Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 5(4(2(0(0(1(3(x1))))))) -> 2(3(4(2(4(3(1(1(2(4(x1))))))))))
, 5(4(1(1(2(0(4(x1))))))) -> 4(3(5(5(4(4(4(2(2(4(x1))))))))))
, 5(4(1(1(0(5(0(x1))))))) -> 4(3(4(5(5(5(1(4(0(3(x1))))))))))
, 5(2(1(4(1(4(2(x1))))))) -> 1(3(2(4(3(1(2(0(3(0(x1))))))))))
, 5(0(2(5(0(2(0(x1))))))) -> 3(2(3(4(2(5(0(2(4(4(x1))))))))))
, 4(4(0(5(4(0(4(x1))))))) -> 4(4(5(1(1(0(3(4(2(4(x1))))))))))
, 4(0(2(4(0(1(3(x1))))))) -> 4(3(1(1(2(2(1(3(0(3(x1))))))))))
, 3(4(0(2(4(0(0(x1))))))) -> 3(2(4(5(3(1(1(0(3(0(x1))))))))))
, 3(0(2(2(0(1(3(x1))))))) -> 3(1(4(5(1(1(4(2(3(4(x1))))))))))
, 2(5(2(0(4(5(0(x1))))))) -> 1(2(2(2(2(5(0(2(1(0(x1))))))))))
, 2(4(0(5(3(2(1(x1))))))) -> 2(0(3(0(4(2(3(1(2(1(x1))))))))))
, 2(1(4(0(0(0(0(x1))))))) -> 2(1(4(0(2(1(1(3(1(4(x1))))))))))
, 2(0(0(4(0(0(3(x1))))))) -> 1(1(1(1(0(0(5(4(2(3(x1))))))))))
, 2(0(0(2(1(3(5(x1))))))) -> 2(5(4(2(2(1(0(0(3(4(x1))))))))))
, 1(0(2(0(0(2(0(x1))))))) -> 1(2(2(1(3(1(1(0(4(4(x1))))))))))
, 1(0(1(3(0(0(2(x1))))))) -> 1(0(1(0(3(5(0(1(1(4(x1))))))))))
, 0(3(5(0(0(2(0(x1))))))) -> 0(2(3(1(5(4(3(0(4(4(x1))))))))))
, 0(3(0(0(2(2(4(x1))))))) -> 0(1(0(5(3(5(5(4(3(0(x1))))))))))
, 0(2(0(2(1(4(2(x1))))))) -> 2(4(4(2(4(1(1(3(4(2(x1))))))))))
, 0(0(0(1(4(0(4(x1))))))) -> 2(4(4(2(1(2(1(2(4(5(x1))))))))))
, 5(1(3(0(2(0(x1)))))) -> 2(4(5(5(1(0(1(5(3(4(x1))))))))))
, 5(0(1(3(3(2(x1)))))) -> 0(3(3(5(5(5(1(5(1(0(x1))))))))))
, 4(1(2(1(4(1(x1)))))) -> 3(5(5(2(1(4(4(4(5(1(x1))))))))))
, 3(0(2(0(1(3(x1)))))) -> 3(0(5(5(1(5(3(3(4(3(x1))))))))))
, 2(2(1(3(1(4(x1)))))) -> 1(1(5(3(2(2(2(1(4(3(x1))))))))))
, 2(0(0(5(1(0(x1)))))) -> 2(5(3(5(2(2(3(5(2(3(x1))))))))))
, 2(0(0(0(0(3(x1)))))) -> 1(0(5(4(3(3(1(3(5(1(x1))))))))))
, 1(5(4(0(2(4(x1)))))) -> 1(0(1(2(3(1(1(0(5(5(x1))))))))))
, 1(3(5(0(5(0(x1)))))) -> 2(4(2(3(2(3(5(3(3(0(x1))))))))))
, 1(0(0(5(0(0(x1)))))) -> 2(1(5(5(5(5(0(1(0(4(x1))))))))))
, 5(2(0(0(0(x1))))) -> 5(5(2(3(3(4(2(5(0(5(x1))))))))))
, 5(0(0(2(5(x1))))) -> 0(1(0(3(3(4(5(3(0(5(x1))))))))))
, 4(0(2(5(0(x1))))) -> 3(1(2(3(4(4(5(1(0(3(x1))))))))))
, 4(0(2(0(2(x1))))) -> 5(3(1(4(3(2(1(1(2(3(x1))))))))))
, 4(0(1(3(4(x1))))) -> 4(2(3(2(4(4(1(4(4(4(x1))))))))))
, 0(1(3(0(0(x1))))) -> 0(5(1(0(2(3(5(2(3(0(x1))))))))))
, 0(0(0(4(0(x1))))) -> 1(4(3(0(5(5(5(5(1(2(x1))))))))))
, 5(4(2(0(x1)))) -> 5(3(4(4(0(3(5(2(3(2(x1))))))))))
, 1(3(0(0(x1)))) -> 1(2(3(3(5(5(4(0(2(4(x1))))))))))
, 1(3(0(0(x1)))) -> 1(2(2(2(2(3(4(3(0(3(x1))))))))))
, 0(0(0(2(x1)))) -> 0(2(2(1(0(4(2(3(4(2(x1))))))))))
, 0(0(5(x1))) -> 1(2(3(4(1(5(0(3(3(4(x1))))))))))
, 0(0(0(x1))) -> 0(4(2(2(3(2(3(3(5(5(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ 0_0(1) -> 1
, 0_1(1) -> 33
, 0_1(2) -> 33
, 0_1(9) -> 281
, 0_1(10) -> 229
, 0_1(11) -> 33
, 0_1(24) -> 23
, 0_1(25) -> 23
, 0_1(32) -> 31
, 0_1(35) -> 25
, 0_1(40) -> 39
, 0_1(41) -> 102
, 0_1(46) -> 45
, 0_1(61) -> 300
, 0_1(63) -> 98
, 0_1(69) -> 68
, 0_1(71) -> 2
, 0_1(73) -> 72
, 0_1(81) -> 80
, 0_1(89) -> 88
, 0_1(90) -> 89
, 0_1(98) -> 97
, 0_1(103) -> 25
, 0_1(105) -> 104
, 0_1(108) -> 107
, 0_1(109) -> 1
, 0_1(109) -> 23
, 0_1(109) -> 31
, 0_1(109) -> 33
, 0_1(109) -> 132
, 0_1(116) -> 115
, 0_1(121) -> 33
, 0_1(126) -> 45
, 0_1(132) -> 237
, 0_1(136) -> 135
, 0_1(151) -> 34
, 0_1(211) -> 210
, 0_1(228) -> 227
, 0_1(253) -> 33
, 0_1(261) -> 260
, 0_1(267) -> 266
, 0_1(273) -> 272
, 0_1(301) -> 300
, 0_1(306) -> 305
, 0_2(289) -> 288
, 0_2(298) -> 297
, 0_2(313) -> 312
, 0_2(322) -> 321
, 0_2(331) -> 330
, 0_2(351) -> 350
, 5_0(1) -> 1
, 5_1(1) -> 132
, 5_1(11) -> 132
, 5_1(13) -> 12
, 5_1(14) -> 13
, 5_1(19) -> 18
, 5_1(20) -> 19
, 5_1(21) -> 20
, 5_1(32) -> 240
, 5_1(39) -> 38
, 5_1(43) -> 42
, 5_1(54) -> 53
, 5_1(59) -> 58
, 5_1(63) -> 137
, 5_1(68) -> 67
, 5_1(70) -> 143
, 5_1(76) -> 270
, 5_1(78) -> 150
, 5_1(91) -> 90
, 5_1(92) -> 176
, 5_1(93) -> 2
, 5_1(107) -> 106
, 5_1(109) -> 132
, 5_1(113) -> 112
, 5_1(117) -> 116
, 5_1(119) -> 118
, 5_1(120) -> 119
, 5_1(121) -> 132
, 5_1(127) -> 90
, 5_1(132) -> 211
, 5_1(133) -> 121
, 5_1(134) -> 133
, 5_1(140) -> 139
, 5_1(141) -> 140
, 5_1(142) -> 141
, 5_1(144) -> 34
, 5_1(145) -> 144
, 5_1(152) -> 151
, 5_1(153) -> 152
, 5_1(155) -> 154
, 5_1(158) -> 86
, 5_1(173) -> 172
, 5_1(177) -> 35
, 5_1(223) -> 222
, 5_1(224) -> 79
, 5_1(225) -> 224
, 5_1(226) -> 225
, 5_1(227) -> 226
, 5_1(230) -> 1
, 5_1(230) -> 10
, 5_1(230) -> 90
, 5_1(230) -> 132
, 5_1(231) -> 230
, 5_1(237) -> 236
, 5_1(241) -> 240
, 5_1(246) -> 245
, 5_1(259) -> 109
, 5_1(264) -> 263
, 5_1(268) -> 267
, 5_1(269) -> 268
, 5_1(270) -> 269
, 5_1(275) -> 274
, 5_1(279) -> 278
, 5_1(280) -> 279
, 5_1(305) -> 304
, 5_1(334) -> 132
, 5_2(165) -> 164
, 5_2(286) -> 285
, 5_2(287) -> 286
, 5_2(312) -> 311
, 5_2(321) -> 320
, 5_2(330) -> 329
, 5_2(347) -> 90
, 5_2(353) -> 352
, 3_0(1) -> 1
, 3_1(1) -> 24
, 3_1(2) -> 24
, 3_1(3) -> 2
, 3_1(7) -> 6
, 3_1(10) -> 63
, 3_1(11) -> 24
, 3_1(12) -> 11
, 3_1(23) -> 52
, 3_1(26) -> 25
, 3_1(29) -> 28
, 3_1(32) -> 223
, 3_1(33) -> 32
, 3_1(34) -> 1
, 3_1(34) -> 10
, 3_1(34) -> 24
, 3_1(34) -> 32
, 3_1(34) -> 63
, 3_1(34) -> 132
, 3_1(35) -> 24
, 3_1(36) -> 35
, 3_1(47) -> 46
, 3_1(55) -> 54
, 3_1(58) -> 24
, 3_1(63) -> 306
, 3_1(72) -> 71
, 3_1(76) -> 75
, 3_1(77) -> 276
, 3_1(85) -> 84
, 3_1(100) -> 99
, 3_1(102) -> 114
, 3_1(103) -> 24
, 3_1(106) -> 105
, 3_1(109) -> 24
, 3_1(110) -> 24
, 3_1(111) -> 110
, 3_1(118) -> 117
, 3_1(127) -> 126
, 3_1(138) -> 109
, 3_1(139) -> 138
, 3_1(150) -> 185
, 3_1(156) -> 155
, 3_1(157) -> 156
, 3_1(159) -> 158
, 3_1(172) -> 93
, 3_1(176) -> 175
, 3_1(180) -> 179
, 3_1(181) -> 180
, 3_1(205) -> 204
, 3_1(211) -> 339
, 3_1(220) -> 219
, 3_1(222) -> 221
, 3_1(233) -> 232
, 3_1(234) -> 233
, 3_1(237) -> 241
, 3_1(238) -> 116
, 3_1(239) -> 238
, 3_1(243) -> 242
, 3_1(247) -> 230
, 3_1(250) -> 249
, 3_1(254) -> 253
, 3_1(261) -> 24
, 3_1(263) -> 262
, 3_1(265) -> 24
, 3_1(266) -> 265
, 3_1(274) -> 273
, 3_1(277) -> 64
, 3_1(278) -> 277
, 3_1(291) -> 67
, 3_1(337) -> 336
, 3_1(339) -> 338
, 3_2(35) -> 298
, 3_2(58) -> 171
, 3_2(71) -> 298
, 3_2(103) -> 298
, 3_2(109) -> 298
, 3_2(166) -> 165
, 3_2(265) -> 171
, 3_2(284) -> 283
, 3_2(285) -> 284
, 3_2(295) -> 294
, 3_2(297) -> 296
, 3_2(309) -> 308
, 3_2(314) -> 313
, 3_2(315) -> 314
, 3_2(318) -> 317
, 3_2(323) -> 322
, 3_2(324) -> 323
, 3_2(327) -> 326
, 3_2(332) -> 331
, 3_2(333) -> 332
, 3_2(348) -> 347
, 3_2(352) -> 351
, 3_2(355) -> 354
, 2_0(1) -> 1
, 2_1(1) -> 77
, 2_1(2) -> 1
, 2_1(2) -> 9
, 2_1(2) -> 33
, 2_1(2) -> 70
, 2_1(2) -> 77
, 2_1(2) -> 78
, 2_1(2) -> 90
, 2_1(2) -> 132
, 2_1(2) -> 150
, 2_1(5) -> 4
, 2_1(9) -> 17
, 2_1(10) -> 9
, 2_1(24) -> 92
, 2_1(27) -> 26
, 2_1(31) -> 30
, 2_1(32) -> 264
, 2_1(35) -> 34
, 2_1(38) -> 37
, 2_1(41) -> 40
, 2_1(50) -> 49
, 2_1(51) -> 50
, 2_1(63) -> 62
, 2_1(64) -> 25
, 2_1(65) -> 64
, 2_1(66) -> 65
, 2_1(67) -> 66
, 2_1(70) -> 69
, 2_1(71) -> 77
, 2_1(75) -> 74
, 2_1(77) -> 17
, 2_1(78) -> 77
, 2_1(82) -> 81
, 2_1(95) -> 94
, 2_1(96) -> 95
, 2_1(109) -> 77
, 2_1(110) -> 109
, 2_1(123) -> 122
, 2_1(126) -> 302
, 2_1(129) -> 128
, 2_1(131) -> 130
, 2_1(146) -> 145
, 2_1(160) -> 159
, 2_1(161) -> 160
, 2_1(162) -> 161
, 2_1(174) -> 173
, 2_1(175) -> 174
, 2_1(204) -> 104
, 2_1(219) -> 121
, 2_1(221) -> 220
, 2_1(232) -> 231
, 2_1(236) -> 235
, 2_1(242) -> 57
, 2_1(251) -> 250
, 2_1(253) -> 11
, 2_1(255) -> 254
, 2_1(262) -> 261
, 2_1(276) -> 275
, 2_1(299) -> 110
, 2_1(335) -> 334
, 2_1(336) -> 335
, 2_1(338) -> 337
, 2_2(71) -> 355
, 2_2(109) -> 355
, 2_2(167) -> 166
, 2_2(168) -> 167
, 2_2(169) -> 168
, 2_2(283) -> 282
, 2_2(290) -> 289
, 2_2(292) -> 283
, 2_2(293) -> 292
, 2_2(294) -> 293
, 2_2(308) -> 307
, 2_2(317) -> 316
, 2_2(326) -> 325
, 2_2(354) -> 353
, 4_0(1) -> 1
, 4_1(1) -> 10
, 4_1(2) -> 10
, 4_1(4) -> 3
, 4_1(6) -> 5
, 4_1(9) -> 47
, 4_1(10) -> 41
, 4_1(11) -> 1
, 4_1(11) -> 10
, 4_1(11) -> 41
, 4_1(11) -> 132
, 4_1(11) -> 280
, 4_1(15) -> 14
, 4_1(16) -> 15
, 4_1(17) -> 16
, 4_1(18) -> 12
, 4_1(23) -> 22
, 4_1(24) -> 157
, 4_1(25) -> 157
, 4_1(26) -> 10
, 4_1(28) -> 27
, 4_1(32) -> 120
, 4_1(34) -> 10
, 4_1(37) -> 36
, 4_1(41) -> 258
, 4_1(42) -> 11
, 4_1(52) -> 291
, 4_1(53) -> 35
, 4_1(58) -> 57
, 4_1(62) -> 61
, 4_1(71) -> 10
, 4_1(74) -> 73
, 4_1(77) -> 127
, 4_1(80) -> 79
, 4_1(92) -> 91
, 4_1(94) -> 93
, 4_1(109) -> 10
, 4_1(110) -> 10
, 4_1(114) -> 113
, 4_1(121) -> 2
, 4_1(122) -> 121
, 4_1(124) -> 123
, 4_1(132) -> 131
, 4_1(144) -> 10
, 4_1(148) -> 147
, 4_1(149) -> 148
, 4_1(150) -> 149
, 4_1(179) -> 177
, 4_1(230) -> 10
, 4_1(235) -> 234
, 4_1(240) -> 239
, 4_1(244) -> 243
, 4_1(245) -> 244
, 4_1(249) -> 248
, 4_1(256) -> 255
, 4_1(257) -> 256
, 4_1(259) -> 10
, 4_1(265) -> 25
, 4_1(271) -> 247
, 4_1(272) -> 271
, 4_1(281) -> 280
, 4_1(302) -> 301
, 4_1(303) -> 277
, 4_1(334) -> 109
, 4_2(35) -> 290
, 4_2(71) -> 290
, 4_2(91) -> 315
, 4_2(103) -> 290
, 4_2(109) -> 290
, 4_2(127) -> 315
, 4_2(171) -> 170
, 4_2(177) -> 324
, 4_2(230) -> 315
, 4_2(259) -> 333
, 4_2(288) -> 287
, 4_2(296) -> 295
, 4_2(310) -> 309
, 4_2(319) -> 318
, 4_2(328) -> 327
, 4_2(347) -> 315
, 4_2(349) -> 348
, 4_2(350) -> 349
, 1_0(1) -> 1
, 1_1(1) -> 78
, 1_1(8) -> 7
, 1_1(9) -> 8
, 1_1(10) -> 85
, 1_1(22) -> 21
, 1_1(23) -> 246
, 1_1(25) -> 1
, 1_1(25) -> 17
, 1_1(25) -> 33
, 1_1(25) -> 51
, 1_1(25) -> 70
, 1_1(25) -> 77
, 1_1(25) -> 78
, 1_1(25) -> 132
, 1_1(30) -> 29
, 1_1(31) -> 56
, 1_1(32) -> 51
, 1_1(33) -> 70
, 1_1(34) -> 78
, 1_1(44) -> 43
, 1_1(45) -> 44
, 1_1(48) -> 12
, 1_1(49) -> 48
, 1_1(52) -> 51
, 1_1(56) -> 55
, 1_1(57) -> 34
, 1_1(60) -> 59
, 1_1(61) -> 60
, 1_1(63) -> 125
, 1_1(77) -> 76
, 1_1(79) -> 2
, 1_1(83) -> 82
, 1_1(84) -> 83
, 1_1(85) -> 108
, 1_1(86) -> 25
, 1_1(87) -> 86
, 1_1(88) -> 87
, 1_1(92) -> 252
, 1_1(97) -> 96
, 1_1(99) -> 65
, 1_1(101) -> 100
, 1_1(102) -> 101
, 1_1(104) -> 103
, 1_1(112) -> 111
, 1_1(115) -> 109
, 1_1(125) -> 124
, 1_1(126) -> 125
, 1_1(128) -> 123
, 1_1(130) -> 129
, 1_1(135) -> 134
, 1_1(137) -> 136
, 1_1(138) -> 78
, 1_1(143) -> 142
, 1_1(147) -> 146
, 1_1(154) -> 153
, 1_1(157) -> 162
, 1_1(185) -> 181
, 1_1(209) -> 205
, 1_1(210) -> 209
, 1_1(229) -> 228
, 1_1(248) -> 247
, 1_1(252) -> 251
, 1_1(258) -> 257
, 1_1(260) -> 259
, 1_1(300) -> 299
, 1_1(304) -> 303
, 1_2(163) -> 17
, 1_2(163) -> 49
, 1_2(164) -> 163
, 1_2(170) -> 169
, 1_2(282) -> 51
, 1_2(307) -> 88
, 1_2(311) -> 310
, 1_2(316) -> 23
, 1_2(320) -> 319
, 1_2(325) -> 33
, 1_2(325) -> 237
, 1_2(329) -> 328}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(4(2(0(0(1(3(x1))))))) -> 2(3(4(2(4(3(1(1(2(4(x1))))))))))
, 5(4(1(1(2(0(4(x1))))))) -> 4(3(5(5(4(4(4(2(2(4(x1))))))))))
, 5(4(1(1(0(5(0(x1))))))) -> 4(3(4(5(5(5(1(4(0(3(x1))))))))))
, 5(2(1(4(1(4(2(x1))))))) -> 1(3(2(4(3(1(2(0(3(0(x1))))))))))
, 5(0(2(5(0(2(0(x1))))))) -> 3(2(3(4(2(5(0(2(4(4(x1))))))))))
, 4(4(0(5(4(0(4(x1))))))) -> 4(4(5(1(1(0(3(4(2(4(x1))))))))))
, 4(0(2(4(0(1(3(x1))))))) -> 4(3(1(1(2(2(1(3(0(3(x1))))))))))
, 3(4(0(2(4(0(0(x1))))))) -> 3(2(4(5(3(1(1(0(3(0(x1))))))))))
, 3(0(2(2(0(1(3(x1))))))) -> 3(1(4(5(1(1(4(2(3(4(x1))))))))))
, 2(5(2(0(4(5(0(x1))))))) -> 1(2(2(2(2(5(0(2(1(0(x1))))))))))
, 2(4(0(5(3(2(1(x1))))))) -> 2(0(3(0(4(2(3(1(2(1(x1))))))))))
, 2(1(4(0(0(0(0(x1))))))) -> 2(1(4(0(2(1(1(3(1(4(x1))))))))))
, 2(0(0(4(0(0(3(x1))))))) -> 1(1(1(1(0(0(5(4(2(3(x1))))))))))
, 2(0(0(2(1(3(5(x1))))))) -> 2(5(4(2(2(1(0(0(3(4(x1))))))))))
, 1(0(2(0(0(2(0(x1))))))) -> 1(2(2(1(3(1(1(0(4(4(x1))))))))))
, 1(0(1(3(0(0(2(x1))))))) -> 1(0(1(0(3(5(0(1(1(4(x1))))))))))
, 0(3(5(0(0(2(0(x1))))))) -> 0(2(3(1(5(4(3(0(4(4(x1))))))))))
, 0(3(0(0(2(2(4(x1))))))) -> 0(1(0(5(3(5(5(4(3(0(x1))))))))))
, 0(2(0(2(1(4(2(x1))))))) -> 2(4(4(2(4(1(1(3(4(2(x1))))))))))
, 0(0(0(1(4(0(4(x1))))))) -> 2(4(4(2(1(2(1(2(4(5(x1))))))))))
, 5(1(3(0(2(0(x1)))))) -> 2(4(5(5(1(0(1(5(3(4(x1))))))))))
, 5(0(1(3(3(2(x1)))))) -> 0(3(3(5(5(5(1(5(1(0(x1))))))))))
, 4(1(2(1(4(1(x1)))))) -> 3(5(5(2(1(4(4(4(5(1(x1))))))))))
, 3(0(2(0(1(3(x1)))))) -> 3(0(5(5(1(5(3(3(4(3(x1))))))))))
, 2(2(1(3(1(4(x1)))))) -> 1(1(5(3(2(2(2(1(4(3(x1))))))))))
, 2(0(0(5(1(0(x1)))))) -> 2(5(3(5(2(2(3(5(2(3(x1))))))))))
, 2(0(0(0(0(3(x1)))))) -> 1(0(5(4(3(3(1(3(5(1(x1))))))))))
, 1(5(4(0(2(4(x1)))))) -> 1(0(1(2(3(1(1(0(5(5(x1))))))))))
, 1(3(5(0(5(0(x1)))))) -> 2(4(2(3(2(3(5(3(3(0(x1))))))))))
, 1(0(0(5(0(0(x1)))))) -> 2(1(5(5(5(5(0(1(0(4(x1))))))))))
, 5(2(0(0(0(x1))))) -> 5(5(2(3(3(4(2(5(0(5(x1))))))))))
, 5(0(0(2(5(x1))))) -> 0(1(0(3(3(4(5(3(0(5(x1))))))))))
, 4(0(2(5(0(x1))))) -> 3(1(2(3(4(4(5(1(0(3(x1))))))))))
, 4(0(2(0(2(x1))))) -> 5(3(1(4(3(2(1(1(2(3(x1))))))))))
, 4(0(1(3(4(x1))))) -> 4(2(3(2(4(4(1(4(4(4(x1))))))))))
, 0(1(3(0(0(x1))))) -> 0(5(1(0(2(3(5(2(3(0(x1))))))))))
, 0(0(0(4(0(x1))))) -> 1(4(3(0(5(5(5(5(1(2(x1))))))))))
, 5(4(2(0(x1)))) -> 5(3(4(4(0(3(5(2(3(2(x1))))))))))
, 1(3(0(0(x1)))) -> 1(2(3(3(5(5(4(0(2(4(x1))))))))))
, 1(3(0(0(x1)))) -> 1(2(2(2(2(3(4(3(0(3(x1))))))))))
, 0(0(0(2(x1)))) -> 0(2(2(1(0(4(2(3(4(2(x1))))))))))
, 0(0(5(x1))) -> 1(2(3(4(1(5(0(3(3(4(x1))))))))))
, 0(0(0(x1))) -> 0(4(2(2(3(2(3(3(5(5(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(4(2(0(0(1(3(x1))))))) -> 2(3(4(2(4(3(1(1(2(4(x1))))))))))
, 5(4(1(1(2(0(4(x1))))))) -> 4(3(5(5(4(4(4(2(2(4(x1))))))))))
, 5(4(1(1(0(5(0(x1))))))) -> 4(3(4(5(5(5(1(4(0(3(x1))))))))))
, 5(2(1(4(1(4(2(x1))))))) -> 1(3(2(4(3(1(2(0(3(0(x1))))))))))
, 5(0(2(5(0(2(0(x1))))))) -> 3(2(3(4(2(5(0(2(4(4(x1))))))))))
, 4(4(0(5(4(0(4(x1))))))) -> 4(4(5(1(1(0(3(4(2(4(x1))))))))))
, 4(0(2(4(0(1(3(x1))))))) -> 4(3(1(1(2(2(1(3(0(3(x1))))))))))
, 3(4(0(2(4(0(0(x1))))))) -> 3(2(4(5(3(1(1(0(3(0(x1))))))))))
, 3(0(2(2(0(1(3(x1))))))) -> 3(1(4(5(1(1(4(2(3(4(x1))))))))))
, 2(5(2(0(4(5(0(x1))))))) -> 1(2(2(2(2(5(0(2(1(0(x1))))))))))
, 2(4(0(5(3(2(1(x1))))))) -> 2(0(3(0(4(2(3(1(2(1(x1))))))))))
, 2(1(4(0(0(0(0(x1))))))) -> 2(1(4(0(2(1(1(3(1(4(x1))))))))))
, 2(0(0(4(0(0(3(x1))))))) -> 1(1(1(1(0(0(5(4(2(3(x1))))))))))
, 2(0(0(2(1(3(5(x1))))))) -> 2(5(4(2(2(1(0(0(3(4(x1))))))))))
, 1(0(2(0(0(2(0(x1))))))) -> 1(2(2(1(3(1(1(0(4(4(x1))))))))))
, 1(0(1(3(0(0(2(x1))))))) -> 1(0(1(0(3(5(0(1(1(4(x1))))))))))
, 0(3(5(0(0(2(0(x1))))))) -> 0(2(3(1(5(4(3(0(4(4(x1))))))))))
, 0(3(0(0(2(2(4(x1))))))) -> 0(1(0(5(3(5(5(4(3(0(x1))))))))))
, 0(2(0(2(1(4(2(x1))))))) -> 2(4(4(2(4(1(1(3(4(2(x1))))))))))
, 0(0(0(1(4(0(4(x1))))))) -> 2(4(4(2(1(2(1(2(4(5(x1))))))))))
, 5(1(3(0(2(0(x1)))))) -> 2(4(5(5(1(0(1(5(3(4(x1))))))))))
, 5(0(1(3(3(2(x1)))))) -> 0(3(3(5(5(5(1(5(1(0(x1))))))))))
, 4(1(2(1(4(1(x1)))))) -> 3(5(5(2(1(4(4(4(5(1(x1))))))))))
, 3(0(2(0(1(3(x1)))))) -> 3(0(5(5(1(5(3(3(4(3(x1))))))))))
, 2(2(1(3(1(4(x1)))))) -> 1(1(5(3(2(2(2(1(4(3(x1))))))))))
, 2(0(0(5(1(0(x1)))))) -> 2(5(3(5(2(2(3(5(2(3(x1))))))))))
, 2(0(0(0(0(3(x1)))))) -> 1(0(5(4(3(3(1(3(5(1(x1))))))))))
, 1(5(4(0(2(4(x1)))))) -> 1(0(1(2(3(1(1(0(5(5(x1))))))))))
, 1(3(5(0(5(0(x1)))))) -> 2(4(2(3(2(3(5(3(3(0(x1))))))))))
, 1(0(0(5(0(0(x1)))))) -> 2(1(5(5(5(5(0(1(0(4(x1))))))))))
, 5(2(0(0(0(x1))))) -> 5(5(2(3(3(4(2(5(0(5(x1))))))))))
, 5(0(0(2(5(x1))))) -> 0(1(0(3(3(4(5(3(0(5(x1))))))))))
, 4(0(2(5(0(x1))))) -> 3(1(2(3(4(4(5(1(0(3(x1))))))))))
, 4(0(2(0(2(x1))))) -> 5(3(1(4(3(2(1(1(2(3(x1))))))))))
, 4(0(1(3(4(x1))))) -> 4(2(3(2(4(4(1(4(4(4(x1))))))))))
, 0(1(3(0(0(x1))))) -> 0(5(1(0(2(3(5(2(3(0(x1))))))))))
, 0(0(0(4(0(x1))))) -> 1(4(3(0(5(5(5(5(1(2(x1))))))))))
, 5(4(2(0(x1)))) -> 5(3(4(4(0(3(5(2(3(2(x1))))))))))
, 1(3(0(0(x1)))) -> 1(2(3(3(5(5(4(0(2(4(x1))))))))))
, 1(3(0(0(x1)))) -> 1(2(2(2(2(3(4(3(0(3(x1))))))))))
, 0(0(0(2(x1)))) -> 0(2(2(1(0(4(2(3(4(2(x1))))))))))
, 0(0(5(x1))) -> 1(2(3(4(1(5(0(3(3(4(x1))))))))))
, 0(0(0(x1))) -> 0(4(2(2(3(2(3(3(5(5(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(4(2(0(0(1(3(x1))))))) -> 2(3(4(2(4(3(1(1(2(4(x1))))))))))
, 5(4(1(1(2(0(4(x1))))))) -> 4(3(5(5(4(4(4(2(2(4(x1))))))))))
, 5(4(1(1(0(5(0(x1))))))) -> 4(3(4(5(5(5(1(4(0(3(x1))))))))))
, 5(2(1(4(1(4(2(x1))))))) -> 1(3(2(4(3(1(2(0(3(0(x1))))))))))
, 5(0(2(5(0(2(0(x1))))))) -> 3(2(3(4(2(5(0(2(4(4(x1))))))))))
, 4(4(0(5(4(0(4(x1))))))) -> 4(4(5(1(1(0(3(4(2(4(x1))))))))))
, 4(0(2(4(0(1(3(x1))))))) -> 4(3(1(1(2(2(1(3(0(3(x1))))))))))
, 3(4(0(2(4(0(0(x1))))))) -> 3(2(4(5(3(1(1(0(3(0(x1))))))))))
, 3(0(2(2(0(1(3(x1))))))) -> 3(1(4(5(1(1(4(2(3(4(x1))))))))))
, 2(5(2(0(4(5(0(x1))))))) -> 1(2(2(2(2(5(0(2(1(0(x1))))))))))
, 2(4(0(5(3(2(1(x1))))))) -> 2(0(3(0(4(2(3(1(2(1(x1))))))))))
, 2(1(4(0(0(0(0(x1))))))) -> 2(1(4(0(2(1(1(3(1(4(x1))))))))))
, 2(0(0(4(0(0(3(x1))))))) -> 1(1(1(1(0(0(5(4(2(3(x1))))))))))
, 2(0(0(2(1(3(5(x1))))))) -> 2(5(4(2(2(1(0(0(3(4(x1))))))))))
, 1(0(2(0(0(2(0(x1))))))) -> 1(2(2(1(3(1(1(0(4(4(x1))))))))))
, 1(0(1(3(0(0(2(x1))))))) -> 1(0(1(0(3(5(0(1(1(4(x1))))))))))
, 0(3(5(0(0(2(0(x1))))))) -> 0(2(3(1(5(4(3(0(4(4(x1))))))))))
, 0(3(0(0(2(2(4(x1))))))) -> 0(1(0(5(3(5(5(4(3(0(x1))))))))))
, 0(2(0(2(1(4(2(x1))))))) -> 2(4(4(2(4(1(1(3(4(2(x1))))))))))
, 0(0(0(1(4(0(4(x1))))))) -> 2(4(4(2(1(2(1(2(4(5(x1))))))))))
, 5(1(3(0(2(0(x1)))))) -> 2(4(5(5(1(0(1(5(3(4(x1))))))))))
, 5(0(1(3(3(2(x1)))))) -> 0(3(3(5(5(5(1(5(1(0(x1))))))))))
, 4(1(2(1(4(1(x1)))))) -> 3(5(5(2(1(4(4(4(5(1(x1))))))))))
, 3(0(2(0(1(3(x1)))))) -> 3(0(5(5(1(5(3(3(4(3(x1))))))))))
, 2(2(1(3(1(4(x1)))))) -> 1(1(5(3(2(2(2(1(4(3(x1))))))))))
, 2(0(0(5(1(0(x1)))))) -> 2(5(3(5(2(2(3(5(2(3(x1))))))))))
, 2(0(0(0(0(3(x1)))))) -> 1(0(5(4(3(3(1(3(5(1(x1))))))))))
, 1(5(4(0(2(4(x1)))))) -> 1(0(1(2(3(1(1(0(5(5(x1))))))))))
, 1(3(5(0(5(0(x1)))))) -> 2(4(2(3(2(3(5(3(3(0(x1))))))))))
, 1(0(0(5(0(0(x1)))))) -> 2(1(5(5(5(5(0(1(0(4(x1))))))))))
, 5(2(0(0(0(x1))))) -> 5(5(2(3(3(4(2(5(0(5(x1))))))))))
, 5(0(0(2(5(x1))))) -> 0(1(0(3(3(4(5(3(0(5(x1))))))))))
, 4(0(2(5(0(x1))))) -> 3(1(2(3(4(4(5(1(0(3(x1))))))))))
, 4(0(2(0(2(x1))))) -> 5(3(1(4(3(2(1(1(2(3(x1))))))))))
, 4(0(1(3(4(x1))))) -> 4(2(3(2(4(4(1(4(4(4(x1))))))))))
, 0(1(3(0(0(x1))))) -> 0(5(1(0(2(3(5(2(3(0(x1))))))))))
, 0(0(0(4(0(x1))))) -> 1(4(3(0(5(5(5(5(1(2(x1))))))))))
, 5(4(2(0(x1)))) -> 5(3(4(4(0(3(5(2(3(2(x1))))))))))
, 1(3(0(0(x1)))) -> 1(2(3(3(5(5(4(0(2(4(x1))))))))))
, 1(3(0(0(x1)))) -> 1(2(2(2(2(3(4(3(0(3(x1))))))))))
, 0(0(0(2(x1)))) -> 0(2(2(1(0(4(2(3(4(2(x1))))))))))
, 0(0(5(x1))) -> 1(2(3(4(1(5(0(3(3(4(x1))))))))))
, 0(0(0(x1))) -> 0(4(2(2(3(2(3(3(5(5(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..