Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 5(4(2(0(1(x1))))) -> 2(5(4(0(2(1(x1))))))
, 5(1(0(0(5(x1))))) -> 5(0(0(2(1(5(x1))))))
, 4(0(0(3(1(x1))))) -> 4(3(2(0(0(1(x1))))))
, 4(0(0(3(1(x1))))) -> 4(0(3(2(1(0(x1))))))
, 1(2(4(3(1(x1))))) -> 1(2(3(3(1(4(x1))))))
, 0(5(4(1(1(x1))))) -> 4(0(2(5(1(1(x1))))))
, 0(2(4(3(1(x1))))) -> 0(2(3(1(4(2(x1))))))
, 0(0(3(3(1(x1))))) -> 0(3(0(1(2(3(x1))))))
, 5(5(0(4(x1)))) -> 5(0(2(5(4(2(x1))))))
, 5(4(3(1(x1)))) -> 5(2(4(3(2(1(x1))))))
, 5(4(3(1(x1)))) -> 3(5(2(4(2(1(x1))))))
, 5(4(3(1(x1)))) -> 5(4(2(1(3(x1)))))
, 5(4(1(5(x1)))) -> 2(1(5(4(2(5(x1))))))
, 5(4(1(5(x1)))) -> 4(5(5(2(1(x1)))))
, 5(2(4(1(x1)))) -> 2(1(4(2(5(x1)))))
, 5(0(5(1(x1)))) -> 5(2(5(3(1(0(x1))))))
, 5(0(3(1(x1)))) -> 0(3(5(2(2(1(x1))))))
, 5(0(3(1(x1)))) -> 0(5(3(2(1(x1)))))
, 5(0(0(1(x1)))) -> 0(3(2(5(1(0(x1))))))
, 4(1(0(4(x1)))) -> 4(4(0(2(1(x1)))))
, 4(1(0(0(x1)))) -> 3(2(1(4(0(0(x1))))))
, 4(0(5(1(x1)))) -> 0(2(4(2(1(5(x1))))))
, 1(4(1(5(x1)))) -> 2(1(2(5(1(4(x1))))))
, 1(3(0(4(x1)))) -> 4(0(3(2(1(3(x1))))))
, 1(2(0(4(x1)))) -> 1(4(2(0(3(2(x1))))))
, 1(0(3(1(x1)))) -> 4(2(3(1(1(0(x1))))))
, 1(0(1(4(x1)))) -> 2(3(1(1(4(0(x1))))))
, 0(4(0(4(x1)))) -> 0(0(3(2(4(4(x1))))))
, 0(3(4(0(x1)))) -> 3(2(4(0(0(3(x1))))))
, 0(2(0(1(x1)))) -> 0(0(2(1(3(x1)))))
, 0(1(2(0(x1)))) -> 2(0(2(1(0(x1)))))
, 0(0(4(5(x1)))) -> 0(5(0(2(4(2(x1))))))
, 5(4(1(x1))) -> 4(5(2(1(3(3(x1))))))
, 5(4(1(x1))) -> 2(4(2(5(1(3(x1))))))
, 5(0(5(x1))) -> 0(3(2(5(3(5(x1))))))
, 5(0(1(x1))) -> 3(0(2(3(5(1(x1))))))
, 5(0(1(x1))) -> 0(3(2(1(5(5(x1))))))
, 5(0(1(x1))) -> 0(2(1(5(3(x1)))))
, 5(0(1(x1))) -> 5(0(2(1(x1))))
, 4(0(1(x1))) -> 4(0(2(1(x1))))
, 1(4(1(x1))) -> 4(2(1(1(2(1(x1))))))
, 1(4(1(x1))) -> 4(2(1(1(x1))))
, 1(4(0(x1))) -> 1(0(3(2(4(2(x1))))))
, 1(0(1(x1))) -> 1(0(3(2(1(x1)))))
, 1(0(1(x1))) -> 0(2(1(1(2(x1)))))
, 1(0(1(x1))) -> 0(2(1(1(x1))))
, 0(4(1(x1))) -> 0(2(3(1(4(2(x1))))))
, 0(4(1(x1))) -> 0(4(2(2(1(x1)))))
, 0(0(1(x1))) -> 0(0(2(2(3(1(x1))))))
, 0(0(1(x1))) -> 0(0(2(1(3(x1)))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 3.
The enriched problem is compatible with the following automaton:
{ 1_0(1) -> 1
, 1_0(2) -> 1
, 1_0(3) -> 1
, 1_0(4) -> 1
, 1_0(5) -> 1
, 1_0(6) -> 1
, 1_1(1) -> 11
, 1_1(2) -> 11
, 1_1(3) -> 11
, 1_1(4) -> 11
, 1_1(5) -> 11
, 1_1(6) -> 11
, 1_1(8) -> 11
, 1_1(9) -> 11
, 1_1(10) -> 126
, 1_1(11) -> 33
, 1_1(12) -> 11
, 1_1(13) -> 11
, 1_1(16) -> 15
, 1_1(17) -> 11
, 1_1(23) -> 87
, 1_1(24) -> 23
, 1_1(25) -> 1
, 1_1(25) -> 11
, 1_1(25) -> 23
, 1_1(25) -> 28
, 1_1(25) -> 148
, 1_1(25) -> 151
, 1_1(25) -> 162
, 1_1(29) -> 28
, 1_1(30) -> 11
, 1_1(34) -> 15
, 1_1(37) -> 36
, 1_1(38) -> 148
, 1_1(41) -> 40
, 1_1(42) -> 50
, 1_1(51) -> 7
, 1_1(52) -> 7
, 1_1(54) -> 11
, 1_1(59) -> 15
, 1_1(61) -> 11
, 1_1(62) -> 122
, 1_1(73) -> 88
, 1_1(74) -> 73
, 1_1(79) -> 78
, 1_1(81) -> 11
, 1_1(85) -> 50
, 1_1(98) -> 28
, 1_1(99) -> 1
, 1_1(99) -> 11
, 1_1(99) -> 162
, 1_1(100) -> 11
, 1_1(101) -> 11
, 1_1(110) -> 109
, 1_1(121) -> 62
, 1_1(126) -> 86
, 1_1(148) -> 147
, 1_1(257) -> 11
, 1_2(1) -> 162
, 1_2(2) -> 162
, 1_2(3) -> 162
, 1_2(4) -> 162
, 1_2(5) -> 162
, 1_2(6) -> 162
, 1_2(8) -> 87
, 1_2(9) -> 87
, 1_2(12) -> 162
, 1_2(13) -> 87
, 1_2(17) -> 162
, 1_2(25) -> 125
, 1_2(30) -> 125
, 1_2(54) -> 125
, 1_2(61) -> 87
, 1_2(81) -> 87
, 1_2(91) -> 90
, 1_2(92) -> 91
, 1_2(99) -> 125
, 1_2(100) -> 87
, 1_2(101) -> 87
, 1_2(117) -> 171
, 1_2(124) -> 129
, 1_2(125) -> 128
, 1_2(129) -> 128
, 1_2(131) -> 11
, 1_2(131) -> 28
, 1_2(131) -> 73
, 1_2(131) -> 87
, 1_2(131) -> 162
, 1_2(135) -> 151
, 1_2(136) -> 11
, 1_2(136) -> 23
, 1_2(136) -> 28
, 1_2(136) -> 33
, 1_2(136) -> 73
, 1_2(136) -> 87
, 1_2(136) -> 162
, 1_2(136) -> 316
, 1_2(151) -> 150
, 1_2(163) -> 160
, 1_2(178) -> 323
, 1_2(179) -> 178
, 1_2(211) -> 210
, 1_2(215) -> 148
, 1_2(215) -> 151
, 1_2(246) -> 160
, 1_2(250) -> 249
, 1_2(257) -> 1
, 1_2(257) -> 11
, 1_2(257) -> 23
, 1_2(257) -> 28
, 1_2(257) -> 125
, 1_2(257) -> 128
, 1_2(257) -> 148
, 1_2(257) -> 151
, 1_2(257) -> 162
, 1_2(257) -> 269
, 1_2(317) -> 316
, 1_3(25) -> 269
, 1_3(30) -> 269
, 1_3(54) -> 269
, 1_3(99) -> 269
, 1_3(141) -> 91
, 1_3(257) -> 269
, 1_3(280) -> 267
, 1_3(330) -> 329
, 1_3(334) -> 316
, 0_0(1) -> 2
, 0_0(2) -> 2
, 0_0(3) -> 2
, 0_0(4) -> 2
, 0_0(5) -> 2
, 0_0(6) -> 2
, 0_1(1) -> 24
, 0_1(2) -> 24
, 0_1(3) -> 24
, 0_1(4) -> 24
, 0_1(5) -> 24
, 0_1(6) -> 24
, 0_1(8) -> 24
, 0_1(9) -> 9
, 0_1(10) -> 9
, 0_1(11) -> 20
, 0_1(13) -> 12
, 0_1(14) -> 13
, 0_1(17) -> 24
, 0_1(20) -> 19
, 0_1(21) -> 17
, 0_1(22) -> 101
, 0_1(24) -> 75
, 0_1(25) -> 24
, 0_1(30) -> 24
, 0_1(31) -> 30
, 0_1(34) -> 2
, 0_1(34) -> 24
, 0_1(34) -> 75
, 0_1(34) -> 99
, 0_1(34) -> 250
, 0_1(34) -> 318
, 0_1(37) -> 2
, 0_1(37) -> 24
, 0_1(40) -> 39
, 0_1(42) -> 100
, 0_1(45) -> 25
, 0_1(49) -> 34
, 0_1(54) -> 24
, 0_1(59) -> 6
, 0_1(59) -> 16
, 0_1(76) -> 5
, 0_1(76) -> 29
, 0_1(76) -> 74
, 0_1(81) -> 1
, 0_1(81) -> 11
, 0_1(81) -> 23
, 0_1(81) -> 24
, 0_1(81) -> 162
, 0_1(82) -> 81
, 0_1(83) -> 24
, 0_1(85) -> 84
, 0_1(94) -> 34
, 0_1(97) -> 102
, 0_1(99) -> 24
, 0_1(100) -> 99
, 0_1(103) -> 102
, 0_1(118) -> 46
, 0_1(130) -> 25
, 0_1(146) -> 1
, 0_1(146) -> 11
, 0_1(146) -> 23
, 0_1(146) -> 162
, 0_1(257) -> 24
, 0_1(258) -> 1
, 0_2(9) -> 250
, 0_2(10) -> 250
, 0_2(14) -> 250
, 0_2(22) -> 250
, 0_2(25) -> 179
, 0_2(34) -> 250
, 0_2(42) -> 250
, 0_2(49) -> 250
, 0_2(83) -> 93
, 0_2(94) -> 250
, 0_2(99) -> 179
, 0_2(100) -> 250
, 0_2(104) -> 75
, 0_2(106) -> 105
, 0_2(113) -> 16
, 0_2(113) -> 121
, 0_2(124) -> 123
, 0_2(125) -> 175
, 0_2(127) -> 23
, 0_2(132) -> 131
, 0_2(137) -> 136
, 0_2(149) -> 23
, 0_2(158) -> 19
, 0_2(158) -> 75
, 0_2(159) -> 158
, 0_2(163) -> 213
, 0_2(169) -> 168
, 0_2(170) -> 169
, 0_2(175) -> 174
, 0_2(176) -> 172
, 0_2(181) -> 180
, 0_2(208) -> 207
, 0_2(209) -> 158
, 0_2(214) -> 213
, 0_2(218) -> 217
, 0_2(245) -> 244
, 0_2(246) -> 245
, 0_2(248) -> 247
, 0_2(250) -> 318
, 0_2(257) -> 179
, 0_2(258) -> 257
, 0_3(142) -> 141
, 0_3(258) -> 330
, 0_3(265) -> 174
, 0_3(266) -> 265
, 0_3(328) -> 327
, 0_3(335) -> 334
, 3_0(1) -> 3
, 3_0(2) -> 3
, 3_0(3) -> 3
, 3_0(4) -> 3
, 3_0(5) -> 3
, 3_0(6) -> 3
, 3_1(1) -> 42
, 3_1(2) -> 42
, 3_1(3) -> 42
, 3_1(4) -> 42
, 3_1(5) -> 42
, 3_1(6) -> 42
, 3_1(8) -> 42
, 3_1(9) -> 42
, 3_1(10) -> 45
, 3_1(11) -> 153
, 3_1(16) -> 23
, 3_1(17) -> 42
, 3_1(18) -> 17
, 3_1(21) -> 42
, 3_1(22) -> 21
, 3_1(23) -> 58
, 3_1(25) -> 42
, 3_1(27) -> 26
, 3_1(28) -> 27
, 3_1(30) -> 42
, 3_1(31) -> 42
, 3_1(34) -> 42
, 3_1(36) -> 35
, 3_1(37) -> 1
, 3_1(38) -> 85
, 3_1(39) -> 34
, 3_1(42) -> 110
, 3_1(46) -> 6
, 3_1(46) -> 16
, 3_1(49) -> 82
, 3_1(54) -> 42
, 3_1(59) -> 42
, 3_1(60) -> 59
, 3_1(61) -> 42
, 3_1(72) -> 5
, 3_1(72) -> 29
, 3_1(76) -> 42
, 3_1(81) -> 42
, 3_1(82) -> 42
, 3_1(87) -> 86
, 3_1(88) -> 78
, 3_1(95) -> 94
, 3_1(97) -> 2
, 3_1(97) -> 24
, 3_1(97) -> 100
, 3_1(97) -> 213
, 3_1(97) -> 250
, 3_1(99) -> 42
, 3_1(103) -> 130
, 3_1(120) -> 119
, 3_1(146) -> 1
, 3_1(257) -> 42
, 3_1(258) -> 1
, 3_2(1) -> 163
, 3_2(2) -> 163
, 3_2(3) -> 163
, 3_2(4) -> 163
, 3_2(5) -> 163
, 3_2(6) -> 163
, 3_2(8) -> 163
, 3_2(9) -> 246
, 3_2(10) -> 246
, 3_2(12) -> 163
, 3_2(13) -> 163
, 3_2(17) -> 163
, 3_2(21) -> 246
, 3_2(25) -> 163
, 3_2(30) -> 163
, 3_2(31) -> 246
, 3_2(38) -> 211
, 3_2(45) -> 246
, 3_2(54) -> 163
, 3_2(61) -> 211
, 3_2(81) -> 163
, 3_2(82) -> 246
, 3_2(87) -> 161
, 3_2(90) -> 89
, 3_2(99) -> 163
, 3_2(100) -> 163
, 3_2(101) -> 163
, 3_2(114) -> 113
, 3_2(117) -> 116
, 3_2(124) -> 137
, 3_2(125) -> 161
, 3_2(130) -> 246
, 3_2(131) -> 163
, 3_2(133) -> 132
, 3_2(135) -> 214
, 3_2(136) -> 163
, 3_2(138) -> 137
, 3_2(162) -> 161
, 3_2(173) -> 172
, 3_2(177) -> 176
, 3_2(184) -> 218
, 3_2(209) -> 208
, 3_2(242) -> 100
, 3_2(242) -> 213
, 3_2(242) -> 250
, 3_2(257) -> 163
, 3_2(258) -> 246
, 3_2(259) -> 258
, 3_2(315) -> 29
, 3_2(323) -> 322
, 3_3(25) -> 280
, 3_3(30) -> 280
, 3_3(54) -> 280
, 3_3(99) -> 280
, 3_3(143) -> 142
, 3_3(257) -> 280
, 3_3(269) -> 268
, 3_3(336) -> 335
, 2_0(1) -> 4
, 2_0(2) -> 4
, 2_0(3) -> 4
, 2_0(4) -> 4
, 2_0(5) -> 4
, 2_0(6) -> 4
, 2_1(1) -> 38
, 2_1(2) -> 38
, 2_1(3) -> 38
, 2_1(4) -> 38
, 2_1(5) -> 38
, 2_1(6) -> 38
, 2_1(7) -> 6
, 2_1(7) -> 16
, 2_1(8) -> 38
, 2_1(9) -> 2
, 2_1(9) -> 20
, 2_1(9) -> 24
, 2_1(10) -> 61
, 2_1(11) -> 10
, 2_1(12) -> 38
, 2_1(13) -> 2
, 2_1(13) -> 20
, 2_1(13) -> 24
, 2_1(15) -> 14
, 2_1(16) -> 43
, 2_1(16) -> 53
, 2_1(17) -> 38
, 2_1(19) -> 18
, 2_1(21) -> 38
, 2_1(23) -> 22
, 2_1(25) -> 38
, 2_1(26) -> 25
, 2_1(27) -> 34
, 2_1(28) -> 72
, 2_1(29) -> 95
, 2_1(30) -> 38
, 2_1(31) -> 38
, 2_1(32) -> 31
, 2_1(33) -> 81
, 2_1(34) -> 38
, 2_1(35) -> 34
, 2_1(37) -> 103
, 2_1(38) -> 9
, 2_1(42) -> 41
, 2_1(43) -> 13
, 2_1(44) -> 12
, 2_1(48) -> 47
, 2_1(50) -> 49
, 2_1(54) -> 38
, 2_1(55) -> 38
, 2_1(59) -> 38
, 2_1(61) -> 9
, 2_1(62) -> 60
, 2_1(73) -> 72
, 2_1(74) -> 97
, 2_1(76) -> 38
, 2_1(77) -> 76
, 2_1(78) -> 1
, 2_1(78) -> 11
, 2_1(78) -> 23
, 2_1(78) -> 28
, 2_1(78) -> 162
, 2_1(80) -> 79
, 2_1(81) -> 38
, 2_1(82) -> 38
, 2_1(84) -> 83
, 2_1(86) -> 81
, 2_1(96) -> 95
, 2_1(98) -> 97
, 2_1(99) -> 1
, 2_1(100) -> 25
, 2_1(101) -> 2
, 2_1(101) -> 20
, 2_1(101) -> 24
, 2_1(109) -> 55
, 2_1(112) -> 111
, 2_1(119) -> 118
, 2_1(122) -> 59
, 2_1(146) -> 9
, 2_1(147) -> 146
, 2_1(148) -> 10
, 2_1(153) -> 50
, 2_1(257) -> 1
, 2_1(258) -> 9
, 2_2(1) -> 135
, 2_2(2) -> 135
, 2_2(3) -> 135
, 2_2(4) -> 135
, 2_2(5) -> 135
, 2_2(6) -> 135
, 2_2(8) -> 135
, 2_2(9) -> 135
, 2_2(10) -> 140
, 2_2(13) -> 140
, 2_2(17) -> 135
, 2_2(21) -> 140
, 2_2(24) -> 135
, 2_2(25) -> 135
, 2_2(30) -> 135
, 2_2(31) -> 140
, 2_2(34) -> 140
, 2_2(37) -> 135
, 2_2(38) -> 184
, 2_2(45) -> 261
, 2_2(54) -> 135
, 2_2(55) -> 108
, 2_2(59) -> 140
, 2_2(61) -> 184
, 2_2(76) -> 140
, 2_2(81) -> 135
, 2_2(82) -> 140
, 2_2(83) -> 135
, 2_2(89) -> 23
, 2_2(99) -> 25
, 2_2(100) -> 25
, 2_2(104) -> 135
, 2_2(107) -> 106
, 2_2(115) -> 114
, 2_2(123) -> 20
, 2_2(123) -> 24
, 2_2(124) -> 135
, 2_2(125) -> 124
, 2_2(128) -> 127
, 2_2(130) -> 261
, 2_2(134) -> 133
, 2_2(139) -> 138
, 2_2(146) -> 135
, 2_2(150) -> 149
, 2_2(158) -> 135
, 2_2(160) -> 159
, 2_2(161) -> 160
, 2_2(171) -> 170
, 2_2(174) -> 173
, 2_2(176) -> 25
, 2_2(178) -> 177
, 2_2(182) -> 181
, 2_2(210) -> 209
, 2_2(213) -> 212
, 2_2(217) -> 216
, 2_2(243) -> 242
, 2_2(247) -> 20
, 2_2(247) -> 24
, 2_2(247) -> 175
, 2_2(249) -> 248
, 2_2(257) -> 25
, 2_2(258) -> 261
, 2_2(260) -> 259
, 2_2(316) -> 315
, 2_2(322) -> 321
, 2_3(25) -> 145
, 2_3(83) -> 145
, 2_3(99) -> 145
, 2_3(144) -> 143
, 2_3(176) -> 338
, 2_3(250) -> 338
, 2_3(257) -> 145
, 2_3(267) -> 266
, 2_3(268) -> 267
, 2_3(327) -> 175
, 2_3(329) -> 328
, 2_3(337) -> 336
, 4_0(1) -> 5
, 4_0(2) -> 5
, 4_0(3) -> 5
, 4_0(4) -> 5
, 4_0(5) -> 5
, 4_0(6) -> 5
, 4_1(1) -> 29
, 4_1(2) -> 29
, 4_1(3) -> 29
, 4_1(4) -> 29
, 4_1(5) -> 29
, 4_1(6) -> 29
, 4_1(8) -> 5
, 4_1(8) -> 29
, 4_1(9) -> 5
, 4_1(9) -> 8
, 4_1(9) -> 29
, 4_1(9) -> 74
, 4_1(10) -> 48
, 4_1(12) -> 29
, 4_1(14) -> 77
, 4_1(17) -> 5
, 4_1(17) -> 29
, 4_1(17) -> 74
, 4_1(17) -> 98
, 4_1(17) -> 317
, 4_1(24) -> 74
, 4_1(25) -> 25
, 4_1(29) -> 96
, 4_1(30) -> 2
, 4_1(30) -> 24
, 4_1(37) -> 29
, 4_1(38) -> 37
, 4_1(45) -> 44
, 4_1(49) -> 12
, 4_1(53) -> 52
, 4_1(54) -> 6
, 4_1(54) -> 16
, 4_1(61) -> 37
, 4_1(75) -> 74
, 4_1(81) -> 1
, 4_1(81) -> 11
, 4_1(81) -> 23
, 4_1(81) -> 28
, 4_1(81) -> 50
, 4_1(81) -> 87
, 4_1(81) -> 160
, 4_1(81) -> 162
, 4_1(81) -> 249
, 4_1(83) -> 25
, 4_1(99) -> 98
, 4_1(103) -> 11
, 4_1(111) -> 7
, 4_1(257) -> 25
, 4_2(25) -> 125
, 4_2(93) -> 92
, 4_2(108) -> 107
, 4_2(123) -> 74
, 4_2(127) -> 28
, 4_2(135) -> 134
, 4_2(140) -> 139
, 4_2(172) -> 98
, 4_2(172) -> 317
, 4_2(179) -> 92
, 4_2(184) -> 183
, 4_2(207) -> 50
, 4_2(207) -> 160
, 4_2(212) -> 135
, 4_2(216) -> 215
, 4_2(244) -> 243
, 4_2(261) -> 260
, 4_2(318) -> 317
, 4_2(321) -> 11
, 4_2(321) -> 87
, 4_2(321) -> 249
, 4_3(145) -> 144
, 4_3(338) -> 337
, 5_0(1) -> 6
, 5_0(2) -> 6
, 5_0(3) -> 6
, 5_0(4) -> 6
, 5_0(5) -> 6
, 5_0(6) -> 6
, 5_1(1) -> 16
, 5_1(2) -> 16
, 5_1(3) -> 16
, 5_1(4) -> 16
, 5_1(5) -> 16
, 5_1(6) -> 16
, 5_1(8) -> 7
, 5_1(9) -> 6
, 5_1(9) -> 16
, 5_1(9) -> 121
, 5_1(10) -> 55
, 5_1(11) -> 120
, 5_1(12) -> 6
, 5_1(12) -> 16
, 5_1(12) -> 62
, 5_1(12) -> 120
, 5_1(12) -> 121
, 5_1(16) -> 121
, 5_1(23) -> 62
, 5_1(25) -> 16
, 5_1(28) -> 80
, 5_1(33) -> 32
, 5_1(37) -> 43
, 5_1(42) -> 62
, 5_1(45) -> 59
, 5_1(47) -> 46
, 5_1(50) -> 112
, 5_1(52) -> 51
, 5_1(55) -> 54
, 5_1(58) -> 44
, 5_1(61) -> 60
, 5_1(74) -> 11
, 5_1(99) -> 16
, 5_1(102) -> 34
, 5_1(257) -> 16
, 5_2(45) -> 117
, 5_2(102) -> 117
, 5_2(105) -> 104
, 5_2(116) -> 115
, 5_2(168) -> 62
, 5_2(180) -> 121
, 5_2(183) -> 182}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(4(2(0(1(x1))))) -> 2(5(4(0(2(1(x1))))))
, 5(1(0(0(5(x1))))) -> 5(0(0(2(1(5(x1))))))
, 4(0(0(3(1(x1))))) -> 4(3(2(0(0(1(x1))))))
, 4(0(0(3(1(x1))))) -> 4(0(3(2(1(0(x1))))))
, 1(2(4(3(1(x1))))) -> 1(2(3(3(1(4(x1))))))
, 0(5(4(1(1(x1))))) -> 4(0(2(5(1(1(x1))))))
, 0(2(4(3(1(x1))))) -> 0(2(3(1(4(2(x1))))))
, 0(0(3(3(1(x1))))) -> 0(3(0(1(2(3(x1))))))
, 5(5(0(4(x1)))) -> 5(0(2(5(4(2(x1))))))
, 5(4(3(1(x1)))) -> 5(2(4(3(2(1(x1))))))
, 5(4(3(1(x1)))) -> 3(5(2(4(2(1(x1))))))
, 5(4(3(1(x1)))) -> 5(4(2(1(3(x1)))))
, 5(4(1(5(x1)))) -> 2(1(5(4(2(5(x1))))))
, 5(4(1(5(x1)))) -> 4(5(5(2(1(x1)))))
, 5(2(4(1(x1)))) -> 2(1(4(2(5(x1)))))
, 5(0(5(1(x1)))) -> 5(2(5(3(1(0(x1))))))
, 5(0(3(1(x1)))) -> 0(3(5(2(2(1(x1))))))
, 5(0(3(1(x1)))) -> 0(5(3(2(1(x1)))))
, 5(0(0(1(x1)))) -> 0(3(2(5(1(0(x1))))))
, 4(1(0(4(x1)))) -> 4(4(0(2(1(x1)))))
, 4(1(0(0(x1)))) -> 3(2(1(4(0(0(x1))))))
, 4(0(5(1(x1)))) -> 0(2(4(2(1(5(x1))))))
, 1(4(1(5(x1)))) -> 2(1(2(5(1(4(x1))))))
, 1(3(0(4(x1)))) -> 4(0(3(2(1(3(x1))))))
, 1(2(0(4(x1)))) -> 1(4(2(0(3(2(x1))))))
, 1(0(3(1(x1)))) -> 4(2(3(1(1(0(x1))))))
, 1(0(1(4(x1)))) -> 2(3(1(1(4(0(x1))))))
, 0(4(0(4(x1)))) -> 0(0(3(2(4(4(x1))))))
, 0(3(4(0(x1)))) -> 3(2(4(0(0(3(x1))))))
, 0(2(0(1(x1)))) -> 0(0(2(1(3(x1)))))
, 0(1(2(0(x1)))) -> 2(0(2(1(0(x1)))))
, 0(0(4(5(x1)))) -> 0(5(0(2(4(2(x1))))))
, 5(4(1(x1))) -> 4(5(2(1(3(3(x1))))))
, 5(4(1(x1))) -> 2(4(2(5(1(3(x1))))))
, 5(0(5(x1))) -> 0(3(2(5(3(5(x1))))))
, 5(0(1(x1))) -> 3(0(2(3(5(1(x1))))))
, 5(0(1(x1))) -> 0(3(2(1(5(5(x1))))))
, 5(0(1(x1))) -> 0(2(1(5(3(x1)))))
, 5(0(1(x1))) -> 5(0(2(1(x1))))
, 4(0(1(x1))) -> 4(0(2(1(x1))))
, 1(4(1(x1))) -> 4(2(1(1(2(1(x1))))))
, 1(4(1(x1))) -> 4(2(1(1(x1))))
, 1(4(0(x1))) -> 1(0(3(2(4(2(x1))))))
, 1(0(1(x1))) -> 1(0(3(2(1(x1)))))
, 1(0(1(x1))) -> 0(2(1(1(2(x1)))))
, 1(0(1(x1))) -> 0(2(1(1(x1))))
, 0(4(1(x1))) -> 0(2(3(1(4(2(x1))))))
, 0(4(1(x1))) -> 0(4(2(2(1(x1)))))
, 0(0(1(x1))) -> 0(0(2(2(3(1(x1))))))
, 0(0(1(x1))) -> 0(0(2(1(3(x1)))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(4(2(0(1(x1))))) -> 2(5(4(0(2(1(x1))))))
, 5(1(0(0(5(x1))))) -> 5(0(0(2(1(5(x1))))))
, 4(0(0(3(1(x1))))) -> 4(3(2(0(0(1(x1))))))
, 4(0(0(3(1(x1))))) -> 4(0(3(2(1(0(x1))))))
, 1(2(4(3(1(x1))))) -> 1(2(3(3(1(4(x1))))))
, 0(5(4(1(1(x1))))) -> 4(0(2(5(1(1(x1))))))
, 0(2(4(3(1(x1))))) -> 0(2(3(1(4(2(x1))))))
, 0(0(3(3(1(x1))))) -> 0(3(0(1(2(3(x1))))))
, 5(5(0(4(x1)))) -> 5(0(2(5(4(2(x1))))))
, 5(4(3(1(x1)))) -> 5(2(4(3(2(1(x1))))))
, 5(4(3(1(x1)))) -> 3(5(2(4(2(1(x1))))))
, 5(4(3(1(x1)))) -> 5(4(2(1(3(x1)))))
, 5(4(1(5(x1)))) -> 2(1(5(4(2(5(x1))))))
, 5(4(1(5(x1)))) -> 4(5(5(2(1(x1)))))
, 5(2(4(1(x1)))) -> 2(1(4(2(5(x1)))))
, 5(0(5(1(x1)))) -> 5(2(5(3(1(0(x1))))))
, 5(0(3(1(x1)))) -> 0(3(5(2(2(1(x1))))))
, 5(0(3(1(x1)))) -> 0(5(3(2(1(x1)))))
, 5(0(0(1(x1)))) -> 0(3(2(5(1(0(x1))))))
, 4(1(0(4(x1)))) -> 4(4(0(2(1(x1)))))
, 4(1(0(0(x1)))) -> 3(2(1(4(0(0(x1))))))
, 4(0(5(1(x1)))) -> 0(2(4(2(1(5(x1))))))
, 1(4(1(5(x1)))) -> 2(1(2(5(1(4(x1))))))
, 1(3(0(4(x1)))) -> 4(0(3(2(1(3(x1))))))
, 1(2(0(4(x1)))) -> 1(4(2(0(3(2(x1))))))
, 1(0(3(1(x1)))) -> 4(2(3(1(1(0(x1))))))
, 1(0(1(4(x1)))) -> 2(3(1(1(4(0(x1))))))
, 0(4(0(4(x1)))) -> 0(0(3(2(4(4(x1))))))
, 0(3(4(0(x1)))) -> 3(2(4(0(0(3(x1))))))
, 0(2(0(1(x1)))) -> 0(0(2(1(3(x1)))))
, 0(1(2(0(x1)))) -> 2(0(2(1(0(x1)))))
, 0(0(4(5(x1)))) -> 0(5(0(2(4(2(x1))))))
, 5(4(1(x1))) -> 4(5(2(1(3(3(x1))))))
, 5(4(1(x1))) -> 2(4(2(5(1(3(x1))))))
, 5(0(5(x1))) -> 0(3(2(5(3(5(x1))))))
, 5(0(1(x1))) -> 3(0(2(3(5(1(x1))))))
, 5(0(1(x1))) -> 0(3(2(1(5(5(x1))))))
, 5(0(1(x1))) -> 0(2(1(5(3(x1)))))
, 5(0(1(x1))) -> 5(0(2(1(x1))))
, 4(0(1(x1))) -> 4(0(2(1(x1))))
, 1(4(1(x1))) -> 4(2(1(1(2(1(x1))))))
, 1(4(1(x1))) -> 4(2(1(1(x1))))
, 1(4(0(x1))) -> 1(0(3(2(4(2(x1))))))
, 1(0(1(x1))) -> 1(0(3(2(1(x1)))))
, 1(0(1(x1))) -> 0(2(1(1(2(x1)))))
, 1(0(1(x1))) -> 0(2(1(1(x1))))
, 0(4(1(x1))) -> 0(2(3(1(4(2(x1))))))
, 0(4(1(x1))) -> 0(4(2(2(1(x1)))))
, 0(0(1(x1))) -> 0(0(2(2(3(1(x1))))))
, 0(0(1(x1))) -> 0(0(2(1(3(x1)))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(4(2(0(1(x1))))) -> 2(5(4(0(2(1(x1))))))
, 5(1(0(0(5(x1))))) -> 5(0(0(2(1(5(x1))))))
, 4(0(0(3(1(x1))))) -> 4(3(2(0(0(1(x1))))))
, 4(0(0(3(1(x1))))) -> 4(0(3(2(1(0(x1))))))
, 1(2(4(3(1(x1))))) -> 1(2(3(3(1(4(x1))))))
, 0(5(4(1(1(x1))))) -> 4(0(2(5(1(1(x1))))))
, 0(2(4(3(1(x1))))) -> 0(2(3(1(4(2(x1))))))
, 0(0(3(3(1(x1))))) -> 0(3(0(1(2(3(x1))))))
, 5(5(0(4(x1)))) -> 5(0(2(5(4(2(x1))))))
, 5(4(3(1(x1)))) -> 5(2(4(3(2(1(x1))))))
, 5(4(3(1(x1)))) -> 3(5(2(4(2(1(x1))))))
, 5(4(3(1(x1)))) -> 5(4(2(1(3(x1)))))
, 5(4(1(5(x1)))) -> 2(1(5(4(2(5(x1))))))
, 5(4(1(5(x1)))) -> 4(5(5(2(1(x1)))))
, 5(2(4(1(x1)))) -> 2(1(4(2(5(x1)))))
, 5(0(5(1(x1)))) -> 5(2(5(3(1(0(x1))))))
, 5(0(3(1(x1)))) -> 0(3(5(2(2(1(x1))))))
, 5(0(3(1(x1)))) -> 0(5(3(2(1(x1)))))
, 5(0(0(1(x1)))) -> 0(3(2(5(1(0(x1))))))
, 4(1(0(4(x1)))) -> 4(4(0(2(1(x1)))))
, 4(1(0(0(x1)))) -> 3(2(1(4(0(0(x1))))))
, 4(0(5(1(x1)))) -> 0(2(4(2(1(5(x1))))))
, 1(4(1(5(x1)))) -> 2(1(2(5(1(4(x1))))))
, 1(3(0(4(x1)))) -> 4(0(3(2(1(3(x1))))))
, 1(2(0(4(x1)))) -> 1(4(2(0(3(2(x1))))))
, 1(0(3(1(x1)))) -> 4(2(3(1(1(0(x1))))))
, 1(0(1(4(x1)))) -> 2(3(1(1(4(0(x1))))))
, 0(4(0(4(x1)))) -> 0(0(3(2(4(4(x1))))))
, 0(3(4(0(x1)))) -> 3(2(4(0(0(3(x1))))))
, 0(2(0(1(x1)))) -> 0(0(2(1(3(x1)))))
, 0(1(2(0(x1)))) -> 2(0(2(1(0(x1)))))
, 0(0(4(5(x1)))) -> 0(5(0(2(4(2(x1))))))
, 5(4(1(x1))) -> 4(5(2(1(3(3(x1))))))
, 5(4(1(x1))) -> 2(4(2(5(1(3(x1))))))
, 5(0(5(x1))) -> 0(3(2(5(3(5(x1))))))
, 5(0(1(x1))) -> 3(0(2(3(5(1(x1))))))
, 5(0(1(x1))) -> 0(3(2(1(5(5(x1))))))
, 5(0(1(x1))) -> 0(2(1(5(3(x1)))))
, 5(0(1(x1))) -> 5(0(2(1(x1))))
, 4(0(1(x1))) -> 4(0(2(1(x1))))
, 1(4(1(x1))) -> 4(2(1(1(2(1(x1))))))
, 1(4(1(x1))) -> 4(2(1(1(x1))))
, 1(4(0(x1))) -> 1(0(3(2(4(2(x1))))))
, 1(0(1(x1))) -> 1(0(3(2(1(x1)))))
, 1(0(1(x1))) -> 0(2(1(1(2(x1)))))
, 1(0(1(x1))) -> 0(2(1(1(x1))))
, 0(4(1(x1))) -> 0(2(3(1(4(2(x1))))))
, 0(4(1(x1))) -> 0(4(2(2(1(x1)))))
, 0(0(1(x1))) -> 0(0(2(2(3(1(x1))))))
, 0(0(1(x1))) -> 0(0(2(1(3(x1)))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI2
stdout:
MAYBE
We consider the following Problem:
Strict Trs:
{ 5(4(2(0(1(x1))))) -> 2(5(4(0(2(1(x1))))))
, 5(1(0(0(5(x1))))) -> 5(0(0(2(1(5(x1))))))
, 4(0(0(3(1(x1))))) -> 4(3(2(0(0(1(x1))))))
, 4(0(0(3(1(x1))))) -> 4(0(3(2(1(0(x1))))))
, 1(2(4(3(1(x1))))) -> 1(2(3(3(1(4(x1))))))
, 0(5(4(1(1(x1))))) -> 4(0(2(5(1(1(x1))))))
, 0(2(4(3(1(x1))))) -> 0(2(3(1(4(2(x1))))))
, 0(0(3(3(1(x1))))) -> 0(3(0(1(2(3(x1))))))
, 5(5(0(4(x1)))) -> 5(0(2(5(4(2(x1))))))
, 5(4(3(1(x1)))) -> 5(2(4(3(2(1(x1))))))
, 5(4(3(1(x1)))) -> 3(5(2(4(2(1(x1))))))
, 5(4(3(1(x1)))) -> 5(4(2(1(3(x1)))))
, 5(4(1(5(x1)))) -> 2(1(5(4(2(5(x1))))))
, 5(4(1(5(x1)))) -> 4(5(5(2(1(x1)))))
, 5(2(4(1(x1)))) -> 2(1(4(2(5(x1)))))
, 5(0(5(1(x1)))) -> 5(2(5(3(1(0(x1))))))
, 5(0(3(1(x1)))) -> 0(3(5(2(2(1(x1))))))
, 5(0(3(1(x1)))) -> 0(5(3(2(1(x1)))))
, 5(0(0(1(x1)))) -> 0(3(2(5(1(0(x1))))))
, 4(1(0(4(x1)))) -> 4(4(0(2(1(x1)))))
, 4(1(0(0(x1)))) -> 3(2(1(4(0(0(x1))))))
, 4(0(5(1(x1)))) -> 0(2(4(2(1(5(x1))))))
, 1(4(1(5(x1)))) -> 2(1(2(5(1(4(x1))))))
, 1(3(0(4(x1)))) -> 4(0(3(2(1(3(x1))))))
, 1(2(0(4(x1)))) -> 1(4(2(0(3(2(x1))))))
, 1(0(3(1(x1)))) -> 4(2(3(1(1(0(x1))))))
, 1(0(1(4(x1)))) -> 2(3(1(1(4(0(x1))))))
, 0(4(0(4(x1)))) -> 0(0(3(2(4(4(x1))))))
, 0(3(4(0(x1)))) -> 3(2(4(0(0(3(x1))))))
, 0(2(0(1(x1)))) -> 0(0(2(1(3(x1)))))
, 0(1(2(0(x1)))) -> 2(0(2(1(0(x1)))))
, 0(0(4(5(x1)))) -> 0(5(0(2(4(2(x1))))))
, 5(4(1(x1))) -> 4(5(2(1(3(3(x1))))))
, 5(4(1(x1))) -> 2(4(2(5(1(3(x1))))))
, 5(0(5(x1))) -> 0(3(2(5(3(5(x1))))))
, 5(0(1(x1))) -> 3(0(2(3(5(1(x1))))))
, 5(0(1(x1))) -> 0(3(2(1(5(5(x1))))))
, 5(0(1(x1))) -> 0(2(1(5(3(x1)))))
, 5(0(1(x1))) -> 5(0(2(1(x1))))
, 4(0(1(x1))) -> 4(0(2(1(x1))))
, 1(4(1(x1))) -> 4(2(1(1(2(1(x1))))))
, 1(4(1(x1))) -> 4(2(1(1(x1))))
, 1(4(0(x1))) -> 1(0(3(2(4(2(x1))))))
, 1(0(1(x1))) -> 1(0(3(2(1(x1)))))
, 1(0(1(x1))) -> 0(2(1(1(2(x1)))))
, 1(0(1(x1))) -> 0(2(1(1(x1))))
, 0(4(1(x1))) -> 0(2(3(1(4(2(x1))))))
, 0(4(1(x1))) -> 0(4(2(2(1(x1)))))
, 0(0(1(x1))) -> 0(0(2(2(3(1(x1))))))
, 0(0(1(x1))) -> 0(0(2(1(3(x1)))))}
StartTerms: all
Strategy: none
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..