Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 0(1(2(1(x1)))) -> 1(2(1(1(0(1(2(0(1(2(0(1(2(x1)))))))))))))
, 0(1(2(1(x1)))) -> 1(2(1(1(0(1(2(0(1(2(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 3.
The enriched problem is compatible with the following automaton:
{ 1_0(1) -> 1
, 1_1(2) -> 1
, 1_1(2) -> 11
, 1_1(4) -> 3
, 1_1(5) -> 4
, 1_1(7) -> 6
, 1_1(8) -> 4
, 1_1(10) -> 9
, 1_1(13) -> 12
, 1_2(16) -> 5
, 1_2(16) -> 8
, 1_2(16) -> 11
, 1_2(18) -> 17
, 1_2(19) -> 18
, 1_2(21) -> 20
, 1_2(24) -> 23
, 1_2(25) -> 5
, 1_2(25) -> 8
, 1_2(25) -> 11
, 1_2(27) -> 26
, 1_2(28) -> 27
, 1_2(30) -> 29
, 1_2(31) -> 5
, 1_2(31) -> 8
, 1_2(33) -> 32
, 1_2(34) -> 33
, 1_2(36) -> 35
, 1_2(39) -> 38
, 1_3(40) -> 22
, 1_3(42) -> 41
, 1_3(43) -> 42
, 1_3(45) -> 44
, 1_3(46) -> 42
, 1_3(48) -> 47
, 1_3(52) -> 51
, 1_3(53) -> 19
, 1_3(55) -> 54
, 1_3(56) -> 55
, 1_3(58) -> 57
, 1_3(59) -> 55
, 1_3(61) -> 60
, 1_3(64) -> 63
, 1_3(65) -> 28
, 1_3(67) -> 66
, 1_3(68) -> 67
, 1_3(70) -> 69
, 1_3(73) -> 72
, 2_0(1) -> 1
, 2_1(1) -> 13
, 2_1(2) -> 10
, 2_1(3) -> 2
, 2_1(4) -> 10
, 2_1(5) -> 7
, 2_1(8) -> 7
, 2_1(11) -> 10
, 2_2(2) -> 24
, 2_2(5) -> 24
, 2_2(8) -> 24
, 2_2(16) -> 24
, 2_2(17) -> 16
, 2_2(19) -> 30
, 2_2(22) -> 21
, 2_2(25) -> 39
, 2_2(26) -> 25
, 2_2(31) -> 24
, 2_2(32) -> 31
, 2_2(34) -> 30
, 2_2(37) -> 36
, 2_3(16) -> 52
, 2_3(25) -> 48
, 2_3(31) -> 45
, 2_3(40) -> 64
, 2_3(41) -> 40
, 2_3(43) -> 45
, 2_3(46) -> 45
, 2_3(53) -> 73
, 2_3(54) -> 53
, 2_3(59) -> 58
, 2_3(62) -> 61
, 2_3(66) -> 65
, 2_3(68) -> 70
, 2_3(71) -> 70
, 0_0(1) -> 1
, 0_1(6) -> 5
, 0_1(9) -> 8
, 0_1(12) -> 11
, 0_2(20) -> 19
, 0_2(23) -> 22
, 0_2(29) -> 28
, 0_2(35) -> 34
, 0_2(38) -> 37
, 0_3(44) -> 43
, 0_3(47) -> 46
, 0_3(51) -> 25
, 0_3(57) -> 56
, 0_3(60) -> 59
, 0_3(63) -> 62
, 0_3(69) -> 68
, 0_3(72) -> 71}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 0(1(2(1(x1)))) -> 1(2(1(1(0(1(2(0(1(2(0(1(2(x1)))))))))))))
, 0(1(2(1(x1)))) -> 1(2(1(1(0(1(2(0(1(2(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 0(1(2(1(x1)))) -> 1(2(1(1(0(1(2(0(1(2(0(1(2(x1)))))))))))))
, 0(1(2(1(x1)))) -> 1(2(1(1(0(1(2(0(1(2(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 0(1(2(1(x1)))) -> 1(2(1(1(0(1(2(0(1(2(0(1(2(x1)))))))))))))
, 0(1(2(1(x1)))) -> 1(2(1(1(0(1(2(0(1(2(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI2
stdout:
MAYBE
We consider the following Problem:
Strict Trs:
{ 0(1(2(1(x1)))) -> 1(2(1(1(0(1(2(0(1(2(0(1(2(x1)))))))))))))
, 0(1(2(1(x1)))) -> 1(2(1(1(0(1(2(0(1(2(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..