Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 5(4(3(4(2(5(5(x1))))))) -> 0(4(5(2(2(1(1(5(0(1(x1))))))))))
, 5(3(4(0(2(1(5(x1))))))) -> 2(1(5(2(3(5(0(0(2(3(x1))))))))))
, 5(0(2(0(0(2(1(x1))))))) -> 3(4(3(0(0(5(1(3(1(3(x1))))))))))
, 4(4(5(3(5(5(5(x1))))))) -> 4(0(4(2(3(2(4(2(0(4(x1))))))))))
, 4(4(1(2(2(2(5(x1))))))) -> 2(0(1(0(2(0(3(5(3(0(x1))))))))))
, 4(1(2(5(2(5(5(x1))))))) -> 1(1(3(5(3(4(3(0(4(5(x1))))))))))
, 3(5(3(3(2(2(1(x1))))))) -> 4(4(2(4(1(0(3(1(2(1(x1))))))))))
, 3(3(2(0(0(5(5(x1))))))) -> 4(4(0(2(0(4(2(3(2(3(x1))))))))))
, 2(2(5(5(5(5(3(x1))))))) -> 2(4(3(4(4(0(4(5(4(3(x1))))))))))
, 2(2(4(5(4(5(4(x1))))))) -> 5(1(1(0(1(1(1(3(5(4(x1))))))))))
, 1(5(5(1(5(2(2(x1))))))) -> 4(4(5(5(1(1(0(0(2(2(x1))))))))))
, 1(2(5(5(2(1(2(x1))))))) -> 5(5(0(1(3(0(0(1(3(2(x1))))))))))
, 1(1(5(3(1(2(5(x1))))))) -> 5(1(1(1(1(3(0(5(2(3(x1))))))))))
, 0(3(3(1(3(3(4(x1))))))) -> 0(3(3(0(2(3(1(4(5(4(x1))))))))))
, 0(2(1(3(5(1(5(x1))))))) -> 0(3(5(4(2(4(1(5(0(1(x1))))))))))
, 5(3(4(2(0(2(x1)))))) -> 5(4(1(4(1(3(0(4(1(2(x1))))))))))
, 3(4(0(0(3(4(x1)))))) -> 4(4(0(0(0(2(4(4(0(3(x1))))))))))
, 3(3(2(5(2(5(x1)))))) -> 0(4(2(4(0(0(3(3(0(3(x1))))))))))
, 3(2(2(5(4(1(x1)))))) -> 4(2(2(1(3(0(3(3(3(0(x1))))))))))
, 3(1(2(1(4(1(x1)))))) -> 3(5(0(2(4(4(0(4(5(0(x1))))))))))
, 2(5(5(2(5(3(x1)))))) -> 3(0(2(1(3(5(0(0(1(3(x1))))))))))
, 2(2(5(5(2(5(x1)))))) -> 5(2(3(1(1(4(4(3(0(1(x1))))))))))
, 2(2(5(2(5(5(x1)))))) -> 5(3(0(3(3(1(4(4(4(4(x1))))))))))
, 2(2(5(1(5(2(x1)))))) -> 5(3(0(0(0(4(3(4(0(2(x1))))))))))
, 2(1(4(2(0(0(x1)))))) -> 2(4(4(5(2(1(0(4(0(0(x1))))))))))
, 2(1(4(1(5(2(x1)))))) -> 3(0(0(2(5(5(3(0(5(2(x1))))))))))
, 1(5(2(5(1(2(x1)))))) -> 4(3(1(4(4(3(4(5(3(0(x1))))))))))
, 1(5(2(2(5(2(x1)))))) -> 5(4(5(3(0(1(1(2(1(2(x1))))))))))
, 1(3(1(3(4(2(x1)))))) -> 1(3(3(0(4(1(4(1(3(2(x1))))))))))
, 1(2(2(4(0(2(x1)))))) -> 5(1(3(2(4(1(1(0(0(2(x1))))))))))
, 0(2(5(5(1(5(x1)))))) -> 0(4(1(1(5(3(0(1(3(5(x1))))))))))
, 5(0(2(5(2(x1))))) -> 2(0(4(1(3(5(3(1(0(0(x1))))))))))
, 2(5(3(1(5(x1))))) -> 2(2(3(0(0(0(4(2(0(1(x1))))))))))
, 2(5(2(4(3(x1))))) -> 2(4(4(0(2(4(5(2(1(3(x1))))))))))
, 2(5(1(2(5(x1))))) -> 5(3(0(0(0(1(3(2(5(0(x1))))))))))
, 2(2(5(5(5(x1))))) -> 5(5(3(0(1(4(4(4(1(1(x1))))))))))
, 2(2(2(2(5(x1))))) -> 2(5(3(5(3(1(0(1(3(5(x1))))))))))
, 2(1(5(5(4(x1))))) -> 3(0(5(2(3(4(5(1(0(4(x1))))))))))
, 1(0(2(5(4(x1))))) -> 1(4(4(5(3(0(0(5(2(4(x1))))))))))
, 5(5(1(2(x1)))) -> 3(0(0(3(1(4(2(3(2(2(x1))))))))))
, 3(2(5(2(x1)))) -> 4(4(5(3(0(0(4(0(2(2(x1))))))))))
, 3(2(2(2(x1)))) -> 4(3(0(4(5(1(0(2(3(2(x1))))))))))
, 2(2(2(5(x1)))) -> 3(0(3(4(4(2(4(5(1(3(x1))))))))))
, 1(3(4(0(x1)))) -> 2(4(4(1(0(2(4(1(4(0(x1))))))))))
, 1(2(5(4(x1)))) -> 4(3(4(4(0(0(3(1(0(4(x1))))))))))
, 2(2(2(x1))) -> 3(0(2(0(0(3(1(0(1(1(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ 2_0(1) -> 1
, 2_1(1) -> 96
, 2_1(5) -> 4
, 2_1(6) -> 5
, 2_1(9) -> 273
, 2_1(10) -> 60
, 2_1(11) -> 1
, 2_1(11) -> 36
, 2_1(11) -> 53
, 2_1(11) -> 95
, 2_1(11) -> 96
, 2_1(11) -> 145
, 2_1(11) -> 171
, 2_1(14) -> 13
, 2_1(19) -> 18
, 2_1(27) -> 290
, 2_1(31) -> 30
, 2_1(33) -> 32
, 2_1(35) -> 34
, 2_1(36) -> 1
, 2_1(36) -> 10
, 2_1(36) -> 27
, 2_1(40) -> 39
, 2_1(55) -> 54
, 2_1(62) -> 61
, 2_1(65) -> 64
, 2_1(83) -> 1
, 2_1(96) -> 95
, 2_1(103) -> 359
, 2_1(111) -> 110
, 2_1(115) -> 114
, 2_1(121) -> 60
, 2_1(121) -> 96
, 2_1(122) -> 210
, 2_1(125) -> 124
, 2_1(128) -> 3
, 2_1(133) -> 28
, 2_1(134) -> 133
, 2_1(141) -> 140
, 2_1(144) -> 95
, 2_1(144) -> 96
, 2_1(145) -> 324
, 2_1(156) -> 155
, 2_1(159) -> 83
, 2_1(180) -> 179
, 2_1(196) -> 195
, 2_1(226) -> 225
, 2_1(279) -> 29
, 2_1(340) -> 339
, 2_1(360) -> 359
, 2_1(388) -> 387
, 2_1(409) -> 408
, 2_2(11) -> 384
, 2_2(36) -> 384
, 2_2(55) -> 224
, 2_2(83) -> 384
, 2_2(133) -> 224
, 2_2(149) -> 148
, 2_2(159) -> 372
, 2_2(255) -> 145
, 2_2(279) -> 575
, 2_2(356) -> 355
, 2_2(372) -> 371
, 2_2(383) -> 382
, 2_2(395) -> 394
, 2_2(423) -> 27
, 2_2(428) -> 427
, 2_2(455) -> 454
, 2_2(560) -> 364
, 2_2(561) -> 560
, 2_2(570) -> 569
, 2_2(594) -> 95
, 1_0(1) -> 1
, 1_1(1) -> 10
, 1_1(7) -> 6
, 1_1(8) -> 7
, 1_1(10) -> 330
, 1_1(11) -> 10
, 1_1(12) -> 11
, 1_1(17) -> 375
, 1_1(19) -> 27
, 1_1(26) -> 25
, 1_1(28) -> 10
, 1_1(35) -> 343
, 1_1(36) -> 10
, 1_1(38) -> 37
, 1_1(44) -> 343
, 1_1(45) -> 1
, 1_1(45) -> 10
, 1_1(45) -> 25
, 1_1(45) -> 27
, 1_1(45) -> 36
, 1_1(45) -> 121
, 1_1(45) -> 343
, 1_1(46) -> 45
, 1_1(52) -> 112
, 1_1(57) -> 56
, 1_1(59) -> 208
, 1_1(60) -> 59
, 1_1(69) -> 112
, 1_1(83) -> 10
, 1_1(84) -> 83
, 1_1(85) -> 84
, 1_1(87) -> 86
, 1_1(88) -> 87
, 1_1(89) -> 88
, 1_1(92) -> 91
, 1_1(93) -> 92
, 1_1(96) -> 122
, 1_1(97) -> 10
, 1_1(99) -> 98
, 1_1(101) -> 334
, 1_1(103) -> 102
, 1_1(104) -> 85
, 1_1(105) -> 104
, 1_1(117) -> 116
, 1_1(119) -> 118
, 1_1(127) -> 343
, 1_1(135) -> 134
, 1_1(157) -> 156
, 1_1(159) -> 10
, 1_1(161) -> 160
, 1_1(162) -> 161
, 1_1(169) -> 168
, 1_1(175) -> 415
, 1_1(181) -> 180
, 1_1(202) -> 201
, 1_1(209) -> 208
, 1_1(210) -> 209
, 1_1(215) -> 214
, 1_1(227) -> 3
, 1_1(228) -> 227
, 1_1(230) -> 334
, 1_1(233) -> 232
, 1_1(323) -> 173
, 1_1(327) -> 326
, 1_1(331) -> 10
, 1_1(358) -> 357
, 1_1(376) -> 375
, 1_1(452) -> 451
, 1_2(11) -> 461
, 1_2(36) -> 461
, 1_2(83) -> 461
, 1_2(159) -> 461
, 1_2(216) -> 25
, 1_2(221) -> 220
, 1_2(223) -> 222
, 1_2(258) -> 257
, 1_2(262) -> 261
, 1_2(348) -> 343
, 1_2(381) -> 380
, 1_2(398) -> 397
, 1_2(426) -> 425
, 1_2(430) -> 429
, 1_2(448) -> 447
, 1_2(459) -> 458
, 1_2(461) -> 460
, 1_2(562) -> 561
, 1_2(568) -> 567
, 1_2(572) -> 571
, 1_2(573) -> 572
, 1_2(599) -> 598
, 1_2(601) -> 600
, 0_0(1) -> 1
, 0_1(1) -> 44
, 0_1(2) -> 1
, 0_1(2) -> 19
, 0_1(2) -> 44
, 0_1(2) -> 53
, 0_1(2) -> 73
, 0_1(2) -> 127
, 0_1(9) -> 100
, 0_1(10) -> 9
, 0_1(11) -> 44
, 0_1(17) -> 16
, 0_1(18) -> 17
, 0_1(19) -> 127
, 0_1(23) -> 22
, 0_1(24) -> 23
, 0_1(27) -> 101
, 0_1(28) -> 93
, 0_1(29) -> 28
, 0_1(35) -> 93
, 0_1(36) -> 35
, 0_1(37) -> 11
, 0_1(39) -> 38
, 0_1(41) -> 40
, 0_1(44) -> 93
, 0_1(45) -> 44
, 0_1(52) -> 51
, 0_1(53) -> 199
, 0_1(58) -> 57
, 0_1(61) -> 54
, 0_1(63) -> 62
, 0_1(69) -> 68
, 0_1(73) -> 199
, 0_1(83) -> 44
, 0_1(86) -> 85
, 0_1(88) -> 230
, 0_1(94) -> 93
, 0_1(95) -> 94
, 0_1(96) -> 44
, 0_1(97) -> 35
, 0_1(98) -> 97
, 0_1(101) -> 100
, 0_1(102) -> 101
, 0_1(107) -> 106
, 0_1(110) -> 109
, 0_1(117) -> 44
, 0_1(121) -> 120
, 0_1(123) -> 61
, 0_1(124) -> 123
, 0_1(127) -> 35
, 0_1(130) -> 129
, 0_1(131) -> 130
, 0_1(137) -> 136
, 0_1(140) -> 139
, 0_1(144) -> 143
, 0_1(155) -> 20
, 0_1(159) -> 35
, 0_1(166) -> 165
, 0_1(172) -> 166
, 0_1(173) -> 172
, 0_1(175) -> 362
, 0_1(182) -> 181
, 0_1(195) -> 155
, 0_1(199) -> 347
, 0_1(200) -> 199
, 0_1(208) -> 207
, 0_1(213) -> 212
, 0_1(266) -> 265
, 0_1(267) -> 266
, 0_1(268) -> 267
, 0_1(326) -> 325
, 0_1(330) -> 452
, 0_1(331) -> 35
, 0_1(348) -> 35
, 0_1(359) -> 376
, 0_1(362) -> 361
, 0_1(363) -> 362
, 0_1(373) -> 201
, 0_1(408) -> 117
, 0_1(435) -> 434
, 0_1(436) -> 435
, 0_1(449) -> 156
, 0_1(450) -> 449
, 0_2(29) -> 431
, 0_2(35) -> 154
, 0_2(44) -> 154
, 0_2(45) -> 154
, 0_2(61) -> 431
, 0_2(69) -> 431
, 0_2(84) -> 154
, 0_2(117) -> 154
, 0_2(127) -> 154
, 0_2(148) -> 147
, 0_2(152) -> 151
, 0_2(159) -> 263
, 0_2(219) -> 218
, 0_2(256) -> 255
, 0_2(263) -> 262
, 0_2(348) -> 154
, 0_2(353) -> 352
, 0_2(354) -> 353
, 0_2(356) -> 448
, 0_2(368) -> 367
, 0_2(369) -> 368
, 0_2(371) -> 370
, 0_2(378) -> 377
, 0_2(382) -> 381
, 0_2(391) -> 390
, 0_2(427) -> 426
, 0_2(445) -> 444
, 0_2(446) -> 445
, 0_2(454) -> 453
, 0_2(456) -> 455
, 0_2(457) -> 456
, 0_2(460) -> 459
, 0_2(564) -> 563
, 0_2(574) -> 573
, 0_2(575) -> 574
, 0_2(600) -> 599
, 3_0(1) -> 1
, 3_1(1) -> 19
, 3_1(9) -> 164
, 3_1(10) -> 58
, 3_1(11) -> 19
, 3_1(12) -> 19
, 3_1(13) -> 19
, 3_1(15) -> 14
, 3_1(18) -> 65
, 3_1(20) -> 1
, 3_1(20) -> 19
, 3_1(20) -> 53
, 3_1(20) -> 58
, 3_1(20) -> 60
, 3_1(20) -> 95
, 3_1(20) -> 96
, 3_1(20) -> 145
, 3_1(21) -> 19
, 3_1(22) -> 21
, 3_1(27) -> 26
, 3_1(28) -> 19
, 3_1(32) -> 31
, 3_1(35) -> 43
, 3_1(42) -> 41
, 3_1(43) -> 138
, 3_1(44) -> 43
, 3_1(45) -> 19
, 3_1(47) -> 46
, 3_1(49) -> 48
, 3_1(51) -> 50
, 3_1(53) -> 89
, 3_1(59) -> 58
, 3_1(73) -> 89
, 3_1(83) -> 19
, 3_1(84) -> 19
, 3_1(92) -> 238
, 3_1(93) -> 43
, 3_1(95) -> 360
, 3_1(96) -> 103
, 3_1(97) -> 19
, 3_1(100) -> 99
, 3_1(106) -> 105
, 3_1(108) -> 2
, 3_1(109) -> 108
, 3_1(112) -> 111
, 3_1(120) -> 119
, 3_1(127) -> 132
, 3_1(132) -> 131
, 3_1(136) -> 135
, 3_1(138) -> 137
, 3_1(158) -> 157
, 3_1(160) -> 159
, 3_1(165) -> 83
, 3_1(167) -> 166
, 3_1(168) -> 167
, 3_1(175) -> 174
, 3_1(199) -> 198
, 3_1(201) -> 28
, 3_1(205) -> 204
, 3_1(207) -> 206
, 3_1(211) -> 45
, 3_1(212) -> 211
, 3_1(225) -> 84
, 3_1(230) -> 229
, 3_1(234) -> 233
, 3_1(265) -> 11
, 3_1(324) -> 323
, 3_1(325) -> 97
, 3_1(331) -> 19
, 3_1(332) -> 331
, 3_1(334) -> 333
, 3_1(341) -> 340
, 3_1(343) -> 436
, 3_1(347) -> 346
, 3_1(357) -> 195
, 3_1(361) -> 90
, 3_1(385) -> 155
, 3_1(451) -> 450
, 3_2(97) -> 398
, 3_2(146) -> 58
, 3_2(154) -> 566
, 3_2(217) -> 216
, 3_2(218) -> 217
, 3_2(224) -> 223
, 3_2(259) -> 258
, 3_2(261) -> 260
, 3_2(331) -> 398
, 3_2(352) -> 351
, 3_2(367) -> 366
, 3_2(372) -> 383
, 3_2(377) -> 364
, 3_2(384) -> 383
, 3_2(390) -> 60
, 3_2(390) -> 95
, 3_2(390) -> 96
, 3_2(390) -> 290
, 3_2(392) -> 391
, 3_2(442) -> 441
, 3_2(447) -> 446
, 3_2(453) -> 60
, 3_2(453) -> 95
, 3_2(453) -> 96
, 3_2(453) -> 290
, 3_2(458) -> 457
, 3_2(563) -> 562
, 3_2(565) -> 564
, 3_2(566) -> 565
, 3_2(569) -> 568
, 3_2(596) -> 595
, 3_2(598) -> 597
, 3_2(602) -> 601
, 4_0(1) -> 1
, 4_1(1) -> 36
, 4_1(3) -> 2
, 4_1(7) -> 115
, 4_1(10) -> 121
, 4_1(19) -> 75
, 4_1(21) -> 20
, 4_1(27) -> 215
, 4_1(28) -> 1
, 4_1(28) -> 10
, 4_1(28) -> 19
, 4_1(28) -> 36
, 4_1(28) -> 89
, 4_1(28) -> 103
, 4_1(28) -> 122
, 4_1(28) -> 171
, 4_1(28) -> 174
, 4_1(28) -> 360
, 4_1(30) -> 29
, 4_1(34) -> 33
, 4_1(36) -> 171
, 4_1(42) -> 205
, 4_1(43) -> 49
, 4_1(44) -> 175
, 4_1(50) -> 49
, 4_1(53) -> 52
, 4_1(54) -> 28
, 4_1(56) -> 55
, 4_1(64) -> 63
, 4_1(68) -> 21
, 4_1(73) -> 69
, 4_1(83) -> 36
, 4_1(91) -> 226
, 4_1(93) -> 182
, 4_1(94) -> 363
, 4_1(97) -> 36
, 4_1(102) -> 215
, 4_1(114) -> 113
, 4_1(116) -> 83
, 4_1(118) -> 117
, 4_1(122) -> 121
, 4_1(126) -> 125
, 4_1(127) -> 126
, 4_1(129) -> 128
, 4_1(142) -> 141
, 4_1(143) -> 142
, 4_1(145) -> 144
, 4_1(163) -> 162
, 4_1(164) -> 163
, 4_1(170) -> 169
, 4_1(171) -> 170
, 4_1(174) -> 173
, 4_1(203) -> 202
, 4_1(204) -> 203
, 4_1(214) -> 213
, 4_1(232) -> 37
, 4_1(273) -> 268
, 4_1(286) -> 279
, 4_1(328) -> 327
, 4_1(329) -> 328
, 4_1(330) -> 329
, 4_1(342) -> 341
, 4_1(343) -> 1
, 4_1(344) -> 45
, 4_1(345) -> 344
, 4_1(359) -> 358
, 4_1(374) -> 373
, 4_1(386) -> 385
, 4_1(387) -> 386
, 4_1(389) -> 388
, 4_1(415) -> 409
, 4_1(433) -> 201
, 4_1(434) -> 433
, 4_1(435) -> 126
, 4_2(116) -> 356
, 4_2(150) -> 149
, 4_2(151) -> 150
, 4_2(153) -> 152
, 4_2(220) -> 219
, 4_2(222) -> 221
, 4_2(257) -> 256
, 4_2(349) -> 348
, 4_2(350) -> 349
, 4_2(364) -> 103
, 4_2(364) -> 360
, 4_2(365) -> 364
, 4_2(370) -> 369
, 4_2(379) -> 378
, 4_2(393) -> 392
, 4_2(394) -> 393
, 4_2(396) -> 395
, 4_2(424) -> 423
, 4_2(425) -> 424
, 4_2(429) -> 428
, 4_2(431) -> 430
, 4_2(441) -> 59
, 4_2(441) -> 122
, 4_2(441) -> 209
, 4_2(443) -> 442
, 4_2(444) -> 443
, 4_2(571) -> 570
, 5_0(1) -> 1
, 5_1(1) -> 53
, 5_1(4) -> 3
, 5_1(9) -> 8
, 5_1(13) -> 12
, 5_1(16) -> 15
, 5_1(18) -> 107
, 5_1(20) -> 73
, 5_1(25) -> 24
, 5_1(27) -> 389
, 5_1(35) -> 145
, 5_1(36) -> 73
, 5_1(43) -> 42
, 5_1(44) -> 145
, 5_1(48) -> 47
, 5_1(60) -> 286
, 5_1(75) -> 73
, 5_1(83) -> 1
, 5_1(83) -> 10
, 5_1(83) -> 53
, 5_1(83) -> 59
, 5_1(83) -> 60
, 5_1(83) -> 95
, 5_1(83) -> 96
, 5_1(83) -> 122
, 5_1(83) -> 290
, 5_1(83) -> 330
, 5_1(90) -> 54
, 5_1(91) -> 90
, 5_1(93) -> 145
, 5_1(96) -> 200
, 5_1(97) -> 83
, 5_1(100) -> 158
, 5_1(113) -> 108
, 5_1(139) -> 20
, 5_1(179) -> 28
, 5_1(197) -> 196
, 5_1(198) -> 197
, 5_1(206) -> 116
, 5_1(229) -> 228
, 5_1(238) -> 234
, 5_1(290) -> 286
, 5_1(331) -> 11
, 5_1(333) -> 332
, 5_1(339) -> 155
, 5_1(343) -> 342
, 5_1(346) -> 345
, 5_1(375) -> 374
, 5_2(147) -> 146
, 5_2(154) -> 153
, 5_2(260) -> 259
, 5_2(331) -> 602
, 5_2(351) -> 350
, 5_2(355) -> 354
, 5_2(366) -> 365
, 5_2(380) -> 379
, 5_2(397) -> 396
, 5_2(567) -> 59
, 5_2(567) -> 122
, 5_2(595) -> 594
, 5_2(597) -> 596}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(4(3(4(2(5(5(x1))))))) -> 0(4(5(2(2(1(1(5(0(1(x1))))))))))
, 5(3(4(0(2(1(5(x1))))))) -> 2(1(5(2(3(5(0(0(2(3(x1))))))))))
, 5(0(2(0(0(2(1(x1))))))) -> 3(4(3(0(0(5(1(3(1(3(x1))))))))))
, 4(4(5(3(5(5(5(x1))))))) -> 4(0(4(2(3(2(4(2(0(4(x1))))))))))
, 4(4(1(2(2(2(5(x1))))))) -> 2(0(1(0(2(0(3(5(3(0(x1))))))))))
, 4(1(2(5(2(5(5(x1))))))) -> 1(1(3(5(3(4(3(0(4(5(x1))))))))))
, 3(5(3(3(2(2(1(x1))))))) -> 4(4(2(4(1(0(3(1(2(1(x1))))))))))
, 3(3(2(0(0(5(5(x1))))))) -> 4(4(0(2(0(4(2(3(2(3(x1))))))))))
, 2(2(5(5(5(5(3(x1))))))) -> 2(4(3(4(4(0(4(5(4(3(x1))))))))))
, 2(2(4(5(4(5(4(x1))))))) -> 5(1(1(0(1(1(1(3(5(4(x1))))))))))
, 1(5(5(1(5(2(2(x1))))))) -> 4(4(5(5(1(1(0(0(2(2(x1))))))))))
, 1(2(5(5(2(1(2(x1))))))) -> 5(5(0(1(3(0(0(1(3(2(x1))))))))))
, 1(1(5(3(1(2(5(x1))))))) -> 5(1(1(1(1(3(0(5(2(3(x1))))))))))
, 0(3(3(1(3(3(4(x1))))))) -> 0(3(3(0(2(3(1(4(5(4(x1))))))))))
, 0(2(1(3(5(1(5(x1))))))) -> 0(3(5(4(2(4(1(5(0(1(x1))))))))))
, 5(3(4(2(0(2(x1)))))) -> 5(4(1(4(1(3(0(4(1(2(x1))))))))))
, 3(4(0(0(3(4(x1)))))) -> 4(4(0(0(0(2(4(4(0(3(x1))))))))))
, 3(3(2(5(2(5(x1)))))) -> 0(4(2(4(0(0(3(3(0(3(x1))))))))))
, 3(2(2(5(4(1(x1)))))) -> 4(2(2(1(3(0(3(3(3(0(x1))))))))))
, 3(1(2(1(4(1(x1)))))) -> 3(5(0(2(4(4(0(4(5(0(x1))))))))))
, 2(5(5(2(5(3(x1)))))) -> 3(0(2(1(3(5(0(0(1(3(x1))))))))))
, 2(2(5(5(2(5(x1)))))) -> 5(2(3(1(1(4(4(3(0(1(x1))))))))))
, 2(2(5(2(5(5(x1)))))) -> 5(3(0(3(3(1(4(4(4(4(x1))))))))))
, 2(2(5(1(5(2(x1)))))) -> 5(3(0(0(0(4(3(4(0(2(x1))))))))))
, 2(1(4(2(0(0(x1)))))) -> 2(4(4(5(2(1(0(4(0(0(x1))))))))))
, 2(1(4(1(5(2(x1)))))) -> 3(0(0(2(5(5(3(0(5(2(x1))))))))))
, 1(5(2(5(1(2(x1)))))) -> 4(3(1(4(4(3(4(5(3(0(x1))))))))))
, 1(5(2(2(5(2(x1)))))) -> 5(4(5(3(0(1(1(2(1(2(x1))))))))))
, 1(3(1(3(4(2(x1)))))) -> 1(3(3(0(4(1(4(1(3(2(x1))))))))))
, 1(2(2(4(0(2(x1)))))) -> 5(1(3(2(4(1(1(0(0(2(x1))))))))))
, 0(2(5(5(1(5(x1)))))) -> 0(4(1(1(5(3(0(1(3(5(x1))))))))))
, 5(0(2(5(2(x1))))) -> 2(0(4(1(3(5(3(1(0(0(x1))))))))))
, 2(5(3(1(5(x1))))) -> 2(2(3(0(0(0(4(2(0(1(x1))))))))))
, 2(5(2(4(3(x1))))) -> 2(4(4(0(2(4(5(2(1(3(x1))))))))))
, 2(5(1(2(5(x1))))) -> 5(3(0(0(0(1(3(2(5(0(x1))))))))))
, 2(2(5(5(5(x1))))) -> 5(5(3(0(1(4(4(4(1(1(x1))))))))))
, 2(2(2(2(5(x1))))) -> 2(5(3(5(3(1(0(1(3(5(x1))))))))))
, 2(1(5(5(4(x1))))) -> 3(0(5(2(3(4(5(1(0(4(x1))))))))))
, 1(0(2(5(4(x1))))) -> 1(4(4(5(3(0(0(5(2(4(x1))))))))))
, 5(5(1(2(x1)))) -> 3(0(0(3(1(4(2(3(2(2(x1))))))))))
, 3(2(5(2(x1)))) -> 4(4(5(3(0(0(4(0(2(2(x1))))))))))
, 3(2(2(2(x1)))) -> 4(3(0(4(5(1(0(2(3(2(x1))))))))))
, 2(2(2(5(x1)))) -> 3(0(3(4(4(2(4(5(1(3(x1))))))))))
, 1(3(4(0(x1)))) -> 2(4(4(1(0(2(4(1(4(0(x1))))))))))
, 1(2(5(4(x1)))) -> 4(3(4(4(0(0(3(1(0(4(x1))))))))))
, 2(2(2(x1))) -> 3(0(2(0(0(3(1(0(1(1(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(4(3(4(2(5(5(x1))))))) -> 0(4(5(2(2(1(1(5(0(1(x1))))))))))
, 5(3(4(0(2(1(5(x1))))))) -> 2(1(5(2(3(5(0(0(2(3(x1))))))))))
, 5(0(2(0(0(2(1(x1))))))) -> 3(4(3(0(0(5(1(3(1(3(x1))))))))))
, 4(4(5(3(5(5(5(x1))))))) -> 4(0(4(2(3(2(4(2(0(4(x1))))))))))
, 4(4(1(2(2(2(5(x1))))))) -> 2(0(1(0(2(0(3(5(3(0(x1))))))))))
, 4(1(2(5(2(5(5(x1))))))) -> 1(1(3(5(3(4(3(0(4(5(x1))))))))))
, 3(5(3(3(2(2(1(x1))))))) -> 4(4(2(4(1(0(3(1(2(1(x1))))))))))
, 3(3(2(0(0(5(5(x1))))))) -> 4(4(0(2(0(4(2(3(2(3(x1))))))))))
, 2(2(5(5(5(5(3(x1))))))) -> 2(4(3(4(4(0(4(5(4(3(x1))))))))))
, 2(2(4(5(4(5(4(x1))))))) -> 5(1(1(0(1(1(1(3(5(4(x1))))))))))
, 1(5(5(1(5(2(2(x1))))))) -> 4(4(5(5(1(1(0(0(2(2(x1))))))))))
, 1(2(5(5(2(1(2(x1))))))) -> 5(5(0(1(3(0(0(1(3(2(x1))))))))))
, 1(1(5(3(1(2(5(x1))))))) -> 5(1(1(1(1(3(0(5(2(3(x1))))))))))
, 0(3(3(1(3(3(4(x1))))))) -> 0(3(3(0(2(3(1(4(5(4(x1))))))))))
, 0(2(1(3(5(1(5(x1))))))) -> 0(3(5(4(2(4(1(5(0(1(x1))))))))))
, 5(3(4(2(0(2(x1)))))) -> 5(4(1(4(1(3(0(4(1(2(x1))))))))))
, 3(4(0(0(3(4(x1)))))) -> 4(4(0(0(0(2(4(4(0(3(x1))))))))))
, 3(3(2(5(2(5(x1)))))) -> 0(4(2(4(0(0(3(3(0(3(x1))))))))))
, 3(2(2(5(4(1(x1)))))) -> 4(2(2(1(3(0(3(3(3(0(x1))))))))))
, 3(1(2(1(4(1(x1)))))) -> 3(5(0(2(4(4(0(4(5(0(x1))))))))))
, 2(5(5(2(5(3(x1)))))) -> 3(0(2(1(3(5(0(0(1(3(x1))))))))))
, 2(2(5(5(2(5(x1)))))) -> 5(2(3(1(1(4(4(3(0(1(x1))))))))))
, 2(2(5(2(5(5(x1)))))) -> 5(3(0(3(3(1(4(4(4(4(x1))))))))))
, 2(2(5(1(5(2(x1)))))) -> 5(3(0(0(0(4(3(4(0(2(x1))))))))))
, 2(1(4(2(0(0(x1)))))) -> 2(4(4(5(2(1(0(4(0(0(x1))))))))))
, 2(1(4(1(5(2(x1)))))) -> 3(0(0(2(5(5(3(0(5(2(x1))))))))))
, 1(5(2(5(1(2(x1)))))) -> 4(3(1(4(4(3(4(5(3(0(x1))))))))))
, 1(5(2(2(5(2(x1)))))) -> 5(4(5(3(0(1(1(2(1(2(x1))))))))))
, 1(3(1(3(4(2(x1)))))) -> 1(3(3(0(4(1(4(1(3(2(x1))))))))))
, 1(2(2(4(0(2(x1)))))) -> 5(1(3(2(4(1(1(0(0(2(x1))))))))))
, 0(2(5(5(1(5(x1)))))) -> 0(4(1(1(5(3(0(1(3(5(x1))))))))))
, 5(0(2(5(2(x1))))) -> 2(0(4(1(3(5(3(1(0(0(x1))))))))))
, 2(5(3(1(5(x1))))) -> 2(2(3(0(0(0(4(2(0(1(x1))))))))))
, 2(5(2(4(3(x1))))) -> 2(4(4(0(2(4(5(2(1(3(x1))))))))))
, 2(5(1(2(5(x1))))) -> 5(3(0(0(0(1(3(2(5(0(x1))))))))))
, 2(2(5(5(5(x1))))) -> 5(5(3(0(1(4(4(4(1(1(x1))))))))))
, 2(2(2(2(5(x1))))) -> 2(5(3(5(3(1(0(1(3(5(x1))))))))))
, 2(1(5(5(4(x1))))) -> 3(0(5(2(3(4(5(1(0(4(x1))))))))))
, 1(0(2(5(4(x1))))) -> 1(4(4(5(3(0(0(5(2(4(x1))))))))))
, 5(5(1(2(x1)))) -> 3(0(0(3(1(4(2(3(2(2(x1))))))))))
, 3(2(5(2(x1)))) -> 4(4(5(3(0(0(4(0(2(2(x1))))))))))
, 3(2(2(2(x1)))) -> 4(3(0(4(5(1(0(2(3(2(x1))))))))))
, 2(2(2(5(x1)))) -> 3(0(3(4(4(2(4(5(1(3(x1))))))))))
, 1(3(4(0(x1)))) -> 2(4(4(1(0(2(4(1(4(0(x1))))))))))
, 1(2(5(4(x1)))) -> 4(3(4(4(0(0(3(1(0(4(x1))))))))))
, 2(2(2(x1))) -> 3(0(2(0(0(3(1(0(1(1(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(4(3(4(2(5(5(x1))))))) -> 0(4(5(2(2(1(1(5(0(1(x1))))))))))
, 5(3(4(0(2(1(5(x1))))))) -> 2(1(5(2(3(5(0(0(2(3(x1))))))))))
, 5(0(2(0(0(2(1(x1))))))) -> 3(4(3(0(0(5(1(3(1(3(x1))))))))))
, 4(4(5(3(5(5(5(x1))))))) -> 4(0(4(2(3(2(4(2(0(4(x1))))))))))
, 4(4(1(2(2(2(5(x1))))))) -> 2(0(1(0(2(0(3(5(3(0(x1))))))))))
, 4(1(2(5(2(5(5(x1))))))) -> 1(1(3(5(3(4(3(0(4(5(x1))))))))))
, 3(5(3(3(2(2(1(x1))))))) -> 4(4(2(4(1(0(3(1(2(1(x1))))))))))
, 3(3(2(0(0(5(5(x1))))))) -> 4(4(0(2(0(4(2(3(2(3(x1))))))))))
, 2(2(5(5(5(5(3(x1))))))) -> 2(4(3(4(4(0(4(5(4(3(x1))))))))))
, 2(2(4(5(4(5(4(x1))))))) -> 5(1(1(0(1(1(1(3(5(4(x1))))))))))
, 1(5(5(1(5(2(2(x1))))))) -> 4(4(5(5(1(1(0(0(2(2(x1))))))))))
, 1(2(5(5(2(1(2(x1))))))) -> 5(5(0(1(3(0(0(1(3(2(x1))))))))))
, 1(1(5(3(1(2(5(x1))))))) -> 5(1(1(1(1(3(0(5(2(3(x1))))))))))
, 0(3(3(1(3(3(4(x1))))))) -> 0(3(3(0(2(3(1(4(5(4(x1))))))))))
, 0(2(1(3(5(1(5(x1))))))) -> 0(3(5(4(2(4(1(5(0(1(x1))))))))))
, 5(3(4(2(0(2(x1)))))) -> 5(4(1(4(1(3(0(4(1(2(x1))))))))))
, 3(4(0(0(3(4(x1)))))) -> 4(4(0(0(0(2(4(4(0(3(x1))))))))))
, 3(3(2(5(2(5(x1)))))) -> 0(4(2(4(0(0(3(3(0(3(x1))))))))))
, 3(2(2(5(4(1(x1)))))) -> 4(2(2(1(3(0(3(3(3(0(x1))))))))))
, 3(1(2(1(4(1(x1)))))) -> 3(5(0(2(4(4(0(4(5(0(x1))))))))))
, 2(5(5(2(5(3(x1)))))) -> 3(0(2(1(3(5(0(0(1(3(x1))))))))))
, 2(2(5(5(2(5(x1)))))) -> 5(2(3(1(1(4(4(3(0(1(x1))))))))))
, 2(2(5(2(5(5(x1)))))) -> 5(3(0(3(3(1(4(4(4(4(x1))))))))))
, 2(2(5(1(5(2(x1)))))) -> 5(3(0(0(0(4(3(4(0(2(x1))))))))))
, 2(1(4(2(0(0(x1)))))) -> 2(4(4(5(2(1(0(4(0(0(x1))))))))))
, 2(1(4(1(5(2(x1)))))) -> 3(0(0(2(5(5(3(0(5(2(x1))))))))))
, 1(5(2(5(1(2(x1)))))) -> 4(3(1(4(4(3(4(5(3(0(x1))))))))))
, 1(5(2(2(5(2(x1)))))) -> 5(4(5(3(0(1(1(2(1(2(x1))))))))))
, 1(3(1(3(4(2(x1)))))) -> 1(3(3(0(4(1(4(1(3(2(x1))))))))))
, 1(2(2(4(0(2(x1)))))) -> 5(1(3(2(4(1(1(0(0(2(x1))))))))))
, 0(2(5(5(1(5(x1)))))) -> 0(4(1(1(5(3(0(1(3(5(x1))))))))))
, 5(0(2(5(2(x1))))) -> 2(0(4(1(3(5(3(1(0(0(x1))))))))))
, 2(5(3(1(5(x1))))) -> 2(2(3(0(0(0(4(2(0(1(x1))))))))))
, 2(5(2(4(3(x1))))) -> 2(4(4(0(2(4(5(2(1(3(x1))))))))))
, 2(5(1(2(5(x1))))) -> 5(3(0(0(0(1(3(2(5(0(x1))))))))))
, 2(2(5(5(5(x1))))) -> 5(5(3(0(1(4(4(4(1(1(x1))))))))))
, 2(2(2(2(5(x1))))) -> 2(5(3(5(3(1(0(1(3(5(x1))))))))))
, 2(1(5(5(4(x1))))) -> 3(0(5(2(3(4(5(1(0(4(x1))))))))))
, 1(0(2(5(4(x1))))) -> 1(4(4(5(3(0(0(5(2(4(x1))))))))))
, 5(5(1(2(x1)))) -> 3(0(0(3(1(4(2(3(2(2(x1))))))))))
, 3(2(5(2(x1)))) -> 4(4(5(3(0(0(4(0(2(2(x1))))))))))
, 3(2(2(2(x1)))) -> 4(3(0(4(5(1(0(2(3(2(x1))))))))))
, 2(2(2(5(x1)))) -> 3(0(3(4(4(2(4(5(1(3(x1))))))))))
, 1(3(4(0(x1)))) -> 2(4(4(1(0(2(4(1(4(0(x1))))))))))
, 1(2(5(4(x1)))) -> 4(3(4(4(0(0(3(1(0(4(x1))))))))))
, 2(2(2(x1))) -> 3(0(2(0(0(3(1(0(1(1(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..