Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 5(4(0(0(1(2(1(x1))))))) -> 4(5(5(1(5(5(4(4(3(1(x1))))))))))
, 5(3(4(4(3(0(5(x1))))))) -> 5(4(4(5(1(4(1(5(5(5(x1))))))))))
, 5(2(1(2(0(1(0(x1))))))) -> 3(1(0(3(3(1(0(1(3(5(x1))))))))))
, 5(1(4(5(0(0(3(x1))))))) -> 5(5(3(2(3(1(5(4(0(3(x1))))))))))
, 5(0(1(3(0(3(1(x1))))))) -> 5(0(3(1(4(1(3(1(3(1(x1))))))))))
, 4(5(3(0(3(5(0(x1))))))) -> 5(0(0(0(4(3(2(5(5(5(x1))))))))))
, 4(4(1(2(0(3(1(x1))))))) -> 5(3(5(4(2(5(1(2(4(5(x1))))))))))
, 4(4(0(1(2(0(4(x1))))))) -> 5(4(4(1(4(3(2(2(3(2(x1))))))))))
, 4(3(0(3(0(5(2(x1))))))) -> 5(3(2(5(3(0(1(5(3(2(x1))))))))))
, 4(0(4(4(5(0(5(x1))))))) -> 1(5(5(5(3(5(3(3(1(0(x1))))))))))
, 4(0(4(2(0(0(1(x1))))))) -> 4(1(5(2(5(1(3(5(5(1(x1))))))))))
, 3(2(5(2(0(5(0(x1))))))) -> 3(3(5(5(5(4(1(4(2(0(x1))))))))))
, 3(1(2(5(2(0(4(x1))))))) -> 3(0(0(1(5(5(4(5(3(2(x1))))))))))
, 3(0(3(3(5(2(1(x1))))))) -> 5(1(5(3(2(5(0(1(0(1(x1))))))))))
, 2(4(3(0(4(4(1(x1))))))) -> 2(2(1(5(1(5(3(2(4(5(x1))))))))))
, 2(3(4(0(0(5(0(x1))))))) -> 3(3(1(1(1(1(2(3(1(4(x1))))))))))
, 2(3(0(3(4(4(1(x1))))))) -> 2(4(3(1(0(1(1(1(1(5(x1))))))))))
, 2(1(2(5(2(0(5(x1))))))) -> 2(5(3(5(2(4(4(4(5(5(x1))))))))))
, 2(0(3(0(1(3(5(x1))))))) -> 1(1(4(2(2(4(0(2(3(5(x1))))))))))
, 1(2(4(3(5(0(0(x1))))))) -> 1(1(1(4(3(3(2(2(2(2(x1))))))))))
, 1(2(3(0(3(0(3(x1))))))) -> 1(3(3(3(1(3(5(3(3(2(x1))))))))))
, 0(4(0(2(0(2(1(x1))))))) -> 2(3(1(3(1(0(5(4(1(1(x1))))))))))
, 0(2(0(1(5(1(5(x1))))))) -> 0(4(4(4(3(4(2(3(1(5(x1))))))))))
, 5(3(5(0(1(2(x1)))))) -> 5(3(2(5(5(1(4(3(3(2(x1))))))))))
, 5(2(0(0(4(1(x1)))))) -> 1(0(0(2(2(2(2(4(1(1(x1))))))))))
, 5(0(1(2(1(0(x1)))))) -> 4(2(1(4(1(5(1(1(1(0(x1))))))))))
, 4(4(3(0(5(1(x1)))))) -> 2(4(5(3(1(5(2(5(1(1(x1))))))))))
, 4(3(0(5(1(2(x1)))))) -> 3(1(1(2(4(2(3(2(0(2(x1))))))))))
, 3(4(1(2(5(2(x1)))))) -> 1(3(3(1(4(2(5(3(2(0(x1))))))))))
, 3(4(1(0(0(1(x1)))))) -> 3(3(2(2(5(4(2(4(1(1(x1))))))))))
, 3(1(2(0(0(1(x1)))))) -> 1(5(5(3(4(2(4(0(2(1(x1))))))))))
, 3(0(1(2(5(0(x1)))))) -> 3(1(5(0(2(5(0(5(5(0(x1))))))))))
, 3(0(0(1(3(5(x1)))))) -> 5(1(1(1(5(0(0(1(1(0(x1))))))))))
, 2(5(2(0(4(4(x1)))))) -> 3(5(3(0(3(2(5(1(5(5(x1))))))))))
, 2(4(0(0(0(4(x1)))))) -> 3(4(1(5(1(1(0(5(2(4(x1))))))))))
, 2(3(0(0(0(1(x1)))))) -> 3(3(1(5(1(5(4(4(4(1(x1))))))))))
, 2(2(1(3(5(1(x1)))))) -> 2(4(2(3(2(2(3(2(0(1(x1))))))))))
, 1(4(0(3(5(2(x1)))))) -> 1(3(2(4(3(2(0(2(5(2(x1))))))))))
, 0(4(0(1(4(0(x1)))))) -> 1(1(1(1(0(1(5(1(4(0(x1))))))))))
, 0(3(4(1(2(0(x1)))))) -> 0(4(2(3(2(5(0(2(2(0(x1))))))))))
, 0(3(1(2(0(1(x1)))))) -> 1(5(4(5(5(2(5(1(3(1(x1))))))))))
, 0(3(0(0(3(5(x1)))))) -> 1(1(3(2(2(4(0(4(4(2(x1))))))))))
, 0(2(0(1(3(5(x1)))))) -> 0(3(2(5(1(5(5(5(3(5(x1))))))))))
, 0(0(1(4(0(5(x1)))))) -> 1(2(3(1(5(4(3(2(3(3(x1))))))))))
, 0(0(1(0(3(5(x1)))))) -> 3(2(2(3(1(4(2(3(3(5(x1))))))))))
, 4(5(2(0(5(x1))))) -> 0(3(5(1(1(3(3(1(1(5(x1))))))))))
, 2(5(2(0(5(x1))))) -> 1(0(5(5(5(4(1(0(5(5(x1))))))))))
, 2(2(0(0(1(x1))))) -> 4(3(2(3(2(2(3(2(3(1(x1))))))))))
, 2(0(2(5(2(x1))))) -> 3(5(3(2(2(5(5(2(4(0(x1))))))))))
, 2(0(1(0(3(x1))))) -> 3(4(2(5(0(1(1(5(0(3(x1))))))))))
, 0(2(0(5(0(x1))))) -> 1(0(3(1(5(4(5(5(1(0(x1))))))))))
, 4(0(1(2(x1)))) -> 1(4(2(2(3(3(1(1(5(3(x1))))))))))
, 2(1(2(3(x1)))) -> 2(4(2(3(2(4(3(2(2(3(x1))))))))))
, 0(1(2(x1))) -> 1(3(4(3(2(5(5(5(5(0(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 3.
The enriched problem is compatible with the following automaton:
{ 2_0(1) -> 1
, 2_1(1) -> 58
, 2_1(2) -> 58
, 2_1(9) -> 279
, 2_1(10) -> 191
, 2_1(11) -> 86
, 2_1(17) -> 45
, 2_1(20) -> 20
, 2_1(27) -> 130
, 2_1(30) -> 29
, 2_1(35) -> 338
, 2_1(42) -> 58
, 2_1(49) -> 48
, 2_1(52) -> 51
, 2_1(56) -> 55
, 2_1(57) -> 56
, 2_1(58) -> 136
, 2_1(59) -> 46
, 2_1(64) -> 86
, 2_1(72) -> 86
, 2_1(75) -> 74
, 2_1(86) -> 239
, 2_1(95) -> 94
, 2_1(98) -> 224
, 2_1(99) -> 1
, 2_1(99) -> 58
, 2_1(99) -> 72
, 2_1(99) -> 111
, 2_1(99) -> 136
, 2_1(99) -> 191
, 2_1(99) -> 214
, 2_1(99) -> 301
, 2_1(99) -> 338
, 2_1(100) -> 99
, 2_1(109) -> 108
, 2_1(111) -> 214
, 2_1(122) -> 121
, 2_1(127) -> 126
, 2_1(128) -> 127
, 2_1(135) -> 134
, 2_1(136) -> 135
, 2_1(142) -> 261
, 2_1(148) -> 163
, 2_1(150) -> 58
, 2_1(151) -> 11
, 2_1(156) -> 155
, 2_1(161) -> 160
, 2_1(162) -> 161
, 2_1(163) -> 162
, 2_1(164) -> 2
, 2_1(167) -> 173
, 2_1(175) -> 174
, 2_1(177) -> 176
, 2_1(179) -> 178
, 2_1(182) -> 181
, 2_1(183) -> 222
, 2_1(184) -> 80
, 2_1(185) -> 184
, 2_1(189) -> 188
, 2_1(194) -> 193
, 2_1(202) -> 58
, 2_1(206) -> 205
, 2_1(213) -> 229
, 2_1(220) -> 112
, 2_1(222) -> 221
, 2_1(223) -> 222
, 2_1(225) -> 137
, 2_1(228) -> 227
, 2_1(234) -> 292
, 2_1(235) -> 151
, 2_1(237) -> 236
, 2_1(243) -> 242
, 2_1(245) -> 244
, 2_1(246) -> 245
, 2_1(250) -> 11
, 2_1(251) -> 250
, 2_1(256) -> 64
, 2_1(262) -> 261
, 2_1(264) -> 263
, 2_1(265) -> 58
, 2_1(275) -> 274
, 2_1(277) -> 276
, 2_1(278) -> 277
, 2_1(289) -> 203
, 2_1(290) -> 289
, 2_1(302) -> 208
, 2_1(321) -> 320
, 2_1(322) -> 321
, 2_1(338) -> 337
, 2_1(359) -> 358
, 2_2(122) -> 447
, 2_2(282) -> 281
, 2_2(284) -> 283
, 2_2(285) -> 284
, 2_2(287) -> 286
, 2_2(296) -> 295
, 2_2(297) -> 296
, 2_2(300) -> 299
, 2_2(308) -> 307
, 2_2(329) -> 328
, 2_2(330) -> 329
, 2_2(339) -> 191
, 2_2(341) -> 340
, 2_2(343) -> 342
, 2_2(346) -> 345
, 2_2(347) -> 346
, 2_2(348) -> 58
, 2_2(348) -> 86
, 2_2(348) -> 136
, 2_2(348) -> 178
, 2_2(348) -> 191
, 2_2(348) -> 214
, 2_2(348) -> 224
, 2_2(348) -> 229
, 2_2(348) -> 239
, 2_2(348) -> 279
, 2_2(348) -> 292
, 2_2(348) -> 299
, 2_2(348) -> 338
, 2_2(350) -> 349
, 2_2(352) -> 351
, 2_2(355) -> 354
, 2_2(356) -> 355
, 2_2(367) -> 366
, 2_2(375) -> 374
, 2_2(425) -> 424
, 2_2(437) -> 436
, 2_2(441) -> 440
, 2_2(444) -> 443
, 2_2(446) -> 445
, 2_2(451) -> 450
, 2_2(452) -> 451
, 2_2(455) -> 454
, 2_2(468) -> 467
, 2_3(460) -> 459
, 2_3(461) -> 460
, 2_3(464) -> 463
, 1_0(1) -> 1
, 1_1(1) -> 10
, 1_1(2) -> 149
, 1_1(5) -> 4
, 1_1(9) -> 41
, 1_1(10) -> 149
, 1_1(11) -> 149
, 1_1(15) -> 14
, 1_1(17) -> 16
, 1_1(18) -> 207
, 1_1(19) -> 118
, 1_1(21) -> 20
, 1_1(25) -> 24
, 1_1(27) -> 26
, 1_1(32) -> 31
, 1_1(38) -> 37
, 1_1(40) -> 39
, 1_1(51) -> 50
, 1_1(53) -> 13
, 1_1(63) -> 62
, 1_1(64) -> 1
, 1_1(64) -> 9
, 1_1(64) -> 10
, 1_1(64) -> 19
, 1_1(64) -> 34
, 1_1(64) -> 35
, 1_1(64) -> 58
, 1_1(64) -> 72
, 1_1(64) -> 86
, 1_1(64) -> 98
, 1_1(64) -> 110
, 1_1(64) -> 111
, 1_1(64) -> 179
, 1_1(64) -> 213
, 1_1(64) -> 229
, 1_1(64) -> 233
, 1_1(64) -> 234
, 1_1(64) -> 300
, 1_1(64) -> 301
, 1_1(71) -> 169
, 1_1(72) -> 71
, 1_1(73) -> 2
, 1_1(77) -> 76
, 1_1(85) -> 84
, 1_1(89) -> 88
, 1_1(92) -> 11
, 1_1(98) -> 97
, 1_1(101) -> 100
, 1_1(103) -> 102
, 1_1(105) -> 80
, 1_1(106) -> 105
, 1_1(107) -> 106
, 1_1(108) -> 107
, 1_1(111) -> 110
, 1_1(114) -> 113
, 1_1(116) -> 115
, 1_1(117) -> 116
, 1_1(118) -> 117
, 1_1(125) -> 64
, 1_1(131) -> 125
, 1_1(140) -> 139
, 1_1(144) -> 143
, 1_1(146) -> 145
, 1_1(150) -> 110
, 1_1(154) -> 80
, 1_1(158) -> 157
, 1_1(165) -> 164
, 1_1(167) -> 166
, 1_1(169) -> 168
, 1_1(172) -> 171
, 1_1(174) -> 21
, 1_1(180) -> 138
, 1_1(194) -> 305
, 1_1(198) -> 92
, 1_1(199) -> 198
, 1_1(209) -> 208
, 1_1(211) -> 210
, 1_1(212) -> 211
, 1_1(216) -> 215
, 1_1(230) -> 131
, 1_1(232) -> 231
, 1_1(234) -> 233
, 1_1(253) -> 252
, 1_1(258) -> 257
, 1_1(266) -> 265
, 1_1(267) -> 266
, 1_1(273) -> 272
, 1_1(305) -> 304
, 1_1(316) -> 315
, 1_1(325) -> 324
, 1_1(326) -> 325
, 1_2(89) -> 288
, 1_2(311) -> 310
, 1_2(312) -> 311
, 1_2(327) -> 33
, 1_2(327) -> 234
, 1_2(327) -> 300
, 1_2(333) -> 332
, 1_2(334) -> 333
, 1_2(363) -> 96
, 1_2(363) -> 98
, 1_2(371) -> 34
, 1_2(371) -> 72
, 1_2(371) -> 98
, 1_2(371) -> 179
, 1_2(371) -> 212
, 1_2(371) -> 228
, 1_2(371) -> 301
, 1_2(427) -> 426
, 1_2(431) -> 430
, 1_2(433) -> 432
, 1_2(434) -> 433
, 1_2(439) -> 233
, 1_2(471) -> 470
, 1_2(472) -> 471
, 0_0(1) -> 1
, 0_1(1) -> 72
, 0_1(10) -> 98
, 0_1(11) -> 72
, 0_1(18) -> 273
, 0_1(19) -> 34
, 0_1(22) -> 21
, 0_1(26) -> 25
, 0_1(35) -> 34
, 0_1(36) -> 11
, 0_1(42) -> 36
, 0_1(43) -> 42
, 0_1(58) -> 179
, 0_1(62) -> 61
, 0_1(64) -> 179
, 0_1(71) -> 96
, 0_1(87) -> 20
, 0_1(88) -> 87
, 0_1(97) -> 96
, 0_1(99) -> 11
, 0_1(115) -> 114
, 0_1(117) -> 303
, 0_1(119) -> 72
, 0_1(130) -> 129
, 0_1(147) -> 146
, 0_1(150) -> 1
, 0_1(150) -> 34
, 0_1(150) -> 52
, 0_1(150) -> 72
, 0_1(150) -> 111
, 0_1(150) -> 179
, 0_1(150) -> 301
, 0_1(151) -> 11
, 0_1(159) -> 64
, 0_1(160) -> 159
, 0_1(169) -> 201
, 0_1(191) -> 190
, 0_1(193) -> 192
, 0_1(196) -> 195
, 0_1(201) -> 200
, 0_1(202) -> 72
, 0_1(204) -> 203
, 0_1(213) -> 212
, 0_1(229) -> 228
, 0_1(231) -> 230
, 0_1(239) -> 238
, 0_1(248) -> 247
, 0_1(250) -> 11
, 0_1(256) -> 3
, 0_1(265) -> 72
, 0_1(304) -> 303
, 0_2(1) -> 301
, 0_2(2) -> 301
, 0_2(42) -> 301
, 0_2(99) -> 301
, 0_2(111) -> 301
, 0_2(150) -> 301
, 0_2(151) -> 456
, 0_2(202) -> 301
, 0_2(250) -> 456
, 0_2(256) -> 379
, 0_2(265) -> 301
, 0_2(310) -> 309
, 0_2(314) -> 313
, 0_2(348) -> 301
, 0_2(423) -> 422
, 0_2(435) -> 434
, 0_2(445) -> 444
, 0_2(470) -> 469
, 0_2(474) -> 473
, 0_3(122) -> 465
, 5_0(1) -> 1
, 5_1(1) -> 19
, 5_1(2) -> 19
, 5_1(3) -> 2
, 5_1(4) -> 3
, 5_1(6) -> 5
, 5_1(7) -> 6
, 5_1(10) -> 79
, 5_1(11) -> 1
, 5_1(11) -> 19
, 5_1(11) -> 35
, 5_1(11) -> 52
, 5_1(11) -> 79
, 5_1(11) -> 111
, 5_1(11) -> 197
, 5_1(11) -> 218
, 5_1(11) -> 255
, 5_1(11) -> 326
, 5_1(11) -> 370
, 5_1(14) -> 13
, 5_1(16) -> 251
, 5_1(18) -> 17
, 5_1(19) -> 18
, 5_1(21) -> 19
, 5_1(27) -> 255
, 5_1(28) -> 11
, 5_1(33) -> 32
, 5_1(34) -> 194
, 5_1(35) -> 326
, 5_1(36) -> 19
, 5_1(41) -> 243
, 5_1(47) -> 46
, 5_1(50) -> 49
, 5_1(57) -> 63
, 5_1(58) -> 213
, 5_1(60) -> 59
, 5_1(64) -> 19
, 5_1(65) -> 64
, 5_1(66) -> 65
, 5_1(67) -> 66
, 5_1(69) -> 68
, 5_1(71) -> 319
, 5_1(72) -> 197
, 5_1(73) -> 19
, 5_1(74) -> 73
, 5_1(76) -> 75
, 5_1(79) -> 78
, 5_1(81) -> 80
, 5_1(82) -> 81
, 5_1(83) -> 82
, 5_1(90) -> 89
, 5_1(91) -> 90
, 5_1(93) -> 92
, 5_1(96) -> 95
, 5_1(99) -> 19
, 5_1(102) -> 101
, 5_1(104) -> 103
, 5_1(119) -> 99
, 5_1(121) -> 120
, 5_1(142) -> 141
, 5_1(148) -> 147
, 5_1(149) -> 167
, 5_1(150) -> 19
, 5_1(151) -> 19
, 5_1(152) -> 19
, 5_1(157) -> 60
, 5_1(159) -> 19
, 5_1(167) -> 318
, 5_1(168) -> 167
, 5_1(170) -> 112
, 5_1(173) -> 172
, 5_1(183) -> 182
, 5_1(186) -> 185
, 5_1(192) -> 21
, 5_1(195) -> 194
, 5_1(196) -> 360
, 5_1(197) -> 196
, 5_1(200) -> 199
, 5_1(202) -> 20
, 5_1(207) -> 206
, 5_1(210) -> 209
, 5_1(214) -> 213
, 5_1(215) -> 105
, 5_1(217) -> 216
, 5_1(233) -> 232
, 5_1(238) -> 237
, 5_1(241) -> 240
, 5_1(242) -> 241
, 5_1(250) -> 19
, 5_1(252) -> 251
, 5_1(254) -> 253
, 5_1(255) -> 254
, 5_1(259) -> 258
, 5_1(265) -> 250
, 5_1(269) -> 159
, 5_1(270) -> 269
, 5_1(271) -> 270
, 5_1(291) -> 290
, 5_1(292) -> 291
, 5_1(303) -> 302
, 5_1(317) -> 316
, 5_1(319) -> 318
, 5_1(360) -> 359
, 5_2(152) -> 428
, 5_2(294) -> 293
, 5_2(298) -> 297
, 5_2(299) -> 298
, 5_2(301) -> 370
, 5_2(309) -> 308
, 5_2(313) -> 312
, 5_2(335) -> 334
, 5_2(368) -> 367
, 5_2(369) -> 368
, 5_2(370) -> 369
, 5_2(376) -> 375
, 5_2(377) -> 376
, 5_2(378) -> 377
, 5_2(379) -> 378
, 5_2(421) -> 420
, 5_2(426) -> 425
, 5_2(428) -> 427
, 5_2(432) -> 431
, 5_2(436) -> 435
, 5_2(447) -> 446
, 5_2(449) -> 448
, 5_2(453) -> 452
, 5_2(454) -> 453
, 5_2(469) -> 468
, 5_2(473) -> 472
, 5_3(458) -> 457
, 5_3(462) -> 461
, 5_3(463) -> 462
, 3_0(1) -> 1
, 3_1(1) -> 35
, 3_1(10) -> 9
, 3_1(11) -> 57
, 3_1(18) -> 77
, 3_1(19) -> 27
, 3_1(20) -> 1
, 3_1(20) -> 9
, 3_1(20) -> 19
, 3_1(20) -> 35
, 3_1(20) -> 57
, 3_1(20) -> 58
, 3_1(20) -> 72
, 3_1(20) -> 86
, 3_1(20) -> 111
, 3_1(20) -> 178
, 3_1(20) -> 213
, 3_1(20) -> 214
, 3_1(20) -> 224
, 3_1(20) -> 229
, 3_1(20) -> 292
, 3_1(20) -> 299
, 3_1(20) -> 301
, 3_1(20) -> 338
, 3_1(23) -> 22
, 3_1(24) -> 23
, 3_1(27) -> 264
, 3_1(29) -> 28
, 3_1(31) -> 30
, 3_1(35) -> 262
, 3_1(37) -> 36
, 3_1(41) -> 40
, 3_1(43) -> 64
, 3_1(45) -> 44
, 3_1(46) -> 11
, 3_1(51) -> 104
, 3_1(55) -> 54
, 3_1(57) -> 142
, 3_1(58) -> 57
, 3_1(61) -> 60
, 3_1(64) -> 57
, 3_1(68) -> 67
, 3_1(70) -> 69
, 3_1(71) -> 70
, 3_1(78) -> 77
, 3_1(80) -> 20
, 3_1(86) -> 183
, 3_1(94) -> 93
, 3_1(99) -> 35
, 3_1(110) -> 109
, 3_1(113) -> 112
, 3_1(117) -> 268
, 3_1(118) -> 156
, 3_1(120) -> 119
, 3_1(133) -> 132
, 3_1(134) -> 133
, 3_1(137) -> 64
, 3_1(138) -> 137
, 3_1(139) -> 138
, 3_1(141) -> 140
, 3_1(143) -> 99
, 3_1(145) -> 144
, 3_1(150) -> 57
, 3_1(154) -> 153
, 3_1(171) -> 170
, 3_1(178) -> 177
, 3_1(187) -> 66
, 3_1(203) -> 202
, 3_1(205) -> 204
, 3_1(221) -> 220
, 3_1(224) -> 223
, 3_1(227) -> 226
, 3_1(236) -> 235
, 3_1(244) -> 125
, 3_1(250) -> 150
, 3_1(256) -> 35
, 3_1(257) -> 256
, 3_1(261) -> 260
, 3_1(268) -> 267
, 3_1(274) -> 2
, 3_1(276) -> 275
, 3_1(279) -> 278
, 3_1(315) -> 159
, 3_1(323) -> 322
, 3_1(324) -> 323
, 3_1(337) -> 336
, 3_1(358) -> 357
, 3_2(143) -> 347
, 3_2(250) -> 314
, 3_2(256) -> 335
, 3_2(257) -> 356
, 3_2(281) -> 280
, 3_2(283) -> 282
, 3_2(286) -> 285
, 3_2(288) -> 287
, 3_2(293) -> 227
, 3_2(295) -> 294
, 3_2(306) -> 224
, 3_2(315) -> 474
, 3_2(331) -> 330
, 3_2(332) -> 331
, 3_2(342) -> 341
, 3_2(345) -> 344
, 3_2(351) -> 350
, 3_2(354) -> 353
, 3_2(364) -> 363
, 3_2(366) -> 365
, 3_2(372) -> 371
, 3_2(374) -> 373
, 3_2(420) -> 229
, 3_2(422) -> 421
, 3_2(424) -> 423
, 3_2(429) -> 292
, 3_2(440) -> 439
, 3_2(443) -> 442
, 3_2(448) -> 178
, 3_2(450) -> 449
, 3_2(466) -> 86
, 3_2(466) -> 178
, 3_2(466) -> 224
, 3_2(466) -> 227
, 3_3(457) -> 443
, 3_3(459) -> 458
, 4_0(1) -> 1
, 4_1(1) -> 111
, 4_1(2) -> 1
, 4_1(2) -> 19
, 4_1(2) -> 58
, 4_1(2) -> 111
, 4_1(2) -> 136
, 4_1(2) -> 197
, 4_1(2) -> 234
, 4_1(2) -> 239
, 4_1(2) -> 300
, 4_1(2) -> 370
, 4_1(8) -> 7
, 4_1(9) -> 8
, 4_1(10) -> 219
, 4_1(11) -> 234
, 4_1(12) -> 11
, 4_1(13) -> 12
, 4_1(16) -> 15
, 4_1(18) -> 124
, 4_1(19) -> 52
, 4_1(34) -> 33
, 4_1(36) -> 111
, 4_1(39) -> 38
, 4_1(41) -> 38
, 4_1(44) -> 43
, 4_1(48) -> 47
, 4_1(54) -> 53
, 4_1(56) -> 154
, 4_1(58) -> 249
, 4_1(63) -> 91
, 4_1(72) -> 234
, 4_1(84) -> 83
, 4_1(85) -> 248
, 4_1(86) -> 85
, 4_1(99) -> 64
, 4_1(112) -> 99
, 4_1(123) -> 122
, 4_1(124) -> 123
, 4_1(126) -> 125
, 4_1(129) -> 128
, 4_1(132) -> 131
, 4_1(142) -> 158
, 4_1(149) -> 148
, 4_1(150) -> 64
, 4_1(151) -> 150
, 4_1(152) -> 151
, 4_1(153) -> 152
, 4_1(155) -> 154
, 4_1(163) -> 186
, 4_1(166) -> 165
, 4_1(176) -> 175
, 4_1(177) -> 225
, 4_1(181) -> 180
, 4_1(183) -> 222
, 4_1(188) -> 187
, 4_1(190) -> 189
, 4_1(208) -> 20
, 4_1(218) -> 217
, 4_1(219) -> 218
, 4_1(226) -> 225
, 4_1(238) -> 128
, 4_1(240) -> 65
, 4_1(247) -> 246
, 4_1(249) -> 248
, 4_1(250) -> 64
, 4_1(260) -> 259
, 4_1(263) -> 105
, 4_1(272) -> 271
, 4_1(318) -> 317
, 4_1(320) -> 64
, 4_1(336) -> 222
, 4_1(357) -> 137
, 4_2(44) -> 437
, 4_2(280) -> 20
, 4_2(301) -> 300
, 4_2(307) -> 306
, 4_2(328) -> 327
, 4_2(340) -> 339
, 4_2(344) -> 343
, 4_2(349) -> 348
, 4_2(353) -> 352
, 4_2(365) -> 364
, 4_2(373) -> 372
, 4_2(430) -> 429
, 4_2(442) -> 441
, 4_2(456) -> 455
, 4_2(467) -> 466
, 4_3(465) -> 464}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(4(0(0(1(2(1(x1))))))) -> 4(5(5(1(5(5(4(4(3(1(x1))))))))))
, 5(3(4(4(3(0(5(x1))))))) -> 5(4(4(5(1(4(1(5(5(5(x1))))))))))
, 5(2(1(2(0(1(0(x1))))))) -> 3(1(0(3(3(1(0(1(3(5(x1))))))))))
, 5(1(4(5(0(0(3(x1))))))) -> 5(5(3(2(3(1(5(4(0(3(x1))))))))))
, 5(0(1(3(0(3(1(x1))))))) -> 5(0(3(1(4(1(3(1(3(1(x1))))))))))
, 4(5(3(0(3(5(0(x1))))))) -> 5(0(0(0(4(3(2(5(5(5(x1))))))))))
, 4(4(1(2(0(3(1(x1))))))) -> 5(3(5(4(2(5(1(2(4(5(x1))))))))))
, 4(4(0(1(2(0(4(x1))))))) -> 5(4(4(1(4(3(2(2(3(2(x1))))))))))
, 4(3(0(3(0(5(2(x1))))))) -> 5(3(2(5(3(0(1(5(3(2(x1))))))))))
, 4(0(4(4(5(0(5(x1))))))) -> 1(5(5(5(3(5(3(3(1(0(x1))))))))))
, 4(0(4(2(0(0(1(x1))))))) -> 4(1(5(2(5(1(3(5(5(1(x1))))))))))
, 3(2(5(2(0(5(0(x1))))))) -> 3(3(5(5(5(4(1(4(2(0(x1))))))))))
, 3(1(2(5(2(0(4(x1))))))) -> 3(0(0(1(5(5(4(5(3(2(x1))))))))))
, 3(0(3(3(5(2(1(x1))))))) -> 5(1(5(3(2(5(0(1(0(1(x1))))))))))
, 2(4(3(0(4(4(1(x1))))))) -> 2(2(1(5(1(5(3(2(4(5(x1))))))))))
, 2(3(4(0(0(5(0(x1))))))) -> 3(3(1(1(1(1(2(3(1(4(x1))))))))))
, 2(3(0(3(4(4(1(x1))))))) -> 2(4(3(1(0(1(1(1(1(5(x1))))))))))
, 2(1(2(5(2(0(5(x1))))))) -> 2(5(3(5(2(4(4(4(5(5(x1))))))))))
, 2(0(3(0(1(3(5(x1))))))) -> 1(1(4(2(2(4(0(2(3(5(x1))))))))))
, 1(2(4(3(5(0(0(x1))))))) -> 1(1(1(4(3(3(2(2(2(2(x1))))))))))
, 1(2(3(0(3(0(3(x1))))))) -> 1(3(3(3(1(3(5(3(3(2(x1))))))))))
, 0(4(0(2(0(2(1(x1))))))) -> 2(3(1(3(1(0(5(4(1(1(x1))))))))))
, 0(2(0(1(5(1(5(x1))))))) -> 0(4(4(4(3(4(2(3(1(5(x1))))))))))
, 5(3(5(0(1(2(x1)))))) -> 5(3(2(5(5(1(4(3(3(2(x1))))))))))
, 5(2(0(0(4(1(x1)))))) -> 1(0(0(2(2(2(2(4(1(1(x1))))))))))
, 5(0(1(2(1(0(x1)))))) -> 4(2(1(4(1(5(1(1(1(0(x1))))))))))
, 4(4(3(0(5(1(x1)))))) -> 2(4(5(3(1(5(2(5(1(1(x1))))))))))
, 4(3(0(5(1(2(x1)))))) -> 3(1(1(2(4(2(3(2(0(2(x1))))))))))
, 3(4(1(2(5(2(x1)))))) -> 1(3(3(1(4(2(5(3(2(0(x1))))))))))
, 3(4(1(0(0(1(x1)))))) -> 3(3(2(2(5(4(2(4(1(1(x1))))))))))
, 3(1(2(0(0(1(x1)))))) -> 1(5(5(3(4(2(4(0(2(1(x1))))))))))
, 3(0(1(2(5(0(x1)))))) -> 3(1(5(0(2(5(0(5(5(0(x1))))))))))
, 3(0(0(1(3(5(x1)))))) -> 5(1(1(1(5(0(0(1(1(0(x1))))))))))
, 2(5(2(0(4(4(x1)))))) -> 3(5(3(0(3(2(5(1(5(5(x1))))))))))
, 2(4(0(0(0(4(x1)))))) -> 3(4(1(5(1(1(0(5(2(4(x1))))))))))
, 2(3(0(0(0(1(x1)))))) -> 3(3(1(5(1(5(4(4(4(1(x1))))))))))
, 2(2(1(3(5(1(x1)))))) -> 2(4(2(3(2(2(3(2(0(1(x1))))))))))
, 1(4(0(3(5(2(x1)))))) -> 1(3(2(4(3(2(0(2(5(2(x1))))))))))
, 0(4(0(1(4(0(x1)))))) -> 1(1(1(1(0(1(5(1(4(0(x1))))))))))
, 0(3(4(1(2(0(x1)))))) -> 0(4(2(3(2(5(0(2(2(0(x1))))))))))
, 0(3(1(2(0(1(x1)))))) -> 1(5(4(5(5(2(5(1(3(1(x1))))))))))
, 0(3(0(0(3(5(x1)))))) -> 1(1(3(2(2(4(0(4(4(2(x1))))))))))
, 0(2(0(1(3(5(x1)))))) -> 0(3(2(5(1(5(5(5(3(5(x1))))))))))
, 0(0(1(4(0(5(x1)))))) -> 1(2(3(1(5(4(3(2(3(3(x1))))))))))
, 0(0(1(0(3(5(x1)))))) -> 3(2(2(3(1(4(2(3(3(5(x1))))))))))
, 4(5(2(0(5(x1))))) -> 0(3(5(1(1(3(3(1(1(5(x1))))))))))
, 2(5(2(0(5(x1))))) -> 1(0(5(5(5(4(1(0(5(5(x1))))))))))
, 2(2(0(0(1(x1))))) -> 4(3(2(3(2(2(3(2(3(1(x1))))))))))
, 2(0(2(5(2(x1))))) -> 3(5(3(2(2(5(5(2(4(0(x1))))))))))
, 2(0(1(0(3(x1))))) -> 3(4(2(5(0(1(1(5(0(3(x1))))))))))
, 0(2(0(5(0(x1))))) -> 1(0(3(1(5(4(5(5(1(0(x1))))))))))
, 4(0(1(2(x1)))) -> 1(4(2(2(3(3(1(1(5(3(x1))))))))))
, 2(1(2(3(x1)))) -> 2(4(2(3(2(4(3(2(2(3(x1))))))))))
, 0(1(2(x1))) -> 1(3(4(3(2(5(5(5(5(0(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(4(0(0(1(2(1(x1))))))) -> 4(5(5(1(5(5(4(4(3(1(x1))))))))))
, 5(3(4(4(3(0(5(x1))))))) -> 5(4(4(5(1(4(1(5(5(5(x1))))))))))
, 5(2(1(2(0(1(0(x1))))))) -> 3(1(0(3(3(1(0(1(3(5(x1))))))))))
, 5(1(4(5(0(0(3(x1))))))) -> 5(5(3(2(3(1(5(4(0(3(x1))))))))))
, 5(0(1(3(0(3(1(x1))))))) -> 5(0(3(1(4(1(3(1(3(1(x1))))))))))
, 4(5(3(0(3(5(0(x1))))))) -> 5(0(0(0(4(3(2(5(5(5(x1))))))))))
, 4(4(1(2(0(3(1(x1))))))) -> 5(3(5(4(2(5(1(2(4(5(x1))))))))))
, 4(4(0(1(2(0(4(x1))))))) -> 5(4(4(1(4(3(2(2(3(2(x1))))))))))
, 4(3(0(3(0(5(2(x1))))))) -> 5(3(2(5(3(0(1(5(3(2(x1))))))))))
, 4(0(4(4(5(0(5(x1))))))) -> 1(5(5(5(3(5(3(3(1(0(x1))))))))))
, 4(0(4(2(0(0(1(x1))))))) -> 4(1(5(2(5(1(3(5(5(1(x1))))))))))
, 3(2(5(2(0(5(0(x1))))))) -> 3(3(5(5(5(4(1(4(2(0(x1))))))))))
, 3(1(2(5(2(0(4(x1))))))) -> 3(0(0(1(5(5(4(5(3(2(x1))))))))))
, 3(0(3(3(5(2(1(x1))))))) -> 5(1(5(3(2(5(0(1(0(1(x1))))))))))
, 2(4(3(0(4(4(1(x1))))))) -> 2(2(1(5(1(5(3(2(4(5(x1))))))))))
, 2(3(4(0(0(5(0(x1))))))) -> 3(3(1(1(1(1(2(3(1(4(x1))))))))))
, 2(3(0(3(4(4(1(x1))))))) -> 2(4(3(1(0(1(1(1(1(5(x1))))))))))
, 2(1(2(5(2(0(5(x1))))))) -> 2(5(3(5(2(4(4(4(5(5(x1))))))))))
, 2(0(3(0(1(3(5(x1))))))) -> 1(1(4(2(2(4(0(2(3(5(x1))))))))))
, 1(2(4(3(5(0(0(x1))))))) -> 1(1(1(4(3(3(2(2(2(2(x1))))))))))
, 1(2(3(0(3(0(3(x1))))))) -> 1(3(3(3(1(3(5(3(3(2(x1))))))))))
, 0(4(0(2(0(2(1(x1))))))) -> 2(3(1(3(1(0(5(4(1(1(x1))))))))))
, 0(2(0(1(5(1(5(x1))))))) -> 0(4(4(4(3(4(2(3(1(5(x1))))))))))
, 5(3(5(0(1(2(x1)))))) -> 5(3(2(5(5(1(4(3(3(2(x1))))))))))
, 5(2(0(0(4(1(x1)))))) -> 1(0(0(2(2(2(2(4(1(1(x1))))))))))
, 5(0(1(2(1(0(x1)))))) -> 4(2(1(4(1(5(1(1(1(0(x1))))))))))
, 4(4(3(0(5(1(x1)))))) -> 2(4(5(3(1(5(2(5(1(1(x1))))))))))
, 4(3(0(5(1(2(x1)))))) -> 3(1(1(2(4(2(3(2(0(2(x1))))))))))
, 3(4(1(2(5(2(x1)))))) -> 1(3(3(1(4(2(5(3(2(0(x1))))))))))
, 3(4(1(0(0(1(x1)))))) -> 3(3(2(2(5(4(2(4(1(1(x1))))))))))
, 3(1(2(0(0(1(x1)))))) -> 1(5(5(3(4(2(4(0(2(1(x1))))))))))
, 3(0(1(2(5(0(x1)))))) -> 3(1(5(0(2(5(0(5(5(0(x1))))))))))
, 3(0(0(1(3(5(x1)))))) -> 5(1(1(1(5(0(0(1(1(0(x1))))))))))
, 2(5(2(0(4(4(x1)))))) -> 3(5(3(0(3(2(5(1(5(5(x1))))))))))
, 2(4(0(0(0(4(x1)))))) -> 3(4(1(5(1(1(0(5(2(4(x1))))))))))
, 2(3(0(0(0(1(x1)))))) -> 3(3(1(5(1(5(4(4(4(1(x1))))))))))
, 2(2(1(3(5(1(x1)))))) -> 2(4(2(3(2(2(3(2(0(1(x1))))))))))
, 1(4(0(3(5(2(x1)))))) -> 1(3(2(4(3(2(0(2(5(2(x1))))))))))
, 0(4(0(1(4(0(x1)))))) -> 1(1(1(1(0(1(5(1(4(0(x1))))))))))
, 0(3(4(1(2(0(x1)))))) -> 0(4(2(3(2(5(0(2(2(0(x1))))))))))
, 0(3(1(2(0(1(x1)))))) -> 1(5(4(5(5(2(5(1(3(1(x1))))))))))
, 0(3(0(0(3(5(x1)))))) -> 1(1(3(2(2(4(0(4(4(2(x1))))))))))
, 0(2(0(1(3(5(x1)))))) -> 0(3(2(5(1(5(5(5(3(5(x1))))))))))
, 0(0(1(4(0(5(x1)))))) -> 1(2(3(1(5(4(3(2(3(3(x1))))))))))
, 0(0(1(0(3(5(x1)))))) -> 3(2(2(3(1(4(2(3(3(5(x1))))))))))
, 4(5(2(0(5(x1))))) -> 0(3(5(1(1(3(3(1(1(5(x1))))))))))
, 2(5(2(0(5(x1))))) -> 1(0(5(5(5(4(1(0(5(5(x1))))))))))
, 2(2(0(0(1(x1))))) -> 4(3(2(3(2(2(3(2(3(1(x1))))))))))
, 2(0(2(5(2(x1))))) -> 3(5(3(2(2(5(5(2(4(0(x1))))))))))
, 2(0(1(0(3(x1))))) -> 3(4(2(5(0(1(1(5(0(3(x1))))))))))
, 0(2(0(5(0(x1))))) -> 1(0(3(1(5(4(5(5(1(0(x1))))))))))
, 4(0(1(2(x1)))) -> 1(4(2(2(3(3(1(1(5(3(x1))))))))))
, 2(1(2(3(x1)))) -> 2(4(2(3(2(4(3(2(2(3(x1))))))))))
, 0(1(2(x1))) -> 1(3(4(3(2(5(5(5(5(0(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(4(0(0(1(2(1(x1))))))) -> 4(5(5(1(5(5(4(4(3(1(x1))))))))))
, 5(3(4(4(3(0(5(x1))))))) -> 5(4(4(5(1(4(1(5(5(5(x1))))))))))
, 5(2(1(2(0(1(0(x1))))))) -> 3(1(0(3(3(1(0(1(3(5(x1))))))))))
, 5(1(4(5(0(0(3(x1))))))) -> 5(5(3(2(3(1(5(4(0(3(x1))))))))))
, 5(0(1(3(0(3(1(x1))))))) -> 5(0(3(1(4(1(3(1(3(1(x1))))))))))
, 4(5(3(0(3(5(0(x1))))))) -> 5(0(0(0(4(3(2(5(5(5(x1))))))))))
, 4(4(1(2(0(3(1(x1))))))) -> 5(3(5(4(2(5(1(2(4(5(x1))))))))))
, 4(4(0(1(2(0(4(x1))))))) -> 5(4(4(1(4(3(2(2(3(2(x1))))))))))
, 4(3(0(3(0(5(2(x1))))))) -> 5(3(2(5(3(0(1(5(3(2(x1))))))))))
, 4(0(4(4(5(0(5(x1))))))) -> 1(5(5(5(3(5(3(3(1(0(x1))))))))))
, 4(0(4(2(0(0(1(x1))))))) -> 4(1(5(2(5(1(3(5(5(1(x1))))))))))
, 3(2(5(2(0(5(0(x1))))))) -> 3(3(5(5(5(4(1(4(2(0(x1))))))))))
, 3(1(2(5(2(0(4(x1))))))) -> 3(0(0(1(5(5(4(5(3(2(x1))))))))))
, 3(0(3(3(5(2(1(x1))))))) -> 5(1(5(3(2(5(0(1(0(1(x1))))))))))
, 2(4(3(0(4(4(1(x1))))))) -> 2(2(1(5(1(5(3(2(4(5(x1))))))))))
, 2(3(4(0(0(5(0(x1))))))) -> 3(3(1(1(1(1(2(3(1(4(x1))))))))))
, 2(3(0(3(4(4(1(x1))))))) -> 2(4(3(1(0(1(1(1(1(5(x1))))))))))
, 2(1(2(5(2(0(5(x1))))))) -> 2(5(3(5(2(4(4(4(5(5(x1))))))))))
, 2(0(3(0(1(3(5(x1))))))) -> 1(1(4(2(2(4(0(2(3(5(x1))))))))))
, 1(2(4(3(5(0(0(x1))))))) -> 1(1(1(4(3(3(2(2(2(2(x1))))))))))
, 1(2(3(0(3(0(3(x1))))))) -> 1(3(3(3(1(3(5(3(3(2(x1))))))))))
, 0(4(0(2(0(2(1(x1))))))) -> 2(3(1(3(1(0(5(4(1(1(x1))))))))))
, 0(2(0(1(5(1(5(x1))))))) -> 0(4(4(4(3(4(2(3(1(5(x1))))))))))
, 5(3(5(0(1(2(x1)))))) -> 5(3(2(5(5(1(4(3(3(2(x1))))))))))
, 5(2(0(0(4(1(x1)))))) -> 1(0(0(2(2(2(2(4(1(1(x1))))))))))
, 5(0(1(2(1(0(x1)))))) -> 4(2(1(4(1(5(1(1(1(0(x1))))))))))
, 4(4(3(0(5(1(x1)))))) -> 2(4(5(3(1(5(2(5(1(1(x1))))))))))
, 4(3(0(5(1(2(x1)))))) -> 3(1(1(2(4(2(3(2(0(2(x1))))))))))
, 3(4(1(2(5(2(x1)))))) -> 1(3(3(1(4(2(5(3(2(0(x1))))))))))
, 3(4(1(0(0(1(x1)))))) -> 3(3(2(2(5(4(2(4(1(1(x1))))))))))
, 3(1(2(0(0(1(x1)))))) -> 1(5(5(3(4(2(4(0(2(1(x1))))))))))
, 3(0(1(2(5(0(x1)))))) -> 3(1(5(0(2(5(0(5(5(0(x1))))))))))
, 3(0(0(1(3(5(x1)))))) -> 5(1(1(1(5(0(0(1(1(0(x1))))))))))
, 2(5(2(0(4(4(x1)))))) -> 3(5(3(0(3(2(5(1(5(5(x1))))))))))
, 2(4(0(0(0(4(x1)))))) -> 3(4(1(5(1(1(0(5(2(4(x1))))))))))
, 2(3(0(0(0(1(x1)))))) -> 3(3(1(5(1(5(4(4(4(1(x1))))))))))
, 2(2(1(3(5(1(x1)))))) -> 2(4(2(3(2(2(3(2(0(1(x1))))))))))
, 1(4(0(3(5(2(x1)))))) -> 1(3(2(4(3(2(0(2(5(2(x1))))))))))
, 0(4(0(1(4(0(x1)))))) -> 1(1(1(1(0(1(5(1(4(0(x1))))))))))
, 0(3(4(1(2(0(x1)))))) -> 0(4(2(3(2(5(0(2(2(0(x1))))))))))
, 0(3(1(2(0(1(x1)))))) -> 1(5(4(5(5(2(5(1(3(1(x1))))))))))
, 0(3(0(0(3(5(x1)))))) -> 1(1(3(2(2(4(0(4(4(2(x1))))))))))
, 0(2(0(1(3(5(x1)))))) -> 0(3(2(5(1(5(5(5(3(5(x1))))))))))
, 0(0(1(4(0(5(x1)))))) -> 1(2(3(1(5(4(3(2(3(3(x1))))))))))
, 0(0(1(0(3(5(x1)))))) -> 3(2(2(3(1(4(2(3(3(5(x1))))))))))
, 4(5(2(0(5(x1))))) -> 0(3(5(1(1(3(3(1(1(5(x1))))))))))
, 2(5(2(0(5(x1))))) -> 1(0(5(5(5(4(1(0(5(5(x1))))))))))
, 2(2(0(0(1(x1))))) -> 4(3(2(3(2(2(3(2(3(1(x1))))))))))
, 2(0(2(5(2(x1))))) -> 3(5(3(2(2(5(5(2(4(0(x1))))))))))
, 2(0(1(0(3(x1))))) -> 3(4(2(5(0(1(1(5(0(3(x1))))))))))
, 0(2(0(5(0(x1))))) -> 1(0(3(1(5(4(5(5(1(0(x1))))))))))
, 4(0(1(2(x1)))) -> 1(4(2(2(3(3(1(1(5(3(x1))))))))))
, 2(1(2(3(x1)))) -> 2(4(2(3(2(4(3(2(2(3(x1))))))))))
, 0(1(2(x1))) -> 1(3(4(3(2(5(5(5(5(0(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI2
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(4(0(0(1(2(1(x1))))))) -> 4(5(5(1(5(5(4(4(3(1(x1))))))))))
, 5(3(4(4(3(0(5(x1))))))) -> 5(4(4(5(1(4(1(5(5(5(x1))))))))))
, 5(2(1(2(0(1(0(x1))))))) -> 3(1(0(3(3(1(0(1(3(5(x1))))))))))
, 5(1(4(5(0(0(3(x1))))))) -> 5(5(3(2(3(1(5(4(0(3(x1))))))))))
, 5(0(1(3(0(3(1(x1))))))) -> 5(0(3(1(4(1(3(1(3(1(x1))))))))))
, 4(5(3(0(3(5(0(x1))))))) -> 5(0(0(0(4(3(2(5(5(5(x1))))))))))
, 4(4(1(2(0(3(1(x1))))))) -> 5(3(5(4(2(5(1(2(4(5(x1))))))))))
, 4(4(0(1(2(0(4(x1))))))) -> 5(4(4(1(4(3(2(2(3(2(x1))))))))))
, 4(3(0(3(0(5(2(x1))))))) -> 5(3(2(5(3(0(1(5(3(2(x1))))))))))
, 4(0(4(4(5(0(5(x1))))))) -> 1(5(5(5(3(5(3(3(1(0(x1))))))))))
, 4(0(4(2(0(0(1(x1))))))) -> 4(1(5(2(5(1(3(5(5(1(x1))))))))))
, 3(2(5(2(0(5(0(x1))))))) -> 3(3(5(5(5(4(1(4(2(0(x1))))))))))
, 3(1(2(5(2(0(4(x1))))))) -> 3(0(0(1(5(5(4(5(3(2(x1))))))))))
, 3(0(3(3(5(2(1(x1))))))) -> 5(1(5(3(2(5(0(1(0(1(x1))))))))))
, 2(4(3(0(4(4(1(x1))))))) -> 2(2(1(5(1(5(3(2(4(5(x1))))))))))
, 2(3(4(0(0(5(0(x1))))))) -> 3(3(1(1(1(1(2(3(1(4(x1))))))))))
, 2(3(0(3(4(4(1(x1))))))) -> 2(4(3(1(0(1(1(1(1(5(x1))))))))))
, 2(1(2(5(2(0(5(x1))))))) -> 2(5(3(5(2(4(4(4(5(5(x1))))))))))
, 2(0(3(0(1(3(5(x1))))))) -> 1(1(4(2(2(4(0(2(3(5(x1))))))))))
, 1(2(4(3(5(0(0(x1))))))) -> 1(1(1(4(3(3(2(2(2(2(x1))))))))))
, 1(2(3(0(3(0(3(x1))))))) -> 1(3(3(3(1(3(5(3(3(2(x1))))))))))
, 0(4(0(2(0(2(1(x1))))))) -> 2(3(1(3(1(0(5(4(1(1(x1))))))))))
, 0(2(0(1(5(1(5(x1))))))) -> 0(4(4(4(3(4(2(3(1(5(x1))))))))))
, 5(3(5(0(1(2(x1)))))) -> 5(3(2(5(5(1(4(3(3(2(x1))))))))))
, 5(2(0(0(4(1(x1)))))) -> 1(0(0(2(2(2(2(4(1(1(x1))))))))))
, 5(0(1(2(1(0(x1)))))) -> 4(2(1(4(1(5(1(1(1(0(x1))))))))))
, 4(4(3(0(5(1(x1)))))) -> 2(4(5(3(1(5(2(5(1(1(x1))))))))))
, 4(3(0(5(1(2(x1)))))) -> 3(1(1(2(4(2(3(2(0(2(x1))))))))))
, 3(4(1(2(5(2(x1)))))) -> 1(3(3(1(4(2(5(3(2(0(x1))))))))))
, 3(4(1(0(0(1(x1)))))) -> 3(3(2(2(5(4(2(4(1(1(x1))))))))))
, 3(1(2(0(0(1(x1)))))) -> 1(5(5(3(4(2(4(0(2(1(x1))))))))))
, 3(0(1(2(5(0(x1)))))) -> 3(1(5(0(2(5(0(5(5(0(x1))))))))))
, 3(0(0(1(3(5(x1)))))) -> 5(1(1(1(5(0(0(1(1(0(x1))))))))))
, 2(5(2(0(4(4(x1)))))) -> 3(5(3(0(3(2(5(1(5(5(x1))))))))))
, 2(4(0(0(0(4(x1)))))) -> 3(4(1(5(1(1(0(5(2(4(x1))))))))))
, 2(3(0(0(0(1(x1)))))) -> 3(3(1(5(1(5(4(4(4(1(x1))))))))))
, 2(2(1(3(5(1(x1)))))) -> 2(4(2(3(2(2(3(2(0(1(x1))))))))))
, 1(4(0(3(5(2(x1)))))) -> 1(3(2(4(3(2(0(2(5(2(x1))))))))))
, 0(4(0(1(4(0(x1)))))) -> 1(1(1(1(0(1(5(1(4(0(x1))))))))))
, 0(3(4(1(2(0(x1)))))) -> 0(4(2(3(2(5(0(2(2(0(x1))))))))))
, 0(3(1(2(0(1(x1)))))) -> 1(5(4(5(5(2(5(1(3(1(x1))))))))))
, 0(3(0(0(3(5(x1)))))) -> 1(1(3(2(2(4(0(4(4(2(x1))))))))))
, 0(2(0(1(3(5(x1)))))) -> 0(3(2(5(1(5(5(5(3(5(x1))))))))))
, 0(0(1(4(0(5(x1)))))) -> 1(2(3(1(5(4(3(2(3(3(x1))))))))))
, 0(0(1(0(3(5(x1)))))) -> 3(2(2(3(1(4(2(3(3(5(x1))))))))))
, 4(5(2(0(5(x1))))) -> 0(3(5(1(1(3(3(1(1(5(x1))))))))))
, 2(5(2(0(5(x1))))) -> 1(0(5(5(5(4(1(0(5(5(x1))))))))))
, 2(2(0(0(1(x1))))) -> 4(3(2(3(2(2(3(2(3(1(x1))))))))))
, 2(0(2(5(2(x1))))) -> 3(5(3(2(2(5(5(2(4(0(x1))))))))))
, 2(0(1(0(3(x1))))) -> 3(4(2(5(0(1(1(5(0(3(x1))))))))))
, 0(2(0(5(0(x1))))) -> 1(0(3(1(5(4(5(5(1(0(x1))))))))))
, 4(0(1(2(x1)))) -> 1(4(2(2(3(3(1(1(5(3(x1))))))))))
, 2(1(2(3(x1)))) -> 2(4(2(3(2(4(3(2(2(3(x1))))))))))
, 0(1(2(x1))) -> 1(3(4(3(2(5(5(5(5(0(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..