Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1))))))))))))))))))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1)))))))))))))))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1))))))))))))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1)))))))))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1))))))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1)))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(x1))))))))))))))))
, 0(1(2(1(x1)))) -> 1(2(1(1(0(1(2(0(1(2(0(1(2(x1)))))))))))))
, 0(1(2(1(x1)))) -> 1(2(1(1(0(1(2(0(1(2(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 3.
The enriched problem is compatible with the following automaton:
{ 1_0(1) -> 1
, 1_1(2) -> 1
, 1_1(2) -> 32
, 1_1(4) -> 3
, 1_1(5) -> 4
, 1_1(7) -> 6
, 1_1(8) -> 4
, 1_1(10) -> 9
, 1_1(11) -> 4
, 1_1(13) -> 12
, 1_1(14) -> 4
, 1_1(16) -> 15
, 1_1(17) -> 4
, 1_1(19) -> 18
, 1_1(20) -> 4
, 1_1(22) -> 21
, 1_1(23) -> 4
, 1_1(25) -> 24
, 1_1(26) -> 4
, 1_1(28) -> 27
, 1_1(29) -> 4
, 1_1(31) -> 30
, 1_1(34) -> 33
, 1_2(17) -> 241
, 1_2(23) -> 97
, 1_2(37) -> 5
, 1_2(37) -> 8
, 1_2(37) -> 11
, 1_2(37) -> 14
, 1_2(37) -> 17
, 1_2(37) -> 20
, 1_2(37) -> 23
, 1_2(37) -> 26
, 1_2(37) -> 29
, 1_2(37) -> 32
, 1_2(39) -> 38
, 1_2(40) -> 39
, 1_2(42) -> 41
, 1_2(43) -> 69
, 1_2(45) -> 44
, 1_2(46) -> 69
, 1_2(48) -> 47
, 1_2(49) -> 69
, 1_2(51) -> 50
, 1_2(52) -> 69
, 1_2(54) -> 53
, 1_2(55) -> 69
, 1_2(57) -> 56
, 1_2(58) -> 69
, 1_2(60) -> 59
, 1_2(61) -> 69
, 1_2(63) -> 62
, 1_2(66) -> 65
, 1_2(67) -> 5
, 1_2(67) -> 8
, 1_2(67) -> 11
, 1_2(67) -> 14
, 1_2(67) -> 17
, 1_2(67) -> 20
, 1_2(67) -> 23
, 1_2(67) -> 26
, 1_2(67) -> 29
, 1_2(67) -> 32
, 1_2(69) -> 68
, 1_2(70) -> 5
, 1_2(70) -> 8
, 1_2(70) -> 11
, 1_2(70) -> 14
, 1_2(70) -> 17
, 1_2(70) -> 20
, 1_2(70) -> 23
, 1_2(70) -> 26
, 1_2(70) -> 29
, 1_2(72) -> 71
, 1_2(73) -> 72
, 1_2(75) -> 74
, 1_2(76) -> 72
, 1_2(78) -> 77
, 1_2(79) -> 72
, 1_2(81) -> 80
, 1_2(82) -> 72
, 1_2(84) -> 83
, 1_2(85) -> 72
, 1_2(87) -> 86
, 1_2(88) -> 72
, 1_2(90) -> 89
, 1_2(93) -> 92
, 1_2(96) -> 5
, 1_2(96) -> 8
, 1_2(96) -> 11
, 1_2(96) -> 14
, 1_2(96) -> 17
, 1_2(96) -> 20
, 1_2(96) -> 23
, 1_2(96) -> 26
, 1_2(98) -> 97
, 1_2(99) -> 98
, 1_2(101) -> 100
, 1_2(102) -> 98
, 1_2(104) -> 103
, 1_2(105) -> 98
, 1_2(107) -> 106
, 1_2(108) -> 98
, 1_2(110) -> 109
, 1_2(111) -> 98
, 1_2(113) -> 112
, 1_2(116) -> 115
, 1_2(126) -> 5
, 1_2(126) -> 8
, 1_2(126) -> 11
, 1_2(126) -> 14
, 1_2(126) -> 17
, 1_2(126) -> 20
, 1_2(126) -> 23
, 1_2(128) -> 127
, 1_2(129) -> 128
, 1_2(131) -> 130
, 1_2(132) -> 128
, 1_2(134) -> 133
, 1_2(135) -> 128
, 1_2(137) -> 136
, 1_2(138) -> 128
, 1_2(140) -> 139
, 1_2(141) -> 72
, 1_2(143) -> 142
, 1_2(168) -> 5
, 1_2(168) -> 8
, 1_2(168) -> 11
, 1_2(168) -> 14
, 1_2(168) -> 17
, 1_2(168) -> 20
, 1_2(170) -> 169
, 1_2(171) -> 170
, 1_2(173) -> 172
, 1_2(174) -> 170
, 1_2(176) -> 175
, 1_2(177) -> 170
, 1_2(179) -> 178
, 1_2(180) -> 170
, 1_2(182) -> 181
, 1_2(206) -> 5
, 1_2(206) -> 8
, 1_2(206) -> 11
, 1_2(206) -> 14
, 1_2(206) -> 17
, 1_2(208) -> 207
, 1_2(209) -> 208
, 1_2(211) -> 210
, 1_2(212) -> 208
, 1_2(214) -> 213
, 1_2(215) -> 208
, 1_2(217) -> 216
, 1_2(240) -> 5
, 1_2(240) -> 8
, 1_2(240) -> 11
, 1_2(240) -> 14
, 1_2(240) -> 17
, 1_2(240) -> 20
, 1_2(242) -> 241
, 1_2(243) -> 242
, 1_2(245) -> 244
, 1_2(246) -> 242
, 1_2(248) -> 247
, 1_2(1576) -> 1575
, 1_2(1577) -> 17
, 1_2(1591) -> 1590
, 1_2(1607) -> 1606
, 1_2(1608) -> 17
, 1_2(1616) -> 1615
, 1_2(1617) -> 17
, 1_2(1625) -> 1624
, 1_2(1626) -> 17
, 1_2(1634) -> 1633
, 1_2(1640) -> 1639
, 1_2(1641) -> 17
, 1_2(1643) -> 1642
, 1_2(1644) -> 17
, 1_2(1646) -> 1645
, 1_2(1647) -> 17
, 1_2(1649) -> 1648
, 1_2(1650) -> 17
, 1_2(1652) -> 1651
, 1_2(1653) -> 17
, 1_2(1655) -> 1654
, 1_2(1656) -> 5
, 1_2(1656) -> 8
, 1_2(1656) -> 11
, 1_2(1656) -> 14
, 1_2(1656) -> 17
, 1_2(1658) -> 1657
, 1_2(1659) -> 1658
, 1_2(1661) -> 1660
, 1_2(1662) -> 1658
, 1_2(1664) -> 1663
, 1_2(1665) -> 1658
, 1_2(1667) -> 1666
, 1_2(1668) -> 1658
, 1_2(1670) -> 1669
, 1_2(1671) -> 1658
, 1_2(1673) -> 1672
, 1_2(1674) -> 1658
, 1_2(1676) -> 1675
, 1_2(1677) -> 1658
, 1_2(1679) -> 1678
, 1_2(1680) -> 208
, 1_2(1682) -> 1681
, 1_2(1683) -> 17
, 1_2(1685) -> 1684
, 1_2(1688) -> 1687
, 1_2(1882) -> 5
, 1_2(1882) -> 8
, 1_2(1882) -> 11
, 1_2(1882) -> 14
, 1_2(1884) -> 1883
, 1_2(1885) -> 1884
, 1_2(1887) -> 1886
, 1_2(1888) -> 1884
, 1_2(1890) -> 1889
, 1_2(1891) -> 1884
, 1_2(1893) -> 1892
, 1_2(1894) -> 1884
, 1_2(1896) -> 1895
, 1_2(1897) -> 1884
, 1_2(1899) -> 1898
, 1_2(1900) -> 1884
, 1_2(1902) -> 1901
, 1_2(1903) -> 1884
, 1_2(1905) -> 1904
, 1_2(1906) -> 17
, 1_2(1908) -> 1907
, 1_2(1911) -> 1910
, 1_3(218) -> 40
, 1_3(218) -> 43
, 1_3(218) -> 46
, 1_3(218) -> 49
, 1_3(218) -> 52
, 1_3(218) -> 55
, 1_3(218) -> 58
, 1_3(218) -> 61
, 1_3(218) -> 64
, 1_3(220) -> 219
, 1_3(221) -> 220
, 1_3(223) -> 222
, 1_3(224) -> 251
, 1_3(226) -> 225
, 1_3(229) -> 228
, 1_3(249) -> 40
, 1_3(249) -> 43
, 1_3(249) -> 46
, 1_3(249) -> 49
, 1_3(249) -> 52
, 1_3(249) -> 55
, 1_3(249) -> 58
, 1_3(249) -> 61
, 1_3(249) -> 64
, 1_3(251) -> 250
, 1_3(252) -> 251
, 1_3(254) -> 253
, 1_3(257) -> 256
, 1_3(1689) -> 40
, 1_3(1689) -> 43
, 1_3(1689) -> 46
, 1_3(1689) -> 49
, 1_3(1689) -> 52
, 1_3(1689) -> 55
, 1_3(1689) -> 58
, 1_3(1689) -> 61
, 1_3(1689) -> 64
, 1_3(1691) -> 1690
, 1_3(1692) -> 1691
, 1_3(1694) -> 1693
, 1_3(1695) -> 1914
, 1_3(1697) -> 1696
, 1_3(1698) -> 1914
, 1_3(1700) -> 1699
, 1_3(1701) -> 1914
, 1_3(1703) -> 1702
, 1_3(1704) -> 1914
, 1_3(1706) -> 1705
, 1_3(1707) -> 1914
, 1_3(1709) -> 1708
, 1_3(1710) -> 1914
, 1_3(1712) -> 1711
, 1_3(1713) -> 1914
, 1_3(1715) -> 1714
, 1_3(1716) -> 1914
, 1_3(1718) -> 1717
, 1_3(1721) -> 1720
, 1_3(1912) -> 40
, 1_3(1912) -> 43
, 1_3(1912) -> 46
, 1_3(1912) -> 49
, 1_3(1912) -> 52
, 1_3(1912) -> 55
, 1_3(1912) -> 58
, 1_3(1912) -> 61
, 1_3(1912) -> 64
, 1_3(1914) -> 1913
, 1_3(1915) -> 1914
, 1_3(1917) -> 1916
, 1_3(1918) -> 1914
, 1_3(1920) -> 1919
, 1_3(1921) -> 1914
, 1_3(1923) -> 1922
, 1_3(1924) -> 1914
, 1_3(1926) -> 1925
, 1_3(1927) -> 1914
, 1_3(1929) -> 1928
, 1_3(1930) -> 1914
, 1_3(1932) -> 1931
, 1_3(1933) -> 1914
, 1_3(1935) -> 1934
, 1_3(1936) -> 1914
, 1_3(1938) -> 1937
, 1_3(1941) -> 1940
, 1_3(2050) -> 40
, 1_3(2050) -> 43
, 1_3(2050) -> 46
, 1_3(2050) -> 49
, 1_3(2050) -> 52
, 1_3(2050) -> 55
, 1_3(2050) -> 58
, 1_3(2050) -> 61
, 1_3(2052) -> 2051
, 1_3(2053) -> 2052
, 1_3(2055) -> 2054
, 1_3(2056) -> 2052
, 1_3(2058) -> 2057
, 1_3(2059) -> 1914
, 1_3(2061) -> 2060
, 1_3(2062) -> 1914
, 1_3(2064) -> 2063
, 1_3(2065) -> 1914
, 1_3(2067) -> 2066
, 1_3(2068) -> 1914
, 1_3(2070) -> 2069
, 1_3(2071) -> 1914
, 1_3(2073) -> 2072
, 1_3(2074) -> 251
, 1_3(2076) -> 2075
, 1_3(2079) -> 2078
, 2_0(1) -> 1
, 2_1(1) -> 34
, 2_1(2) -> 31
, 2_1(3) -> 2
, 2_1(4) -> 31
, 2_1(5) -> 7
, 2_1(8) -> 7
, 2_1(11) -> 10
, 2_1(14) -> 13
, 2_1(17) -> 16
, 2_1(20) -> 19
, 2_1(23) -> 22
, 2_1(26) -> 25
, 2_1(29) -> 28
, 2_1(32) -> 31
, 2_2(2) -> 66
, 2_2(5) -> 66
, 2_2(8) -> 66
, 2_2(11) -> 63
, 2_2(14) -> 60
, 2_2(17) -> 57
, 2_2(20) -> 54
, 2_2(23) -> 51
, 2_2(26) -> 48
, 2_2(29) -> 42
, 2_2(37) -> 66
, 2_2(38) -> 37
, 2_2(40) -> 45
, 2_2(43) -> 42
, 2_2(46) -> 45
, 2_2(49) -> 48
, 2_2(52) -> 51
, 2_2(55) -> 54
, 2_2(58) -> 57
, 2_2(61) -> 60
, 2_2(64) -> 63
, 2_2(67) -> 93
, 2_2(68) -> 67
, 2_2(70) -> 116
, 2_2(71) -> 70
, 2_2(73) -> 81
, 2_2(76) -> 75
, 2_2(79) -> 78
, 2_2(82) -> 81
, 2_2(85) -> 84
, 2_2(88) -> 87
, 2_2(91) -> 90
, 2_2(96) -> 143
, 2_2(97) -> 96
, 2_2(99) -> 110
, 2_2(102) -> 101
, 2_2(105) -> 104
, 2_2(108) -> 107
, 2_2(111) -> 110
, 2_2(114) -> 113
, 2_2(126) -> 182
, 2_2(127) -> 126
, 2_2(129) -> 143
, 2_2(132) -> 131
, 2_2(135) -> 134
, 2_2(138) -> 137
, 2_2(141) -> 140
, 2_2(168) -> 217
, 2_2(169) -> 168
, 2_2(171) -> 1591
, 2_2(174) -> 173
, 2_2(177) -> 176
, 2_2(180) -> 179
, 2_2(206) -> 248
, 2_2(207) -> 206
, 2_2(209) -> 1634
, 2_2(212) -> 211
, 2_2(215) -> 214
, 2_2(240) -> 1688
, 2_2(241) -> 240
, 2_2(243) -> 1655
, 2_2(246) -> 245
, 2_2(1577) -> 1576
, 2_2(1608) -> 1607
, 2_2(1617) -> 1616
, 2_2(1626) -> 1625
, 2_2(1641) -> 1640
, 2_2(1644) -> 1643
, 2_2(1647) -> 1646
, 2_2(1650) -> 1649
, 2_2(1653) -> 1652
, 2_2(1656) -> 1911
, 2_2(1657) -> 1656
, 2_2(1659) -> 134
, 2_2(1662) -> 1661
, 2_2(1665) -> 1664
, 2_2(1668) -> 1667
, 2_2(1671) -> 1670
, 2_2(1674) -> 1673
, 2_2(1677) -> 1676
, 2_2(1680) -> 1679
, 2_2(1683) -> 1682
, 2_2(1686) -> 1685
, 2_2(1882) -> 1908
, 2_2(1883) -> 1882
, 2_2(1885) -> 245
, 2_2(1888) -> 1887
, 2_2(1891) -> 1890
, 2_2(1894) -> 1893
, 2_2(1897) -> 1896
, 2_2(1900) -> 1899
, 2_2(1903) -> 1902
, 2_2(1906) -> 1905
, 2_2(1909) -> 1908
, 2_3(37) -> 1941
, 2_3(67) -> 1941
, 2_3(70) -> 1721
, 2_3(96) -> 257
, 2_3(126) -> 229
, 2_3(168) -> 229
, 2_3(206) -> 226
, 2_3(218) -> 229
, 2_3(219) -> 218
, 2_3(221) -> 1712
, 2_3(224) -> 223
, 2_3(227) -> 226
, 2_3(240) -> 226
, 2_3(249) -> 229
, 2_3(250) -> 249
, 2_3(252) -> 1715
, 2_3(255) -> 254
, 2_3(1577) -> 223
, 2_3(1608) -> 223
, 2_3(1617) -> 223
, 2_3(1626) -> 223
, 2_3(1641) -> 223
, 2_3(1644) -> 223
, 2_3(1647) -> 223
, 2_3(1650) -> 223
, 2_3(1653) -> 223
, 2_3(1656) -> 223
, 2_3(1683) -> 223
, 2_3(1689) -> 2079
, 2_3(1690) -> 1689
, 2_3(1692) -> 223
, 2_3(1695) -> 1694
, 2_3(1698) -> 1697
, 2_3(1701) -> 1700
, 2_3(1704) -> 1703
, 2_3(1707) -> 1706
, 2_3(1710) -> 1709
, 2_3(1713) -> 1712
, 2_3(1716) -> 1715
, 2_3(1719) -> 1718
, 2_3(1882) -> 223
, 2_3(1906) -> 223
, 2_3(1912) -> 2076
, 2_3(1913) -> 1912
, 2_3(1915) -> 223
, 2_3(1918) -> 1917
, 2_3(1921) -> 1920
, 2_3(1924) -> 1923
, 2_3(1927) -> 1926
, 2_3(1930) -> 1929
, 2_3(1933) -> 1932
, 2_3(1936) -> 1935
, 2_3(1939) -> 1938
, 2_3(2050) -> 226
, 2_3(2051) -> 2050
, 2_3(2053) -> 223
, 2_3(2056) -> 2055
, 2_3(2059) -> 2058
, 2_3(2062) -> 2061
, 2_3(2065) -> 2064
, 2_3(2068) -> 2067
, 2_3(2071) -> 2070
, 2_3(2074) -> 2073
, 2_3(2077) -> 2076
, 0_0(1) -> 1
, 0_1(6) -> 5
, 0_1(9) -> 8
, 0_1(12) -> 11
, 0_1(15) -> 14
, 0_1(18) -> 17
, 0_1(21) -> 20
, 0_1(24) -> 23
, 0_1(27) -> 26
, 0_1(30) -> 29
, 0_1(33) -> 32
, 0_2(41) -> 40
, 0_2(44) -> 43
, 0_2(47) -> 46
, 0_2(50) -> 49
, 0_2(53) -> 52
, 0_2(56) -> 55
, 0_2(59) -> 58
, 0_2(62) -> 61
, 0_2(65) -> 64
, 0_2(74) -> 73
, 0_2(77) -> 76
, 0_2(80) -> 79
, 0_2(83) -> 82
, 0_2(86) -> 85
, 0_2(89) -> 88
, 0_2(92) -> 91
, 0_2(100) -> 99
, 0_2(103) -> 102
, 0_2(106) -> 105
, 0_2(109) -> 108
, 0_2(112) -> 111
, 0_2(115) -> 114
, 0_2(130) -> 129
, 0_2(133) -> 132
, 0_2(136) -> 135
, 0_2(139) -> 138
, 0_2(142) -> 141
, 0_2(172) -> 171
, 0_2(175) -> 174
, 0_2(178) -> 177
, 0_2(181) -> 180
, 0_2(210) -> 209
, 0_2(213) -> 212
, 0_2(216) -> 215
, 0_2(244) -> 243
, 0_2(247) -> 246
, 0_2(1575) -> 126
, 0_2(1590) -> 1577
, 0_2(1606) -> 168
, 0_2(1615) -> 1608
, 0_2(1624) -> 1617
, 0_2(1633) -> 1626
, 0_2(1639) -> 206
, 0_2(1642) -> 1641
, 0_2(1645) -> 1644
, 0_2(1648) -> 1647
, 0_2(1651) -> 1650
, 0_2(1654) -> 1653
, 0_2(1660) -> 1659
, 0_2(1663) -> 1662
, 0_2(1666) -> 1665
, 0_2(1669) -> 1668
, 0_2(1672) -> 1671
, 0_2(1675) -> 1674
, 0_2(1678) -> 1677
, 0_2(1681) -> 1680
, 0_2(1684) -> 1683
, 0_2(1687) -> 1686
, 0_2(1886) -> 1885
, 0_2(1889) -> 1888
, 0_2(1892) -> 1891
, 0_2(1895) -> 1894
, 0_2(1898) -> 1897
, 0_2(1901) -> 1900
, 0_2(1904) -> 1903
, 0_2(1907) -> 1906
, 0_2(1910) -> 1909
, 0_3(222) -> 221
, 0_3(225) -> 224
, 0_3(228) -> 227
, 0_3(253) -> 252
, 0_3(256) -> 255
, 0_3(1693) -> 1692
, 0_3(1696) -> 1695
, 0_3(1699) -> 1698
, 0_3(1702) -> 1701
, 0_3(1705) -> 1704
, 0_3(1708) -> 1707
, 0_3(1711) -> 1710
, 0_3(1714) -> 1713
, 0_3(1717) -> 1716
, 0_3(1720) -> 1719
, 0_3(1916) -> 1915
, 0_3(1919) -> 1918
, 0_3(1922) -> 1921
, 0_3(1925) -> 1924
, 0_3(1928) -> 1927
, 0_3(1931) -> 1930
, 0_3(1934) -> 1933
, 0_3(1937) -> 1936
, 0_3(1940) -> 1939
, 0_3(2054) -> 2053
, 0_3(2057) -> 2056
, 0_3(2060) -> 2059
, 0_3(2063) -> 2062
, 0_3(2066) -> 2065
, 0_3(2069) -> 2068
, 0_3(2072) -> 2071
, 0_3(2075) -> 2074
, 0_3(2078) -> 2077}
Hurray, we answered YES(?,O(n^1))Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1))))))))))))))))))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1)))))))))))))))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1))))))))))))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1)))))))))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1))))))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1)))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(x1))))))))))))))))
, 0(1(2(1(x1)))) -> 1(2(1(1(0(1(2(0(1(2(0(1(2(x1)))))))))))))
, 0(1(2(1(x1)))) -> 1(2(1(1(0(1(2(0(1(2(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1))))))))))))))))))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1)))))))))))))))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1))))))))))))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1)))))))))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1))))))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1)))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(x1))))))))))))))))
, 0(1(2(1(x1)))) -> 1(2(1(1(0(1(2(0(1(2(0(1(2(x1)))))))))))))
, 0(1(2(1(x1)))) -> 1(2(1(1(0(1(2(0(1(2(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1))))))))))))))))))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1)))))))))))))))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1))))))))))))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1)))))))))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1))))))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(0(1(2(x1)))))))))))))))))))
, 0(1(2(1(x1)))) ->
1(2(1(1(0(1(2(0(1(2(0(1(2(0(1(2(x1))))))))))))))))
, 0(1(2(1(x1)))) -> 1(2(1(1(0(1(2(0(1(2(0(1(2(x1)))))))))))))
, 0(1(2(1(x1)))) -> 1(2(1(1(0(1(2(0(1(2(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..