Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 5(2(2(1(2(1(1(5(0(1(3(3(1(x1))))))))))))) ->
4(0(5(2(0(3(2(3(1(3(x1))))))))))
, 1(2(1(0(2(5(4(2(2(2(5(5(4(x1))))))))))))) ->
3(3(0(0(0(5(3(2(2(3(x1))))))))))
, 0(0(2(0(3(5(5(2(2(1(1(3(2(x1))))))))))))) ->
4(3(2(5(5(3(2(0(4(3(x1))))))))))
, 5(2(1(5(5(5(2(0(4(5(2(4(x1)))))))))))) ->
1(1(4(5(4(3(4(2(2(5(x1))))))))))
, 5(2(0(2(5(5(1(5(5(1(5(1(x1)))))))))))) ->
1(1(3(4(0(5(4(3(2(4(x1))))))))))
, 4(0(5(0(1(1(0(4(3(5(3(5(x1)))))))))))) ->
2(5(3(4(0(4(4(5(3(1(x1))))))))))
, 3(2(0(2(0(3(4(4(4(4(1(3(x1)))))))))))) ->
1(1(1(0(5(3(0(0(1(5(x1))))))))))
, 3(2(0(0(5(4(5(0(5(4(2(5(x1)))))))))))) ->
0(3(0(4(0(1(4(4(4(4(x1))))))))))
, 3(2(0(0(4(2(3(3(5(5(2(2(x1)))))))))))) ->
1(3(0(3(4(1(3(4(2(3(x1))))))))))
, 1(2(1(1(1(1(2(5(2(2(4(5(x1)))))))))))) ->
3(2(0(1(0(1(1(0(0(0(x1))))))))))
, 1(0(2(1(4(3(4(5(2(3(3(1(x1)))))))))))) ->
4(4(5(5(2(2(2(4(0(3(x1))))))))))
, 5(5(4(0(2(4(5(2(3(4(3(x1))))))))))) ->
1(0(2(1(4(5(1(2(4(5(x1))))))))))
, 5(3(2(0(0(5(3(1(4(1(0(x1))))))))))) ->
4(4(5(5(0(1(0(2(3(0(x1))))))))))
, 4(5(5(4(4(4(2(5(2(5(3(x1))))))))))) ->
0(4(0(3(2(4(1(0(0(0(x1))))))))))
, 4(4(4(0(3(3(4(3(4(5(4(x1))))))))))) ->
3(2(2(4(0(0(1(0(4(5(x1))))))))))
, 4(2(1(5(3(5(4(1(4(4(3(x1))))))))))) ->
4(0(5(2(3(5(4(3(2(2(x1))))))))))
, 4(2(0(5(4(5(5(3(2(5(4(x1))))))))))) ->
4(1(3(2(0(0(5(2(4(1(x1))))))))))
, 4(2(0(3(4(2(1(1(3(3(0(x1))))))))))) ->
1(0(5(5(3(2(2(1(5(4(x1))))))))))
, 4(0(1(2(3(1(0(2(2(4(5(x1))))))))))) ->
0(5(2(4(5(0(4(5(5(0(x1))))))))))
, 3(2(4(4(2(4(5(4(1(5(1(x1))))))))))) ->
2(1(4(1(5(5(4(2(0(2(x1))))))))))
, 3(0(2(4(1(1(2(1(5(2(0(x1))))))))))) ->
2(1(5(3(3(1(1(2(0(2(x1))))))))))
, 2(4(0(0(5(5(1(3(5(1(4(x1))))))))))) ->
2(2(0(0(0(5(3(2(0(5(x1))))))))))
, 2(0(4(3(4(5(3(0(0(0(5(x1))))))))))) ->
2(4(4(4(2(0(4(2(4(2(x1))))))))))
, 1(3(2(3(3(0(2(4(2(3(2(x1))))))))))) ->
2(0(2(5(4(5(5(5(0(5(x1))))))))))
, 1(2(4(0(4(3(4(0(0(3(2(x1))))))))))) ->
1(1(4(1(4(4(3(2(1(1(x1))))))))))
, 0(3(5(4(1(5(1(5(1(2(0(x1))))))))))) ->
3(1(3(1(0(5(1(2(4(5(x1))))))))))
, 5(5(3(1(5(5(3(2(0(5(x1)))))))))) ->
5(5(3(1(5(5(2(3(0(5(x1))))))))))
, 5(3(0(0(3(4(4(2(3(2(x1)))))))))) ->
5(3(0(0(4(3(4(2(3(2(x1))))))))))
, 5(1(1(5(1(5(1(1(4(3(x1)))))))))) ->
5(1(1(5(1(3(1(5(4(1(x1))))))))))
, 5(1(0(1(3(2(1(0(2(0(x1)))))))))) ->
5(1(0(1(2(3(1(0(0(2(x1))))))))))
, 5(0(3(5(2(3(0(3(4(4(x1)))))))))) ->
5(0(3(5(2(3(3(0(4(4(x1))))))))))
, 4(5(1(3(5(1(3(4(1(2(x1)))))))))) ->
4(5(1(3(5(1(3(1(4(2(x1))))))))))
, 4(5(1(0(4(3(5(5(5(1(x1)))))))))) ->
4(5(1(0(3(4(5(5(5(1(x1))))))))))
, 4(4(0(0(4(3(3(5(3(2(x1)))))))))) ->
4(4(0(4(0(3(3(5(3(2(x1))))))))))
, 4(3(2(0(0(0(3(0(0(3(x1)))))))))) ->
4(3(0(2(0(0(3(0(0(3(x1))))))))))
, 4(2(5(0(5(1(0(3(1(0(x1)))))))))) ->
4(2(5(0(5(0(1(3(1(0(x1))))))))))
, 4(1(3(2(2(0(2(0(1(3(x1)))))))))) ->
4(2(3(2(1(0(2(0(1(3(x1))))))))))
, 4(0(4(2(4(3(4(3(4(1(x1)))))))))) ->
4(4(2(3(4(0(3(4(4(1(x1))))))))))
, 3(5(1(3(2(0(2(4(2(3(x1)))))))))) ->
3(2(3(1(4(5(0(2(3(2(x1))))))))))
, 3(5(0(3(4(2(0(0(3(0(x1)))))))))) ->
3(5(0(3(0(4(2(0(3(0(x1))))))))))
, 3(4(5(0(5(1(4(0(5(3(x1)))))))))) ->
3(4(5(0(5(4(1(0(5(3(x1))))))))))
, 3(4(2(1(4(3(3(1(3(5(x1)))))))))) ->
3(1(1(3(5(5(0(3(0(5(x1))))))))))
, 3(3(5(2(1(5(3(0(4(5(x1)))))))))) ->
3(3(1(4(2(5(5(3(0(5(x1))))))))))
, 3(2(0(1(2(4(0(0(5(3(x1)))))))))) ->
3(2(0(1(4(2(3(0(5(0(x1))))))))))
, 3(0(4(3(2(4(0(5(2(0(x1)))))))))) ->
3(0(0(2(4(5(0(4(2(3(x1))))))))))
, 3(0(2(0(4(3(1(4(3(1(x1)))))))))) ->
1(0(5(0(0(5(2(5(5(2(x1))))))))))
, 3(0(1(4(0(3(5(1(4(5(x1)))))))))) ->
3(0(1(1(3(4(5(0(4(5(x1))))))))))
, 2(5(1(3(0(3(4(3(5(0(x1)))))))))) ->
2(5(1(3(3(4(0(3(5(0(x1))))))))))
, 2(5(1(1(4(5(4(0(4(2(x1)))))))))) ->
2(5(1(1(5(4(4(0(4(2(x1))))))))))
, 2(4(0(1(4(1(4(3(3(4(x1)))))))))) ->
2(4(0(4(4(3(1(1(3(4(x1))))))))))
, 2(3(5(0(1(3(4(5(5(2(x1)))))))))) ->
2(3(5(0(3(1(4(5(5(2(x1))))))))))
, 2(1(4(0(5(3(4(5(5(0(x1)))))))))) ->
2(4(1(5(0(3(4(5(5(0(x1))))))))))
, 2(1(3(4(1(3(2(4(2(1(x1)))))))))) ->
2(1(3(4(1(2(3(4(2(1(x1))))))))))
, 2(1(2(4(4(3(5(2(4(1(x1)))))))))) ->
2(1(2(4(3(1(4(4(2(5(x1))))))))))
, 2(1(0(3(3(2(1(2(2(5(x1)))))))))) ->
2(1(0(3(2(3(1(2(2(5(x1))))))))))
, 2(0(0(4(3(2(1(3(3(4(x1)))))))))) ->
2(0(0(3(4(2(1(3(3(4(x1))))))))))
, 1(5(3(0(5(5(4(0(4(0(x1)))))))))) ->
1(5(3(0(5(4(5(0(4(0(x1))))))))))
, 1(5(1(2(0(2(5(1(3(2(x1)))))))))) ->
1(5(1(0(2(2(5(1(3(2(x1))))))))))
, 1(5(0(4(1(3(2(3(3(3(x1)))))))))) ->
1(5(4(0(3(1(2(3(3(3(x1))))))))))
, 1(4(5(2(2(4(0(0(3(5(x1)))))))))) ->
4(2(5(0(1(3(0(4(2(5(x1))))))))))
, 1(3(2(2(2(5(2(0(1(0(x1)))))))))) ->
1(3(2(2(2(2(5(0(1(0(x1))))))))))
, 1(3(0(2(3(2(4(1(2(0(x1)))))))))) ->
1(3(0(1(2(3(2(4(2(0(x1))))))))))
, 1(2(1(5(1(5(1(3(4(3(x1)))))))))) ->
1(2(1(3(5(4(5(1(3(1(x1))))))))))
, 1(1(3(2(1(0(5(3(3(4(x1)))))))))) ->
1(1(2(3(1(0(5(3(3(4(x1))))))))))
, 1(0(1(0(5(5(0(1(3(2(x1)))))))))) ->
1(0(1(5(0(5(0(1(3(2(x1))))))))))
, 1(0(0(5(3(4(0(1(4(3(x1)))))))))) ->
1(0(0(5(1(3(0(4(4(3(x1))))))))))
, 1(0(0(0(4(0(0(5(0(4(x1)))))))))) ->
2(4(5(5(1(0(5(5(0(2(x1))))))))))
, 0(5(5(0(4(0(3(1(2(1(x1)))))))))) ->
0(5(4(5(0(0(3(1(2(1(x1))))))))))
, 0(5(2(4(0(0(1(3(4(3(x1)))))))))) ->
0(5(4(2(0(0(1(3(4(3(x1))))))))))
, 0(4(3(3(5(1(2(4(3(3(x1)))))))))) ->
0(4(3(3(1(5(2(4(3(3(x1))))))))))
, 0(3(2(0(5(0(4(3(5(3(x1)))))))))) ->
0(3(2(0(0(5(4(3(5(3(x1))))))))))
, 0(2(2(0(1(0(3(4(0(0(x1)))))))))) ->
0(2(2(0(1(3(0(0(4(0(x1))))))))))
, 0(0(5(3(4(5(1(5(3(0(x1)))))))))) ->
0(0(3(1(5(4(5(5(3(0(x1))))))))))
, 0(0(4(0(1(0(2(0(3(3(x1)))))))))) ->
0(0(4(0(1(0(0(2(3(3(x1))))))))))
, 0(0(1(5(2(3(0(1(5(5(x1)))))))))) ->
0(0(1(3(1(2(5(0(5(5(x1))))))))))
, 0(0(1(0(1(2(0(3(3(4(x1)))))))))) ->
4(2(3(4(2(1(1(4(2(0(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ 4_0(1) -> 1
, 4_0(2) -> 1
, 4_0(3) -> 1
, 4_0(4) -> 1
, 4_0(5) -> 1
, 4_0(6) -> 1
, 4_1(1) -> 47
, 4_1(2) -> 47
, 4_1(3) -> 47
, 4_1(4) -> 47
, 4_1(5) -> 47
, 4_1(6) -> 47
, 4_1(7) -> 6
, 4_1(7) -> 40
, 4_1(7) -> 245
, 4_1(7) -> 311
, 4_1(14) -> 47
, 4_1(15) -> 31
, 4_1(18) -> 47
, 4_1(23) -> 78
, 4_1(24) -> 3
, 4_1(24) -> 85
, 4_1(24) -> 86
, 4_1(24) -> 222
, 4_1(24) -> 251
, 4_1(31) -> 435
, 4_1(32) -> 47
, 4_1(34) -> 33
, 4_1(36) -> 35
, 4_1(38) -> 37
, 4_1(39) -> 350
, 4_1(40) -> 101
, 4_1(42) -> 41
, 4_1(45) -> 44
, 4_1(47) -> 72
, 4_1(49) -> 47
, 4_1(51) -> 50
, 4_1(53) -> 52
, 4_1(54) -> 53
, 4_1(56) -> 136
, 4_1(57) -> 47
, 4_1(65) -> 47
, 4_1(68) -> 67
, 4_1(71) -> 70
, 4_1(72) -> 71
, 4_1(76) -> 75
, 4_1(77) -> 207
, 4_1(83) -> 113
, 4_1(86) -> 367
, 4_1(87) -> 5
, 4_1(87) -> 56
, 4_1(87) -> 105
, 4_1(87) -> 234
, 4_1(87) -> 258
, 4_1(88) -> 87
, 4_1(94) -> 93
, 4_1(98) -> 97
, 4_1(102) -> 7
, 4_1(109) -> 47
, 4_1(110) -> 109
, 4_1(117) -> 116
, 4_1(120) -> 324
, 4_1(121) -> 1
, 4_1(121) -> 31
, 4_1(121) -> 44
, 4_1(121) -> 47
, 4_1(121) -> 72
, 4_1(121) -> 101
, 4_1(121) -> 136
, 4_1(121) -> 178
, 4_1(121) -> 323
, 4_1(121) -> 324
, 4_1(121) -> 344
, 4_1(121) -> 350
, 4_1(121) -> 367
, 4_1(121) -> 392
, 4_1(121) -> 397
, 4_1(127) -> 126
, 4_1(129) -> 178
, 4_1(136) -> 267
, 4_1(137) -> 47
, 4_1(147) -> 146
, 4_1(150) -> 149
, 4_1(154) -> 153
, 4_1(158) -> 157
, 4_1(164) -> 31
, 4_1(166) -> 47
, 4_1(169) -> 31
, 4_1(170) -> 392
, 4_1(172) -> 164
, 4_1(173) -> 172
, 4_1(174) -> 173
, 4_1(177) -> 176
, 4_1(183) -> 182
, 4_1(185) -> 364
, 4_1(186) -> 47
, 4_1(188) -> 187
, 4_1(190) -> 189
, 4_1(191) -> 190
, 4_1(198) -> 47
, 4_1(199) -> 47
, 4_1(203) -> 78
, 4_1(208) -> 207
, 4_1(210) -> 209
, 4_1(211) -> 44
, 4_1(212) -> 47
, 4_1(228) -> 324
, 4_1(237) -> 236
, 4_1(238) -> 335
, 4_1(239) -> 397
, 4_1(240) -> 121
, 4_1(242) -> 241
, 4_1(244) -> 463
, 4_1(253) -> 47
, 4_1(262) -> 277
, 4_1(265) -> 264
, 4_1(272) -> 271
, 4_1(276) -> 324
, 4_1(278) -> 277
, 4_1(279) -> 268
, 4_1(283) -> 282
, 4_1(292) -> 291
, 4_1(297) -> 296
, 4_1(300) -> 47
, 4_1(303) -> 302
, 4_1(310) -> 335
, 4_1(315) -> 314
, 4_1(316) -> 47
, 4_1(320) -> 319
, 4_1(321) -> 463
, 4_1(324) -> 323
, 4_1(326) -> 325
, 4_1(327) -> 326
, 4_1(332) -> 47
, 4_1(341) -> 340
, 4_1(345) -> 344
, 4_1(347) -> 346
, 4_1(350) -> 349
, 4_1(358) -> 357
, 4_1(360) -> 458
, 4_1(365) -> 364
, 4_1(367) -> 323
, 4_1(368) -> 47
, 4_1(373) -> 361
, 4_1(379) -> 47
, 4_1(393) -> 392
, 4_1(436) -> 179
, 4_1(442) -> 47
, 4_1(444) -> 443
, 4_1(453) -> 442
, 4_1(473) -> 472
, 4_1(475) -> 469
, 4_1(484) -> 31
, 4_1(486) -> 485
, 4_1(497) -> 47
, 4_1(535) -> 47
, 4_2(539) -> 538
, 3_0(1) -> 2
, 3_0(2) -> 2
, 3_0(3) -> 2
, 3_0(4) -> 2
, 3_0(5) -> 2
, 3_0(6) -> 2
, 3_1(1) -> 15
, 3_1(2) -> 15
, 3_1(3) -> 15
, 3_1(4) -> 15
, 3_1(5) -> 15
, 3_1(6) -> 15
, 3_1(7) -> 15
, 3_1(11) -> 15
, 3_1(12) -> 11
, 3_1(14) -> 13
, 3_1(15) -> 360
, 3_1(16) -> 5
, 3_1(16) -> 56
, 3_1(16) -> 354
, 3_1(16) -> 375
, 3_1(16) -> 448
, 3_1(17) -> 16
, 3_1(22) -> 21
, 3_1(24) -> 15
, 3_1(25) -> 24
, 3_1(29) -> 28
, 3_1(31) -> 452
, 3_1(32) -> 15
, 3_1(37) -> 36
, 3_1(38) -> 45
, 3_1(39) -> 15
, 3_1(40) -> 244
, 3_1(41) -> 33
, 3_1(43) -> 124
, 3_1(46) -> 45
, 3_1(47) -> 330
, 3_1(48) -> 15
, 3_1(50) -> 49
, 3_1(56) -> 55
, 3_1(57) -> 15
, 3_1(62) -> 61
, 3_1(65) -> 15
, 3_1(66) -> 65
, 3_1(72) -> 266
, 3_1(73) -> 57
, 3_1(75) -> 74
, 3_1(78) -> 77
, 3_1(79) -> 15
, 3_1(85) -> 250
, 3_1(86) -> 108
, 3_1(87) -> 15
, 3_1(108) -> 226
, 3_1(109) -> 15
, 3_1(112) -> 111
, 3_1(114) -> 1
, 3_1(114) -> 47
, 3_1(114) -> 71
, 3_1(114) -> 72
, 3_1(115) -> 15
, 3_1(120) -> 227
, 3_1(121) -> 15
, 3_1(125) -> 124
, 3_1(128) -> 127
, 3_1(129) -> 211
, 3_1(131) -> 130
, 3_1(136) -> 339
, 3_1(137) -> 15
, 3_1(141) -> 140
, 3_1(144) -> 244
, 3_1(149) -> 338
, 3_1(151) -> 321
, 3_1(152) -> 15
, 3_1(161) -> 160
, 3_1(162) -> 161
, 3_1(164) -> 15
, 3_1(165) -> 1
, 3_1(170) -> 169
, 3_1(171) -> 204
, 3_1(177) -> 390
, 3_1(178) -> 77
, 3_1(179) -> 15
, 3_1(180) -> 15
, 3_1(186) -> 15
, 3_1(192) -> 191
, 3_1(194) -> 3
, 3_1(194) -> 86
, 3_1(194) -> 94
, 3_1(194) -> 320
, 3_1(195) -> 15
, 3_1(196) -> 195
, 3_1(200) -> 199
, 3_1(205) -> 198
, 3_1(206) -> 15
, 3_1(209) -> 208
, 3_1(216) -> 215
, 3_1(221) -> 220
, 3_1(224) -> 223
, 3_1(227) -> 226
, 3_1(228) -> 227
, 3_1(231) -> 230
, 3_1(234) -> 233
, 3_1(236) -> 235
, 3_1(239) -> 244
, 3_1(244) -> 243
, 3_1(245) -> 244
, 3_1(246) -> 121
, 3_1(251) -> 250
, 3_1(258) -> 257
, 3_1(259) -> 252
, 3_1(264) -> 263
, 3_1(267) -> 266
, 3_1(268) -> 2
, 3_1(268) -> 15
, 3_1(268) -> 77
, 3_1(268) -> 108
, 3_1(268) -> 211
, 3_1(268) -> 227
, 3_1(268) -> 243
, 3_1(268) -> 244
, 3_1(268) -> 321
, 3_1(268) -> 330
, 3_1(268) -> 343
, 3_1(268) -> 360
, 3_1(269) -> 15
, 3_1(270) -> 269
, 3_1(276) -> 275
, 3_1(285) -> 15
, 3_1(287) -> 286
, 3_1(290) -> 268
, 3_1(291) -> 15
, 3_1(299) -> 298
, 3_1(314) -> 313
, 3_1(318) -> 317
, 3_1(319) -> 318
, 3_1(328) -> 327
, 3_1(330) -> 360
, 3_1(331) -> 164
, 3_1(334) -> 333
, 3_1(335) -> 338
, 3_1(340) -> 339
, 3_1(344) -> 343
, 3_1(348) -> 347
, 3_1(352) -> 351
, 3_1(354) -> 353
, 3_1(355) -> 15
, 3_1(357) -> 356
, 3_1(360) -> 377
, 3_1(362) -> 361
, 3_1(375) -> 374
, 3_1(382) -> 381
, 3_1(383) -> 186
, 3_1(384) -> 15
, 3_1(391) -> 390
, 3_1(396) -> 395
, 3_1(423) -> 422
, 3_1(434) -> 433
, 3_1(442) -> 15
, 3_1(448) -> 447
, 3_1(454) -> 453
, 3_1(455) -> 454
, 3_1(459) -> 442
, 3_1(468) -> 467
, 3_1(470) -> 469
, 3_1(476) -> 220
, 3_1(480) -> 479
, 3_1(485) -> 484
, 3_1(534) -> 1
, 3_2(502) -> 501
, 3_2(537) -> 536
, 3_2(538) -> 537
, 3_2(541) -> 540
, 0_0(1) -> 3
, 0_0(2) -> 3
, 0_0(3) -> 3
, 0_0(4) -> 3
, 0_0(5) -> 3
, 0_0(6) -> 3
, 0_1(1) -> 86
, 0_1(2) -> 86
, 0_1(3) -> 86
, 0_1(4) -> 86
, 0_1(5) -> 86
, 0_1(6) -> 86
, 0_1(7) -> 86
, 0_1(8) -> 7
, 0_1(11) -> 10
, 0_1(14) -> 255
, 0_1(15) -> 94
, 0_1(16) -> 86
, 0_1(18) -> 17
, 0_1(19) -> 18
, 0_1(20) -> 19
, 0_1(23) -> 106
, 0_1(24) -> 86
, 0_1(31) -> 30
, 0_1(40) -> 171
, 0_1(43) -> 42
, 0_1(47) -> 120
, 0_1(50) -> 86
, 0_1(52) -> 51
, 0_1(55) -> 446
, 0_1(56) -> 94
, 0_1(60) -> 59
, 0_1(63) -> 62
, 0_1(64) -> 63
, 0_1(65) -> 2
, 0_1(65) -> 15
, 0_1(65) -> 211
, 0_1(67) -> 66
, 0_1(69) -> 68
, 0_1(72) -> 228
, 0_1(74) -> 73
, 0_1(78) -> 304
, 0_1(80) -> 79
, 0_1(82) -> 81
, 0_1(85) -> 84
, 0_1(86) -> 85
, 0_1(87) -> 86
, 0_1(94) -> 251
, 0_1(95) -> 32
, 0_1(98) -> 197
, 0_1(101) -> 120
, 0_1(105) -> 104
, 0_1(106) -> 477
, 0_1(107) -> 106
, 0_1(108) -> 249
, 0_1(109) -> 1
, 0_1(109) -> 47
, 0_1(109) -> 93
, 0_1(109) -> 101
, 0_1(109) -> 335
, 0_1(109) -> 367
, 0_1(111) -> 110
, 0_1(114) -> 86
, 0_1(118) -> 117
, 0_1(119) -> 118
, 0_1(120) -> 468
, 0_1(121) -> 171
, 0_1(122) -> 121
, 0_1(129) -> 159
, 0_1(133) -> 132
, 0_1(134) -> 133
, 0_1(138) -> 137
, 0_1(149) -> 148
, 0_1(151) -> 299
, 0_1(159) -> 222
, 0_1(165) -> 86
, 0_1(166) -> 165
, 0_1(167) -> 166
, 0_1(168) -> 167
, 0_1(171) -> 85
, 0_1(176) -> 175
, 0_1(178) -> 276
, 0_1(180) -> 179
, 0_1(185) -> 299
, 0_1(192) -> 106
, 0_1(193) -> 255
, 0_1(194) -> 86
, 0_1(198) -> 86
, 0_1(204) -> 289
, 0_1(205) -> 86
, 0_1(206) -> 205
, 0_1(207) -> 206
, 0_1(210) -> 273
, 0_1(218) -> 212
, 0_1(221) -> 475
, 0_1(223) -> 198
, 0_1(229) -> 86
, 0_1(234) -> 94
, 0_1(235) -> 230
, 0_1(238) -> 483
, 0_1(241) -> 240
, 0_1(243) -> 242
, 0_1(244) -> 320
, 0_1(245) -> 284
, 0_1(247) -> 246
, 0_1(249) -> 248
, 0_1(250) -> 249
, 0_1(254) -> 253
, 0_1(255) -> 449
, 0_1(256) -> 255
, 0_1(258) -> 94
, 0_1(262) -> 261
, 0_1(266) -> 265
, 0_1(268) -> 171
, 0_1(275) -> 274
, 0_1(277) -> 276
, 0_1(279) -> 86
, 0_1(281) -> 280
, 0_1(295) -> 269
, 0_1(300) -> 268
, 0_1(301) -> 300
, 0_1(305) -> 57
, 0_1(307) -> 306
, 0_1(308) -> 307
, 0_1(321) -> 320
, 0_1(325) -> 172
, 0_1(329) -> 450
, 0_1(330) -> 73
, 0_1(333) -> 332
, 0_1(338) -> 337
, 0_1(345) -> 106
, 0_1(350) -> 382
, 0_1(351) -> 339
, 0_1(353) -> 446
, 0_1(355) -> 164
, 0_1(356) -> 355
, 0_1(363) -> 362
, 0_1(366) -> 468
, 0_1(367) -> 366
, 0_1(369) -> 368
, 0_1(372) -> 430
, 0_1(374) -> 373
, 0_1(376) -> 478
, 0_1(380) -> 379
, 0_1(387) -> 253
, 0_1(388) -> 383
, 0_1(392) -> 276
, 0_1(425) -> 424
, 0_1(426) -> 186
, 0_1(429) -> 428
, 0_1(431) -> 426
, 0_1(435) -> 434
, 0_1(437) -> 86
, 0_1(440) -> 439
, 0_1(442) -> 3
, 0_1(442) -> 30
, 0_1(442) -> 62
, 0_1(442) -> 85
, 0_1(442) -> 86
, 0_1(442) -> 94
, 0_1(442) -> 120
, 0_1(442) -> 159
, 0_1(442) -> 171
, 0_1(442) -> 251
, 0_1(442) -> 468
, 0_1(442) -> 483
, 0_1(446) -> 445
, 0_1(447) -> 446
, 0_1(450) -> 449
, 0_1(451) -> 450
, 0_1(461) -> 460
, 0_1(462) -> 461
, 0_1(466) -> 465
, 0_1(469) -> 442
, 0_1(476) -> 475
, 0_1(478) -> 477
, 0_1(534) -> 86
, 0_2(275) -> 542
, 0_2(499) -> 498
, 0_2(504) -> 503
, 0_2(505) -> 504
, 0_2(540) -> 539
, 2_0(1) -> 4
, 2_0(2) -> 4
, 2_0(3) -> 4
, 2_0(4) -> 4
, 2_0(5) -> 4
, 2_0(6) -> 4
, 2_1(1) -> 129
, 2_1(2) -> 129
, 2_1(3) -> 129
, 2_1(4) -> 129
, 2_1(5) -> 129
, 2_1(6) -> 129
, 2_1(7) -> 129
, 2_1(10) -> 9
, 2_1(13) -> 12
, 2_1(14) -> 129
, 2_1(15) -> 23
, 2_1(16) -> 129
, 2_1(23) -> 22
, 2_1(24) -> 129
, 2_1(25) -> 129
, 2_1(26) -> 25
, 2_1(30) -> 29
, 2_1(31) -> 457
, 2_1(32) -> 129
, 2_1(39) -> 38
, 2_1(40) -> 39
, 2_1(45) -> 389
, 2_1(47) -> 46
, 2_1(48) -> 1
, 2_1(48) -> 47
, 2_1(48) -> 367
, 2_1(56) -> 345
, 2_1(57) -> 129
, 2_1(65) -> 129
, 2_1(77) -> 342
, 2_1(79) -> 16
, 2_1(86) -> 393
, 2_1(87) -> 129
, 2_1(91) -> 90
, 2_1(92) -> 91
, 2_1(93) -> 92
, 2_1(94) -> 262
, 2_1(96) -> 95
, 2_1(101) -> 100
, 2_1(108) -> 107
, 2_1(109) -> 129
, 2_1(110) -> 129
, 2_1(113) -> 112
, 2_1(114) -> 129
, 2_1(115) -> 114
, 2_1(116) -> 115
, 2_1(120) -> 29
, 2_1(121) -> 129
, 2_1(124) -> 123
, 2_1(129) -> 128
, 2_1(132) -> 131
, 2_1(136) -> 135
, 2_1(137) -> 129
, 2_1(142) -> 141
, 2_1(143) -> 142
, 2_1(145) -> 129
, 2_1(146) -> 145
, 2_1(152) -> 2
, 2_1(152) -> 15
, 2_1(152) -> 45
, 2_1(152) -> 108
, 2_1(152) -> 211
, 2_1(159) -> 158
, 2_1(164) -> 4
, 2_1(164) -> 23
, 2_1(164) -> 29
, 2_1(164) -> 39
, 2_1(164) -> 46
, 2_1(164) -> 92
, 2_1(164) -> 129
, 2_1(164) -> 345
, 2_1(164) -> 370
, 2_1(164) -> 393
, 2_1(164) -> 505
, 2_1(165) -> 164
, 2_1(169) -> 121
, 2_1(170) -> 1
, 2_1(171) -> 170
, 2_1(175) -> 174
, 2_1(178) -> 177
, 2_1(179) -> 5
, 2_1(179) -> 14
, 2_1(179) -> 56
, 2_1(179) -> 83
, 2_1(179) -> 258
, 2_1(179) -> 372
, 2_1(180) -> 129
, 2_1(181) -> 180
, 2_1(185) -> 386
, 2_1(186) -> 129
, 2_1(193) -> 192
, 2_1(194) -> 129
, 2_1(195) -> 129
, 2_1(198) -> 121
, 2_1(204) -> 203
, 2_1(205) -> 1
, 2_1(206) -> 129
, 2_1(211) -> 210
, 2_1(212) -> 129
, 2_1(220) -> 219
, 2_1(226) -> 225
, 2_1(234) -> 23
, 2_1(239) -> 370
, 2_1(246) -> 47
, 2_1(248) -> 247
, 2_1(249) -> 278
, 2_1(252) -> 121
, 2_1(254) -> 386
, 2_1(255) -> 262
, 2_1(256) -> 23
, 2_1(258) -> 23
, 2_1(259) -> 129
, 2_1(260) -> 259
, 2_1(263) -> 240
, 2_1(268) -> 39
, 2_1(269) -> 268
, 2_1(285) -> 129
, 2_1(293) -> 292
, 2_1(298) -> 297
, 2_1(302) -> 301
, 2_1(310) -> 309
, 2_1(315) -> 386
, 2_1(330) -> 342
, 2_1(331) -> 1
, 2_1(343) -> 342
, 2_1(346) -> 339
, 2_1(353) -> 352
, 2_1(355) -> 129
, 2_1(359) -> 358
, 2_1(360) -> 376
, 2_1(368) -> 129
, 2_1(370) -> 369
, 2_1(371) -> 370
, 2_1(377) -> 376
, 2_1(378) -> 87
, 2_1(384) -> 383
, 2_1(385) -> 384
, 2_1(386) -> 385
, 2_1(387) -> 386
, 2_1(390) -> 389
, 2_1(392) -> 391
, 2_1(394) -> 186
, 2_1(422) -> 187
, 2_1(442) -> 129
, 2_1(443) -> 121
, 2_1(449) -> 444
, 2_1(453) -> 129
, 2_1(458) -> 457
, 2_1(460) -> 459
, 2_1(464) -> 442
, 2_1(465) -> 464
, 2_1(482) -> 481
, 2_1(484) -> 24
, 2_1(485) -> 1
, 2_1(487) -> 486
, 2_1(534) -> 1
, 2_2(14) -> 505
, 2_2(15) -> 505
, 2_2(56) -> 505
, 2_2(193) -> 505
, 2_2(234) -> 505
, 2_2(256) -> 505
, 2_2(258) -> 505
, 2_2(442) -> 505
, 2_2(501) -> 500
, 2_2(534) -> 39
, 1_0(1) -> 5
, 1_0(2) -> 5
, 1_0(3) -> 5
, 1_0(4) -> 5
, 1_0(5) -> 5
, 1_0(6) -> 5
, 1_1(1) -> 56
, 1_1(2) -> 56
, 1_1(3) -> 56
, 1_1(4) -> 56
, 1_1(5) -> 56
, 1_1(6) -> 56
, 1_1(7) -> 56
, 1_1(14) -> 328
, 1_1(15) -> 14
, 1_1(16) -> 56
, 1_1(23) -> 375
, 1_1(24) -> 56
, 1_1(25) -> 56
, 1_1(32) -> 6
, 1_1(32) -> 40
, 1_1(32) -> 238
, 1_1(32) -> 311
, 1_1(33) -> 32
, 1_1(38) -> 354
, 1_1(40) -> 64
, 1_1(47) -> 234
, 1_1(48) -> 56
, 1_1(55) -> 256
, 1_1(56) -> 193
, 1_1(57) -> 2
, 1_1(57) -> 15
, 1_1(57) -> 108
, 1_1(57) -> 211
, 1_1(58) -> 57
, 1_1(59) -> 58
, 1_1(70) -> 69
, 1_1(72) -> 234
, 1_1(77) -> 76
, 1_1(79) -> 56
, 1_1(81) -> 80
, 1_1(83) -> 82
, 1_1(84) -> 83
, 1_1(86) -> 258
, 1_1(87) -> 56
, 1_1(97) -> 96
, 1_1(100) -> 99
, 1_1(106) -> 105
, 1_1(114) -> 56
, 1_1(115) -> 56
, 1_1(120) -> 119
, 1_1(121) -> 56
, 1_1(129) -> 354
, 1_1(130) -> 121
, 1_1(134) -> 455
, 1_1(137) -> 1
, 1_1(137) -> 47
, 1_1(137) -> 178
, 1_1(137) -> 277
, 1_1(137) -> 392
, 1_1(144) -> 143
, 1_1(152) -> 56
, 1_1(153) -> 152
, 1_1(155) -> 154
, 1_1(158) -> 163
, 1_1(163) -> 162
, 1_1(164) -> 56
, 1_1(165) -> 56
, 1_1(170) -> 56
, 1_1(171) -> 283
, 1_1(178) -> 234
, 1_1(179) -> 56
, 1_1(186) -> 5
, 1_1(186) -> 14
, 1_1(186) -> 56
, 1_1(186) -> 64
, 1_1(186) -> 193
, 1_1(186) -> 258
, 1_1(186) -> 328
, 1_1(186) -> 354
, 1_1(186) -> 372
, 1_1(186) -> 448
, 1_1(187) -> 186
, 1_1(189) -> 188
, 1_1(194) -> 56
, 1_1(195) -> 194
, 1_1(197) -> 196
, 1_1(198) -> 56
, 1_1(201) -> 200
, 1_1(205) -> 56
, 1_1(211) -> 372
, 1_1(212) -> 198
, 1_1(213) -> 212
, 1_1(215) -> 214
, 1_1(217) -> 216
, 1_1(219) -> 218
, 1_1(222) -> 221
, 1_1(227) -> 432
, 1_1(230) -> 229
, 1_1(233) -> 232
, 1_1(246) -> 15
, 1_1(252) -> 426
, 1_1(257) -> 256
, 1_1(261) -> 260
, 1_1(268) -> 15
, 1_1(269) -> 56
, 1_1(271) -> 270
, 1_1(274) -> 56
, 1_1(284) -> 283
, 1_1(285) -> 268
, 1_1(286) -> 285
, 1_1(291) -> 290
, 1_1(296) -> 295
, 1_1(312) -> 300
, 1_1(313) -> 312
, 1_1(317) -> 316
, 1_1(322) -> 317
, 1_1(329) -> 328
, 1_1(330) -> 329
, 1_1(331) -> 56
, 1_1(335) -> 334
, 1_1(336) -> 172
, 1_1(339) -> 164
, 1_1(342) -> 341
, 1_1(345) -> 448
, 1_1(349) -> 348
, 1_1(360) -> 359
, 1_1(363) -> 470
, 1_1(368) -> 361
, 1_1(376) -> 375
, 1_1(381) -> 380
, 1_1(386) -> 480
, 1_1(389) -> 388
, 1_1(392) -> 488
, 1_1(395) -> 394
, 1_1(424) -> 423
, 1_1(427) -> 426
, 1_1(433) -> 432
, 1_1(439) -> 438
, 1_1(452) -> 451
, 1_1(456) -> 455
, 1_1(460) -> 56
, 1_1(467) -> 466
, 1_1(471) -> 470
, 1_1(477) -> 476
, 1_1(479) -> 469
, 1_1(481) -> 480
, 1_1(485) -> 56
, 1_1(488) -> 487
, 1_1(534) -> 56
, 1_1(535) -> 56
, 1_2(498) -> 497
, 1_2(500) -> 499
, 1_2(503) -> 502
, 1_2(536) -> 535
, 5_0(1) -> 6
, 5_0(2) -> 6
, 5_0(3) -> 6
, 5_0(4) -> 6
, 5_0(5) -> 6
, 5_0(6) -> 6
, 5_1(1) -> 40
, 5_1(2) -> 40
, 5_1(3) -> 40
, 5_1(4) -> 40
, 5_1(5) -> 40
, 5_1(6) -> 40
, 5_1(7) -> 40
, 5_1(9) -> 8
, 5_1(14) -> 164
, 5_1(15) -> 245
, 5_1(16) -> 40
, 5_1(21) -> 20
, 5_1(23) -> 202
, 5_1(24) -> 40
, 5_1(25) -> 40
, 5_1(27) -> 26
, 5_1(28) -> 27
, 5_1(31) -> 217
, 5_1(32) -> 40
, 5_1(35) -> 34
, 5_1(40) -> 238
, 5_1(44) -> 43
, 5_1(47) -> 144
, 5_1(48) -> 40
, 5_1(49) -> 48
, 5_1(55) -> 54
, 5_1(56) -> 239
, 5_1(57) -> 40
, 5_1(61) -> 60
, 5_1(65) -> 40
, 5_1(73) -> 40
, 5_1(79) -> 40
, 5_1(86) -> 151
, 5_1(87) -> 40
, 5_1(89) -> 88
, 5_1(90) -> 89
, 5_1(94) -> 387
, 5_1(99) -> 98
, 5_1(101) -> 363
, 5_1(103) -> 102
, 5_1(104) -> 103
, 5_1(106) -> 272
, 5_1(108) -> 474
, 5_1(109) -> 40
, 5_1(114) -> 40
, 5_1(115) -> 40
, 5_1(120) -> 315
, 5_1(121) -> 40
, 5_1(123) -> 122
, 5_1(126) -> 125
, 5_1(129) -> 311
, 5_1(130) -> 40
, 5_1(131) -> 40
, 5_1(135) -> 134
, 5_1(136) -> 217
, 5_1(137) -> 40
, 5_1(139) -> 138
, 5_1(140) -> 139
, 5_1(145) -> 109
, 5_1(148) -> 147
, 5_1(151) -> 150
, 5_1(152) -> 40
, 5_1(156) -> 155
, 5_1(157) -> 156
, 5_1(159) -> 441
, 5_1(160) -> 153
, 5_1(164) -> 40
, 5_1(165) -> 40
, 5_1(169) -> 168
, 5_1(170) -> 40
, 5_1(171) -> 185
, 5_1(172) -> 40
, 5_1(179) -> 40
, 5_1(180) -> 40
, 5_1(182) -> 181
, 5_1(184) -> 183
, 5_1(185) -> 184
, 5_1(186) -> 40
, 5_1(194) -> 40
, 5_1(198) -> 6
, 5_1(198) -> 40
, 5_1(198) -> 151
, 5_1(198) -> 238
, 5_1(198) -> 239
, 5_1(198) -> 245
, 5_1(198) -> 387
, 5_1(198) -> 473
, 5_1(198) -> 474
, 5_1(199) -> 198
, 5_1(202) -> 201
, 5_1(203) -> 202
, 5_1(204) -> 294
, 5_1(205) -> 40
, 5_1(206) -> 40
, 5_1(211) -> 245
, 5_1(214) -> 213
, 5_1(225) -> 224
, 5_1(229) -> 121
, 5_1(232) -> 231
, 5_1(238) -> 237
, 5_1(239) -> 238
, 5_1(245) -> 473
, 5_1(246) -> 40
, 5_1(253) -> 252
, 5_1(255) -> 254
, 5_1(256) -> 239
, 5_1(260) -> 40
, 5_1(268) -> 40
, 5_1(269) -> 40
, 5_1(273) -> 272
, 5_1(274) -> 268
, 5_1(280) -> 279
, 5_1(282) -> 281
, 5_1(288) -> 287
, 5_1(289) -> 288
, 5_1(294) -> 293
, 5_1(299) -> 185
, 5_1(304) -> 303
, 5_1(306) -> 305
, 5_1(309) -> 308
, 5_1(311) -> 310
, 5_1(314) -> 363
, 5_1(316) -> 164
, 5_1(323) -> 322
, 5_1(329) -> 371
, 5_1(331) -> 40
, 5_1(332) -> 331
, 5_1(335) -> 363
, 5_1(336) -> 40
, 5_1(337) -> 336
, 5_1(355) -> 40
, 5_1(359) -> 239
, 5_1(360) -> 425
, 5_1(361) -> 186
, 5_1(364) -> 363
, 5_1(366) -> 365
, 5_1(372) -> 371
, 5_1(379) -> 378
, 5_1(383) -> 40
, 5_1(397) -> 396
, 5_1(425) -> 473
, 5_1(428) -> 427
, 5_1(430) -> 429
, 5_1(432) -> 431
, 5_1(436) -> 40
, 5_1(437) -> 436
, 5_1(438) -> 437
, 5_1(441) -> 440
, 5_1(442) -> 40
, 5_1(443) -> 442
, 5_1(445) -> 444
, 5_1(457) -> 456
, 5_1(463) -> 462
, 5_1(472) -> 471
, 5_1(474) -> 473
, 5_1(483) -> 482
, 5_1(485) -> 40
, 5_1(486) -> 40
, 5_1(497) -> 26
, 5_1(534) -> 40
, 5_1(535) -> 40
, 5_2(497) -> 40
, 5_2(497) -> 164
, 5_2(497) -> 239
, 5_2(497) -> 371
, 5_2(535) -> 534
, 5_2(542) -> 541}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(2(2(1(2(1(1(5(0(1(3(3(1(x1))))))))))))) ->
4(0(5(2(0(3(2(3(1(3(x1))))))))))
, 1(2(1(0(2(5(4(2(2(2(5(5(4(x1))))))))))))) ->
3(3(0(0(0(5(3(2(2(3(x1))))))))))
, 0(0(2(0(3(5(5(2(2(1(1(3(2(x1))))))))))))) ->
4(3(2(5(5(3(2(0(4(3(x1))))))))))
, 5(2(1(5(5(5(2(0(4(5(2(4(x1)))))))))))) ->
1(1(4(5(4(3(4(2(2(5(x1))))))))))
, 5(2(0(2(5(5(1(5(5(1(5(1(x1)))))))))))) ->
1(1(3(4(0(5(4(3(2(4(x1))))))))))
, 4(0(5(0(1(1(0(4(3(5(3(5(x1)))))))))))) ->
2(5(3(4(0(4(4(5(3(1(x1))))))))))
, 3(2(0(2(0(3(4(4(4(4(1(3(x1)))))))))))) ->
1(1(1(0(5(3(0(0(1(5(x1))))))))))
, 3(2(0(0(5(4(5(0(5(4(2(5(x1)))))))))))) ->
0(3(0(4(0(1(4(4(4(4(x1))))))))))
, 3(2(0(0(4(2(3(3(5(5(2(2(x1)))))))))))) ->
1(3(0(3(4(1(3(4(2(3(x1))))))))))
, 1(2(1(1(1(1(2(5(2(2(4(5(x1)))))))))))) ->
3(2(0(1(0(1(1(0(0(0(x1))))))))))
, 1(0(2(1(4(3(4(5(2(3(3(1(x1)))))))))))) ->
4(4(5(5(2(2(2(4(0(3(x1))))))))))
, 5(5(4(0(2(4(5(2(3(4(3(x1))))))))))) ->
1(0(2(1(4(5(1(2(4(5(x1))))))))))
, 5(3(2(0(0(5(3(1(4(1(0(x1))))))))))) ->
4(4(5(5(0(1(0(2(3(0(x1))))))))))
, 4(5(5(4(4(4(2(5(2(5(3(x1))))))))))) ->
0(4(0(3(2(4(1(0(0(0(x1))))))))))
, 4(4(4(0(3(3(4(3(4(5(4(x1))))))))))) ->
3(2(2(4(0(0(1(0(4(5(x1))))))))))
, 4(2(1(5(3(5(4(1(4(4(3(x1))))))))))) ->
4(0(5(2(3(5(4(3(2(2(x1))))))))))
, 4(2(0(5(4(5(5(3(2(5(4(x1))))))))))) ->
4(1(3(2(0(0(5(2(4(1(x1))))))))))
, 4(2(0(3(4(2(1(1(3(3(0(x1))))))))))) ->
1(0(5(5(3(2(2(1(5(4(x1))))))))))
, 4(0(1(2(3(1(0(2(2(4(5(x1))))))))))) ->
0(5(2(4(5(0(4(5(5(0(x1))))))))))
, 3(2(4(4(2(4(5(4(1(5(1(x1))))))))))) ->
2(1(4(1(5(5(4(2(0(2(x1))))))))))
, 3(0(2(4(1(1(2(1(5(2(0(x1))))))))))) ->
2(1(5(3(3(1(1(2(0(2(x1))))))))))
, 2(4(0(0(5(5(1(3(5(1(4(x1))))))))))) ->
2(2(0(0(0(5(3(2(0(5(x1))))))))))
, 2(0(4(3(4(5(3(0(0(0(5(x1))))))))))) ->
2(4(4(4(2(0(4(2(4(2(x1))))))))))
, 1(3(2(3(3(0(2(4(2(3(2(x1))))))))))) ->
2(0(2(5(4(5(5(5(0(5(x1))))))))))
, 1(2(4(0(4(3(4(0(0(3(2(x1))))))))))) ->
1(1(4(1(4(4(3(2(1(1(x1))))))))))
, 0(3(5(4(1(5(1(5(1(2(0(x1))))))))))) ->
3(1(3(1(0(5(1(2(4(5(x1))))))))))
, 5(5(3(1(5(5(3(2(0(5(x1)))))))))) ->
5(5(3(1(5(5(2(3(0(5(x1))))))))))
, 5(3(0(0(3(4(4(2(3(2(x1)))))))))) ->
5(3(0(0(4(3(4(2(3(2(x1))))))))))
, 5(1(1(5(1(5(1(1(4(3(x1)))))))))) ->
5(1(1(5(1(3(1(5(4(1(x1))))))))))
, 5(1(0(1(3(2(1(0(2(0(x1)))))))))) ->
5(1(0(1(2(3(1(0(0(2(x1))))))))))
, 5(0(3(5(2(3(0(3(4(4(x1)))))))))) ->
5(0(3(5(2(3(3(0(4(4(x1))))))))))
, 4(5(1(3(5(1(3(4(1(2(x1)))))))))) ->
4(5(1(3(5(1(3(1(4(2(x1))))))))))
, 4(5(1(0(4(3(5(5(5(1(x1)))))))))) ->
4(5(1(0(3(4(5(5(5(1(x1))))))))))
, 4(4(0(0(4(3(3(5(3(2(x1)))))))))) ->
4(4(0(4(0(3(3(5(3(2(x1))))))))))
, 4(3(2(0(0(0(3(0(0(3(x1)))))))))) ->
4(3(0(2(0(0(3(0(0(3(x1))))))))))
, 4(2(5(0(5(1(0(3(1(0(x1)))))))))) ->
4(2(5(0(5(0(1(3(1(0(x1))))))))))
, 4(1(3(2(2(0(2(0(1(3(x1)))))))))) ->
4(2(3(2(1(0(2(0(1(3(x1))))))))))
, 4(0(4(2(4(3(4(3(4(1(x1)))))))))) ->
4(4(2(3(4(0(3(4(4(1(x1))))))))))
, 3(5(1(3(2(0(2(4(2(3(x1)))))))))) ->
3(2(3(1(4(5(0(2(3(2(x1))))))))))
, 3(5(0(3(4(2(0(0(3(0(x1)))))))))) ->
3(5(0(3(0(4(2(0(3(0(x1))))))))))
, 3(4(5(0(5(1(4(0(5(3(x1)))))))))) ->
3(4(5(0(5(4(1(0(5(3(x1))))))))))
, 3(4(2(1(4(3(3(1(3(5(x1)))))))))) ->
3(1(1(3(5(5(0(3(0(5(x1))))))))))
, 3(3(5(2(1(5(3(0(4(5(x1)))))))))) ->
3(3(1(4(2(5(5(3(0(5(x1))))))))))
, 3(2(0(1(2(4(0(0(5(3(x1)))))))))) ->
3(2(0(1(4(2(3(0(5(0(x1))))))))))
, 3(0(4(3(2(4(0(5(2(0(x1)))))))))) ->
3(0(0(2(4(5(0(4(2(3(x1))))))))))
, 3(0(2(0(4(3(1(4(3(1(x1)))))))))) ->
1(0(5(0(0(5(2(5(5(2(x1))))))))))
, 3(0(1(4(0(3(5(1(4(5(x1)))))))))) ->
3(0(1(1(3(4(5(0(4(5(x1))))))))))
, 2(5(1(3(0(3(4(3(5(0(x1)))))))))) ->
2(5(1(3(3(4(0(3(5(0(x1))))))))))
, 2(5(1(1(4(5(4(0(4(2(x1)))))))))) ->
2(5(1(1(5(4(4(0(4(2(x1))))))))))
, 2(4(0(1(4(1(4(3(3(4(x1)))))))))) ->
2(4(0(4(4(3(1(1(3(4(x1))))))))))
, 2(3(5(0(1(3(4(5(5(2(x1)))))))))) ->
2(3(5(0(3(1(4(5(5(2(x1))))))))))
, 2(1(4(0(5(3(4(5(5(0(x1)))))))))) ->
2(4(1(5(0(3(4(5(5(0(x1))))))))))
, 2(1(3(4(1(3(2(4(2(1(x1)))))))))) ->
2(1(3(4(1(2(3(4(2(1(x1))))))))))
, 2(1(2(4(4(3(5(2(4(1(x1)))))))))) ->
2(1(2(4(3(1(4(4(2(5(x1))))))))))
, 2(1(0(3(3(2(1(2(2(5(x1)))))))))) ->
2(1(0(3(2(3(1(2(2(5(x1))))))))))
, 2(0(0(4(3(2(1(3(3(4(x1)))))))))) ->
2(0(0(3(4(2(1(3(3(4(x1))))))))))
, 1(5(3(0(5(5(4(0(4(0(x1)))))))))) ->
1(5(3(0(5(4(5(0(4(0(x1))))))))))
, 1(5(1(2(0(2(5(1(3(2(x1)))))))))) ->
1(5(1(0(2(2(5(1(3(2(x1))))))))))
, 1(5(0(4(1(3(2(3(3(3(x1)))))))))) ->
1(5(4(0(3(1(2(3(3(3(x1))))))))))
, 1(4(5(2(2(4(0(0(3(5(x1)))))))))) ->
4(2(5(0(1(3(0(4(2(5(x1))))))))))
, 1(3(2(2(2(5(2(0(1(0(x1)))))))))) ->
1(3(2(2(2(2(5(0(1(0(x1))))))))))
, 1(3(0(2(3(2(4(1(2(0(x1)))))))))) ->
1(3(0(1(2(3(2(4(2(0(x1))))))))))
, 1(2(1(5(1(5(1(3(4(3(x1)))))))))) ->
1(2(1(3(5(4(5(1(3(1(x1))))))))))
, 1(1(3(2(1(0(5(3(3(4(x1)))))))))) ->
1(1(2(3(1(0(5(3(3(4(x1))))))))))
, 1(0(1(0(5(5(0(1(3(2(x1)))))))))) ->
1(0(1(5(0(5(0(1(3(2(x1))))))))))
, 1(0(0(5(3(4(0(1(4(3(x1)))))))))) ->
1(0(0(5(1(3(0(4(4(3(x1))))))))))
, 1(0(0(0(4(0(0(5(0(4(x1)))))))))) ->
2(4(5(5(1(0(5(5(0(2(x1))))))))))
, 0(5(5(0(4(0(3(1(2(1(x1)))))))))) ->
0(5(4(5(0(0(3(1(2(1(x1))))))))))
, 0(5(2(4(0(0(1(3(4(3(x1)))))))))) ->
0(5(4(2(0(0(1(3(4(3(x1))))))))))
, 0(4(3(3(5(1(2(4(3(3(x1)))))))))) ->
0(4(3(3(1(5(2(4(3(3(x1))))))))))
, 0(3(2(0(5(0(4(3(5(3(x1)))))))))) ->
0(3(2(0(0(5(4(3(5(3(x1))))))))))
, 0(2(2(0(1(0(3(4(0(0(x1)))))))))) ->
0(2(2(0(1(3(0(0(4(0(x1))))))))))
, 0(0(5(3(4(5(1(5(3(0(x1)))))))))) ->
0(0(3(1(5(4(5(5(3(0(x1))))))))))
, 0(0(4(0(1(0(2(0(3(3(x1)))))))))) ->
0(0(4(0(1(0(0(2(3(3(x1))))))))))
, 0(0(1(5(2(3(0(1(5(5(x1)))))))))) ->
0(0(1(3(1(2(5(0(5(5(x1))))))))))
, 0(0(1(0(1(2(0(3(3(4(x1)))))))))) ->
4(2(3(4(2(1(1(4(2(0(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(2(2(1(2(1(1(5(0(1(3(3(1(x1))))))))))))) ->
4(0(5(2(0(3(2(3(1(3(x1))))))))))
, 1(2(1(0(2(5(4(2(2(2(5(5(4(x1))))))))))))) ->
3(3(0(0(0(5(3(2(2(3(x1))))))))))
, 0(0(2(0(3(5(5(2(2(1(1(3(2(x1))))))))))))) ->
4(3(2(5(5(3(2(0(4(3(x1))))))))))
, 5(2(1(5(5(5(2(0(4(5(2(4(x1)))))))))))) ->
1(1(4(5(4(3(4(2(2(5(x1))))))))))
, 5(2(0(2(5(5(1(5(5(1(5(1(x1)))))))))))) ->
1(1(3(4(0(5(4(3(2(4(x1))))))))))
, 4(0(5(0(1(1(0(4(3(5(3(5(x1)))))))))))) ->
2(5(3(4(0(4(4(5(3(1(x1))))))))))
, 3(2(0(2(0(3(4(4(4(4(1(3(x1)))))))))))) ->
1(1(1(0(5(3(0(0(1(5(x1))))))))))
, 3(2(0(0(5(4(5(0(5(4(2(5(x1)))))))))))) ->
0(3(0(4(0(1(4(4(4(4(x1))))))))))
, 3(2(0(0(4(2(3(3(5(5(2(2(x1)))))))))))) ->
1(3(0(3(4(1(3(4(2(3(x1))))))))))
, 1(2(1(1(1(1(2(5(2(2(4(5(x1)))))))))))) ->
3(2(0(1(0(1(1(0(0(0(x1))))))))))
, 1(0(2(1(4(3(4(5(2(3(3(1(x1)))))))))))) ->
4(4(5(5(2(2(2(4(0(3(x1))))))))))
, 5(5(4(0(2(4(5(2(3(4(3(x1))))))))))) ->
1(0(2(1(4(5(1(2(4(5(x1))))))))))
, 5(3(2(0(0(5(3(1(4(1(0(x1))))))))))) ->
4(4(5(5(0(1(0(2(3(0(x1))))))))))
, 4(5(5(4(4(4(2(5(2(5(3(x1))))))))))) ->
0(4(0(3(2(4(1(0(0(0(x1))))))))))
, 4(4(4(0(3(3(4(3(4(5(4(x1))))))))))) ->
3(2(2(4(0(0(1(0(4(5(x1))))))))))
, 4(2(1(5(3(5(4(1(4(4(3(x1))))))))))) ->
4(0(5(2(3(5(4(3(2(2(x1))))))))))
, 4(2(0(5(4(5(5(3(2(5(4(x1))))))))))) ->
4(1(3(2(0(0(5(2(4(1(x1))))))))))
, 4(2(0(3(4(2(1(1(3(3(0(x1))))))))))) ->
1(0(5(5(3(2(2(1(5(4(x1))))))))))
, 4(0(1(2(3(1(0(2(2(4(5(x1))))))))))) ->
0(5(2(4(5(0(4(5(5(0(x1))))))))))
, 3(2(4(4(2(4(5(4(1(5(1(x1))))))))))) ->
2(1(4(1(5(5(4(2(0(2(x1))))))))))
, 3(0(2(4(1(1(2(1(5(2(0(x1))))))))))) ->
2(1(5(3(3(1(1(2(0(2(x1))))))))))
, 2(4(0(0(5(5(1(3(5(1(4(x1))))))))))) ->
2(2(0(0(0(5(3(2(0(5(x1))))))))))
, 2(0(4(3(4(5(3(0(0(0(5(x1))))))))))) ->
2(4(4(4(2(0(4(2(4(2(x1))))))))))
, 1(3(2(3(3(0(2(4(2(3(2(x1))))))))))) ->
2(0(2(5(4(5(5(5(0(5(x1))))))))))
, 1(2(4(0(4(3(4(0(0(3(2(x1))))))))))) ->
1(1(4(1(4(4(3(2(1(1(x1))))))))))
, 0(3(5(4(1(5(1(5(1(2(0(x1))))))))))) ->
3(1(3(1(0(5(1(2(4(5(x1))))))))))
, 5(5(3(1(5(5(3(2(0(5(x1)))))))))) ->
5(5(3(1(5(5(2(3(0(5(x1))))))))))
, 5(3(0(0(3(4(4(2(3(2(x1)))))))))) ->
5(3(0(0(4(3(4(2(3(2(x1))))))))))
, 5(1(1(5(1(5(1(1(4(3(x1)))))))))) ->
5(1(1(5(1(3(1(5(4(1(x1))))))))))
, 5(1(0(1(3(2(1(0(2(0(x1)))))))))) ->
5(1(0(1(2(3(1(0(0(2(x1))))))))))
, 5(0(3(5(2(3(0(3(4(4(x1)))))))))) ->
5(0(3(5(2(3(3(0(4(4(x1))))))))))
, 4(5(1(3(5(1(3(4(1(2(x1)))))))))) ->
4(5(1(3(5(1(3(1(4(2(x1))))))))))
, 4(5(1(0(4(3(5(5(5(1(x1)))))))))) ->
4(5(1(0(3(4(5(5(5(1(x1))))))))))
, 4(4(0(0(4(3(3(5(3(2(x1)))))))))) ->
4(4(0(4(0(3(3(5(3(2(x1))))))))))
, 4(3(2(0(0(0(3(0(0(3(x1)))))))))) ->
4(3(0(2(0(0(3(0(0(3(x1))))))))))
, 4(2(5(0(5(1(0(3(1(0(x1)))))))))) ->
4(2(5(0(5(0(1(3(1(0(x1))))))))))
, 4(1(3(2(2(0(2(0(1(3(x1)))))))))) ->
4(2(3(2(1(0(2(0(1(3(x1))))))))))
, 4(0(4(2(4(3(4(3(4(1(x1)))))))))) ->
4(4(2(3(4(0(3(4(4(1(x1))))))))))
, 3(5(1(3(2(0(2(4(2(3(x1)))))))))) ->
3(2(3(1(4(5(0(2(3(2(x1))))))))))
, 3(5(0(3(4(2(0(0(3(0(x1)))))))))) ->
3(5(0(3(0(4(2(0(3(0(x1))))))))))
, 3(4(5(0(5(1(4(0(5(3(x1)))))))))) ->
3(4(5(0(5(4(1(0(5(3(x1))))))))))
, 3(4(2(1(4(3(3(1(3(5(x1)))))))))) ->
3(1(1(3(5(5(0(3(0(5(x1))))))))))
, 3(3(5(2(1(5(3(0(4(5(x1)))))))))) ->
3(3(1(4(2(5(5(3(0(5(x1))))))))))
, 3(2(0(1(2(4(0(0(5(3(x1)))))))))) ->
3(2(0(1(4(2(3(0(5(0(x1))))))))))
, 3(0(4(3(2(4(0(5(2(0(x1)))))))))) ->
3(0(0(2(4(5(0(4(2(3(x1))))))))))
, 3(0(2(0(4(3(1(4(3(1(x1)))))))))) ->
1(0(5(0(0(5(2(5(5(2(x1))))))))))
, 3(0(1(4(0(3(5(1(4(5(x1)))))))))) ->
3(0(1(1(3(4(5(0(4(5(x1))))))))))
, 2(5(1(3(0(3(4(3(5(0(x1)))))))))) ->
2(5(1(3(3(4(0(3(5(0(x1))))))))))
, 2(5(1(1(4(5(4(0(4(2(x1)))))))))) ->
2(5(1(1(5(4(4(0(4(2(x1))))))))))
, 2(4(0(1(4(1(4(3(3(4(x1)))))))))) ->
2(4(0(4(4(3(1(1(3(4(x1))))))))))
, 2(3(5(0(1(3(4(5(5(2(x1)))))))))) ->
2(3(5(0(3(1(4(5(5(2(x1))))))))))
, 2(1(4(0(5(3(4(5(5(0(x1)))))))))) ->
2(4(1(5(0(3(4(5(5(0(x1))))))))))
, 2(1(3(4(1(3(2(4(2(1(x1)))))))))) ->
2(1(3(4(1(2(3(4(2(1(x1))))))))))
, 2(1(2(4(4(3(5(2(4(1(x1)))))))))) ->
2(1(2(4(3(1(4(4(2(5(x1))))))))))
, 2(1(0(3(3(2(1(2(2(5(x1)))))))))) ->
2(1(0(3(2(3(1(2(2(5(x1))))))))))
, 2(0(0(4(3(2(1(3(3(4(x1)))))))))) ->
2(0(0(3(4(2(1(3(3(4(x1))))))))))
, 1(5(3(0(5(5(4(0(4(0(x1)))))))))) ->
1(5(3(0(5(4(5(0(4(0(x1))))))))))
, 1(5(1(2(0(2(5(1(3(2(x1)))))))))) ->
1(5(1(0(2(2(5(1(3(2(x1))))))))))
, 1(5(0(4(1(3(2(3(3(3(x1)))))))))) ->
1(5(4(0(3(1(2(3(3(3(x1))))))))))
, 1(4(5(2(2(4(0(0(3(5(x1)))))))))) ->
4(2(5(0(1(3(0(4(2(5(x1))))))))))
, 1(3(2(2(2(5(2(0(1(0(x1)))))))))) ->
1(3(2(2(2(2(5(0(1(0(x1))))))))))
, 1(3(0(2(3(2(4(1(2(0(x1)))))))))) ->
1(3(0(1(2(3(2(4(2(0(x1))))))))))
, 1(2(1(5(1(5(1(3(4(3(x1)))))))))) ->
1(2(1(3(5(4(5(1(3(1(x1))))))))))
, 1(1(3(2(1(0(5(3(3(4(x1)))))))))) ->
1(1(2(3(1(0(5(3(3(4(x1))))))))))
, 1(0(1(0(5(5(0(1(3(2(x1)))))))))) ->
1(0(1(5(0(5(0(1(3(2(x1))))))))))
, 1(0(0(5(3(4(0(1(4(3(x1)))))))))) ->
1(0(0(5(1(3(0(4(4(3(x1))))))))))
, 1(0(0(0(4(0(0(5(0(4(x1)))))))))) ->
2(4(5(5(1(0(5(5(0(2(x1))))))))))
, 0(5(5(0(4(0(3(1(2(1(x1)))))))))) ->
0(5(4(5(0(0(3(1(2(1(x1))))))))))
, 0(5(2(4(0(0(1(3(4(3(x1)))))))))) ->
0(5(4(2(0(0(1(3(4(3(x1))))))))))
, 0(4(3(3(5(1(2(4(3(3(x1)))))))))) ->
0(4(3(3(1(5(2(4(3(3(x1))))))))))
, 0(3(2(0(5(0(4(3(5(3(x1)))))))))) ->
0(3(2(0(0(5(4(3(5(3(x1))))))))))
, 0(2(2(0(1(0(3(4(0(0(x1)))))))))) ->
0(2(2(0(1(3(0(0(4(0(x1))))))))))
, 0(0(5(3(4(5(1(5(3(0(x1)))))))))) ->
0(0(3(1(5(4(5(5(3(0(x1))))))))))
, 0(0(4(0(1(0(2(0(3(3(x1)))))))))) ->
0(0(4(0(1(0(0(2(3(3(x1))))))))))
, 0(0(1(5(2(3(0(1(5(5(x1)))))))))) ->
0(0(1(3(1(2(5(0(5(5(x1))))))))))
, 0(0(1(0(1(2(0(3(3(4(x1)))))))))) ->
4(2(3(4(2(1(1(4(2(0(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(2(2(1(2(1(1(5(0(1(3(3(1(x1))))))))))))) ->
4(0(5(2(0(3(2(3(1(3(x1))))))))))
, 1(2(1(0(2(5(4(2(2(2(5(5(4(x1))))))))))))) ->
3(3(0(0(0(5(3(2(2(3(x1))))))))))
, 0(0(2(0(3(5(5(2(2(1(1(3(2(x1))))))))))))) ->
4(3(2(5(5(3(2(0(4(3(x1))))))))))
, 5(2(1(5(5(5(2(0(4(5(2(4(x1)))))))))))) ->
1(1(4(5(4(3(4(2(2(5(x1))))))))))
, 5(2(0(2(5(5(1(5(5(1(5(1(x1)))))))))))) ->
1(1(3(4(0(5(4(3(2(4(x1))))))))))
, 4(0(5(0(1(1(0(4(3(5(3(5(x1)))))))))))) ->
2(5(3(4(0(4(4(5(3(1(x1))))))))))
, 3(2(0(2(0(3(4(4(4(4(1(3(x1)))))))))))) ->
1(1(1(0(5(3(0(0(1(5(x1))))))))))
, 3(2(0(0(5(4(5(0(5(4(2(5(x1)))))))))))) ->
0(3(0(4(0(1(4(4(4(4(x1))))))))))
, 3(2(0(0(4(2(3(3(5(5(2(2(x1)))))))))))) ->
1(3(0(3(4(1(3(4(2(3(x1))))))))))
, 1(2(1(1(1(1(2(5(2(2(4(5(x1)))))))))))) ->
3(2(0(1(0(1(1(0(0(0(x1))))))))))
, 1(0(2(1(4(3(4(5(2(3(3(1(x1)))))))))))) ->
4(4(5(5(2(2(2(4(0(3(x1))))))))))
, 5(5(4(0(2(4(5(2(3(4(3(x1))))))))))) ->
1(0(2(1(4(5(1(2(4(5(x1))))))))))
, 5(3(2(0(0(5(3(1(4(1(0(x1))))))))))) ->
4(4(5(5(0(1(0(2(3(0(x1))))))))))
, 4(5(5(4(4(4(2(5(2(5(3(x1))))))))))) ->
0(4(0(3(2(4(1(0(0(0(x1))))))))))
, 4(4(4(0(3(3(4(3(4(5(4(x1))))))))))) ->
3(2(2(4(0(0(1(0(4(5(x1))))))))))
, 4(2(1(5(3(5(4(1(4(4(3(x1))))))))))) ->
4(0(5(2(3(5(4(3(2(2(x1))))))))))
, 4(2(0(5(4(5(5(3(2(5(4(x1))))))))))) ->
4(1(3(2(0(0(5(2(4(1(x1))))))))))
, 4(2(0(3(4(2(1(1(3(3(0(x1))))))))))) ->
1(0(5(5(3(2(2(1(5(4(x1))))))))))
, 4(0(1(2(3(1(0(2(2(4(5(x1))))))))))) ->
0(5(2(4(5(0(4(5(5(0(x1))))))))))
, 3(2(4(4(2(4(5(4(1(5(1(x1))))))))))) ->
2(1(4(1(5(5(4(2(0(2(x1))))))))))
, 3(0(2(4(1(1(2(1(5(2(0(x1))))))))))) ->
2(1(5(3(3(1(1(2(0(2(x1))))))))))
, 2(4(0(0(5(5(1(3(5(1(4(x1))))))))))) ->
2(2(0(0(0(5(3(2(0(5(x1))))))))))
, 2(0(4(3(4(5(3(0(0(0(5(x1))))))))))) ->
2(4(4(4(2(0(4(2(4(2(x1))))))))))
, 1(3(2(3(3(0(2(4(2(3(2(x1))))))))))) ->
2(0(2(5(4(5(5(5(0(5(x1))))))))))
, 1(2(4(0(4(3(4(0(0(3(2(x1))))))))))) ->
1(1(4(1(4(4(3(2(1(1(x1))))))))))
, 0(3(5(4(1(5(1(5(1(2(0(x1))))))))))) ->
3(1(3(1(0(5(1(2(4(5(x1))))))))))
, 5(5(3(1(5(5(3(2(0(5(x1)))))))))) ->
5(5(3(1(5(5(2(3(0(5(x1))))))))))
, 5(3(0(0(3(4(4(2(3(2(x1)))))))))) ->
5(3(0(0(4(3(4(2(3(2(x1))))))))))
, 5(1(1(5(1(5(1(1(4(3(x1)))))))))) ->
5(1(1(5(1(3(1(5(4(1(x1))))))))))
, 5(1(0(1(3(2(1(0(2(0(x1)))))))))) ->
5(1(0(1(2(3(1(0(0(2(x1))))))))))
, 5(0(3(5(2(3(0(3(4(4(x1)))))))))) ->
5(0(3(5(2(3(3(0(4(4(x1))))))))))
, 4(5(1(3(5(1(3(4(1(2(x1)))))))))) ->
4(5(1(3(5(1(3(1(4(2(x1))))))))))
, 4(5(1(0(4(3(5(5(5(1(x1)))))))))) ->
4(5(1(0(3(4(5(5(5(1(x1))))))))))
, 4(4(0(0(4(3(3(5(3(2(x1)))))))))) ->
4(4(0(4(0(3(3(5(3(2(x1))))))))))
, 4(3(2(0(0(0(3(0(0(3(x1)))))))))) ->
4(3(0(2(0(0(3(0(0(3(x1))))))))))
, 4(2(5(0(5(1(0(3(1(0(x1)))))))))) ->
4(2(5(0(5(0(1(3(1(0(x1))))))))))
, 4(1(3(2(2(0(2(0(1(3(x1)))))))))) ->
4(2(3(2(1(0(2(0(1(3(x1))))))))))
, 4(0(4(2(4(3(4(3(4(1(x1)))))))))) ->
4(4(2(3(4(0(3(4(4(1(x1))))))))))
, 3(5(1(3(2(0(2(4(2(3(x1)))))))))) ->
3(2(3(1(4(5(0(2(3(2(x1))))))))))
, 3(5(0(3(4(2(0(0(3(0(x1)))))))))) ->
3(5(0(3(0(4(2(0(3(0(x1))))))))))
, 3(4(5(0(5(1(4(0(5(3(x1)))))))))) ->
3(4(5(0(5(4(1(0(5(3(x1))))))))))
, 3(4(2(1(4(3(3(1(3(5(x1)))))))))) ->
3(1(1(3(5(5(0(3(0(5(x1))))))))))
, 3(3(5(2(1(5(3(0(4(5(x1)))))))))) ->
3(3(1(4(2(5(5(3(0(5(x1))))))))))
, 3(2(0(1(2(4(0(0(5(3(x1)))))))))) ->
3(2(0(1(4(2(3(0(5(0(x1))))))))))
, 3(0(4(3(2(4(0(5(2(0(x1)))))))))) ->
3(0(0(2(4(5(0(4(2(3(x1))))))))))
, 3(0(2(0(4(3(1(4(3(1(x1)))))))))) ->
1(0(5(0(0(5(2(5(5(2(x1))))))))))
, 3(0(1(4(0(3(5(1(4(5(x1)))))))))) ->
3(0(1(1(3(4(5(0(4(5(x1))))))))))
, 2(5(1(3(0(3(4(3(5(0(x1)))))))))) ->
2(5(1(3(3(4(0(3(5(0(x1))))))))))
, 2(5(1(1(4(5(4(0(4(2(x1)))))))))) ->
2(5(1(1(5(4(4(0(4(2(x1))))))))))
, 2(4(0(1(4(1(4(3(3(4(x1)))))))))) ->
2(4(0(4(4(3(1(1(3(4(x1))))))))))
, 2(3(5(0(1(3(4(5(5(2(x1)))))))))) ->
2(3(5(0(3(1(4(5(5(2(x1))))))))))
, 2(1(4(0(5(3(4(5(5(0(x1)))))))))) ->
2(4(1(5(0(3(4(5(5(0(x1))))))))))
, 2(1(3(4(1(3(2(4(2(1(x1)))))))))) ->
2(1(3(4(1(2(3(4(2(1(x1))))))))))
, 2(1(2(4(4(3(5(2(4(1(x1)))))))))) ->
2(1(2(4(3(1(4(4(2(5(x1))))))))))
, 2(1(0(3(3(2(1(2(2(5(x1)))))))))) ->
2(1(0(3(2(3(1(2(2(5(x1))))))))))
, 2(0(0(4(3(2(1(3(3(4(x1)))))))))) ->
2(0(0(3(4(2(1(3(3(4(x1))))))))))
, 1(5(3(0(5(5(4(0(4(0(x1)))))))))) ->
1(5(3(0(5(4(5(0(4(0(x1))))))))))
, 1(5(1(2(0(2(5(1(3(2(x1)))))))))) ->
1(5(1(0(2(2(5(1(3(2(x1))))))))))
, 1(5(0(4(1(3(2(3(3(3(x1)))))))))) ->
1(5(4(0(3(1(2(3(3(3(x1))))))))))
, 1(4(5(2(2(4(0(0(3(5(x1)))))))))) ->
4(2(5(0(1(3(0(4(2(5(x1))))))))))
, 1(3(2(2(2(5(2(0(1(0(x1)))))))))) ->
1(3(2(2(2(2(5(0(1(0(x1))))))))))
, 1(3(0(2(3(2(4(1(2(0(x1)))))))))) ->
1(3(0(1(2(3(2(4(2(0(x1))))))))))
, 1(2(1(5(1(5(1(3(4(3(x1)))))))))) ->
1(2(1(3(5(4(5(1(3(1(x1))))))))))
, 1(1(3(2(1(0(5(3(3(4(x1)))))))))) ->
1(1(2(3(1(0(5(3(3(4(x1))))))))))
, 1(0(1(0(5(5(0(1(3(2(x1)))))))))) ->
1(0(1(5(0(5(0(1(3(2(x1))))))))))
, 1(0(0(5(3(4(0(1(4(3(x1)))))))))) ->
1(0(0(5(1(3(0(4(4(3(x1))))))))))
, 1(0(0(0(4(0(0(5(0(4(x1)))))))))) ->
2(4(5(5(1(0(5(5(0(2(x1))))))))))
, 0(5(5(0(4(0(3(1(2(1(x1)))))))))) ->
0(5(4(5(0(0(3(1(2(1(x1))))))))))
, 0(5(2(4(0(0(1(3(4(3(x1)))))))))) ->
0(5(4(2(0(0(1(3(4(3(x1))))))))))
, 0(4(3(3(5(1(2(4(3(3(x1)))))))))) ->
0(4(3(3(1(5(2(4(3(3(x1))))))))))
, 0(3(2(0(5(0(4(3(5(3(x1)))))))))) ->
0(3(2(0(0(5(4(3(5(3(x1))))))))))
, 0(2(2(0(1(0(3(4(0(0(x1)))))))))) ->
0(2(2(0(1(3(0(0(4(0(x1))))))))))
, 0(0(5(3(4(5(1(5(3(0(x1)))))))))) ->
0(0(3(1(5(4(5(5(3(0(x1))))))))))
, 0(0(4(0(1(0(2(0(3(3(x1)))))))))) ->
0(0(4(0(1(0(0(2(3(3(x1))))))))))
, 0(0(1(5(2(3(0(1(5(5(x1)))))))))) ->
0(0(1(3(1(2(5(0(5(5(x1))))))))))
, 0(0(1(0(1(2(0(3(3(4(x1)))))))))) ->
4(2(3(4(2(1(1(4(2(0(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..