0(2(1(3(3(x1))))))
     , 5(0(1(2(x1)))) -> 1(3(2(5(0(x1)))))
     , 0(3(4(2(x1)))) -> 0(2(2(3(4(x1)))))
     , 0(3(1(2(x1)))) -> 0(3(2(3(1(3(x1))))))
     , 0(3(1(2(x1)))) -> 3(2(2(1(0(x1)))))
     , 0(3(1(2(x1)))) -> 3(0(2(2(1(x1)))))
     , 0(3(1(2(x1)))) -> 1(5(0(2(3(x1)))))
     , 0(3(1(2(x1)))) -> 1(0(2(5(3(x1)))))
     , 0(3(1(2(x1)))) -> 0(2(1(3(2(x1)))))
     , 0(2(4(2(x1)))) -> 0(5(4(3(2(2(x1))))))
     , 0(1(5(2(x1)))) -> 5(5(0(2(1(3(x1))))))
     , 0(1(5(2(x1)))) -> 0(2(2(1(0(5(x1))))))
     , 0(1(5(2(x1)))) -> 1(5(0(2(3(x1)))))
     , 0(1(4(2(x1)))) -> 0(5(2(1(4(x1)))))
     , 0(1(2(5(x1)))) -> 3(5(5(2(1(0(x1))))))
     , 0(1(2(4(x1)))) -> 4(0(5(5(2(1(x1))))))
     , 0(1(2(4(x1)))) -> 4(0(2(2(1(1(x1))))))
     , 0(1(2(4(x1)))) -> 0(1(4(2(3(x1)))))
     , 0(1(2(2(x1)))) -> 1(3(0(2(2(x1)))))
     , 0(1(2(2(x1)))) -> 0(2(1(0(2(x1)))))
     , 0(0(4(2(x1)))) -> 0(0(2(2(3(4(x1))))))
     , 0(4(2(x1))) -> 4(0(5(5(2(x1)))))
     , 0(4(2(x1))) -> 4(0(2(3(x1))))
     , 0(2(4(x1))) -> 0(2(1(4(3(x1)))))
     , 0(1(2(x1))) -> 5(1(0(5(2(3(x1))))))
     , 0(1(2(x1))) -> 0(2(2(1(4(x1)))))
     , 0(1(2(x1))) -> 0(2(2(1(x1))))
     , 0(1(2(x1))) -> 0(2(1(3(x1))))
     , 0(1(2(x1))) -> 0(2(1(0(x1))))
     , 0(1(2(x1))) -> 0(1(3(2(x1))))}
  StartTerms: all
  Strategy: none

Certificate: TIMEOUT

Proof:
  Computation stopped due to timeout after 60.0 seconds.

Arrrr..

Tool TRI2

Execution Time19.91798ms
Answer
MAYBE
InputICFP 2010 212421

stdout:

MAYBE

We consider the following Problem:

  Strict Trs:
    {  5(0(4(4(2(x1))))) -> 0(5(2(5(4(4(x1))))))
     , 5(0(2(4(2(x1))))) -> 0(2(2(5(1(4(x1))))))
     , 5(0(1(2(2(x1))))) -> 5(0(2(2(1(2(x1))))))
     , 0(4(5(1(2(x1))))) -> 4(0(2(5(1(1(x1))))))
     , 0(4(5(1(2(x1))))) -> 1(4(2(0(5(5(x1))))))
     , 0(4(2(5(2(x1))))) -> 5(4(3(2(2(0(x1))))))
     , 0(4(2(1(4(x1))))) -> 0(2(1(4(4(4(x1))))))
     , 0(4(2(1(2(x1))))) -> 4(1(3(2(0(2(x1))))))
     , 0(4(1(2(5(x1))))) -> 3(4(1(0(2(5(x1))))))
     , 0(4(1(2(2(x1))))) -> 4(1(0(2(2(3(x1))))))
     , 0(4(1(1(2(x1))))) -> 3(1(4(0(2(1(x1))))))
     , 0(4(0(4(2(x1))))) -> 4(4(0(0(2(2(x1))))))
     , 0(3(5(1(2(x1))))) -> 5(5(3(2(1(0(x1))))))
     , 0(3(4(1(4(x1))))) -> 0(5(3(1(4(4(x1))))))
     , 0(3(1(5(2(x1))))) -> 0(3(2(5(1(2(x1))))))
     , 0(3(1(2(5(x1))))) -> 2(3(1(3(0(5(x1))))))
     , 0(2(3(4(2(x1))))) -> 3(2(2(3(4(0(x1))))))
     , 0(1(1(2(5(x1))))) -> 5(0(2(5(1(1(x1))))))
     , 5(0(1(2(x1)))) -> 5(0(2(1(3(3(x1))))))
     , 5(0(1(2(x1)))) -> 1(3(2(5(0(x1)))))
     , 0(3(4(2(x1)))) -> 0(2(2(3(4(x1)))))
     , 0(3(1(2(x1)))) -> 0(3(2(3(1(3(x1))))))
     , 0(3(1(2(x1)))) -> 3(2(2(1(0(x1)))))
     , 0(3(1(2(x1)))) -> 3(0(2(2(1(x1)))))
     , 0(3(1(2(x1)))) -> 1(5(0(2(3(x1)))))
     , 0(3(1(2(x1)))) -> 1(0(2(5(3(x1)))))
     , 0(3(1(2(x1)))) -> 0(2(1(3(2(x1)))))
     , 0(2(4(2(x1)))) -> 0(5(4(3(2(2(x1))))))
     , 0(1(5(2(x1)))) -> 5(5(0(2(1(3(x1))))))
     , 0(1(5(2(x1)))) -> 0(2(2(1(0(5(x1))))))
     , 0(1(5(2(x1)))) -> 1(5(0(2(3(x1)))))
     , 0(1(4(2(x1)))) -> 0(5(2(1(4(x1)))))
     , 0(1(2(5(x1)))) -> 3(5(5(2(1(0(x1))))))
     , 0(1(2(4(x1)))) -> 4(0(5(5(2(1(x1))))))
     , 0(1(2(4(x1)))) -> 4(0(2(2(1(1(x1))))))
     , 0(1(2(4(x1)))) -> 0(1(4(2(3(x1)))))
     , 0(1(2(2(x1)))) -> 1(3(0(2(2(x1)))))
     , 0(1(2(2(x1)))) -> 0(2(1(0(2(x1)))))
     , 0(0(4(2(x1)))) -> 0(0(2(2(3(4(x1))))))
     , 0(4(2(x1))) -> 4(0(5(5(2(x1)))))
     , 0(4(2(x1))) -> 4(0(2(3(x1))))
     , 0(2(4(x1))) -> 0(2(1(4(3(x1)))))
     , 0(1(2(x1))) -> 5(1(0(5(2(3(x1))))))
     , 0(1(2(x1))) -> 0(2(2(1(4(x1)))))
     , 0(1(2(x1))) -> 0(2(2(1(x1))))
     , 0(1(2(x1))) -> 0(2(1(3(x1))))
     , 0(1(2(x1))) -> 0(2(1(0(x1))))
     , 0(1(2(x1))) -> 0(1(3(2(x1))))}
  StartTerms: all
  Strategy: none

Certificate: MAYBE

Proof:
  The input cannot be shown compatible

Arrrr..