Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 5(5(0(3(4(3(3(x1))))))) -> 1(5(5(0(5(0(1(5(5(3(x1))))))))))
, 5(3(3(5(0(4(3(x1))))))) -> 1(2(0(1(3(5(3(4(1(4(x1))))))))))
, 5(3(3(3(0(3(0(x1))))))) -> 3(5(3(0(1(3(0(4(1(0(x1))))))))))
, 5(3(2(4(3(1(5(x1))))))) -> 3(2(3(3(1(5(1(2(1(5(x1))))))))))
, 5(0(4(5(4(3(0(x1))))))) -> 5(1(0(1(1(3(4(0(2(5(x1))))))))))
, 4(2(3(3(5(1(3(x1))))))) -> 0(2(5(5(2(4(1(0(2(3(x1))))))))))
, 4(2(3(0(3(3(2(x1))))))) -> 5(5(0(4(1(1(0(4(5(2(x1))))))))))
, 3(3(5(5(4(2(2(x1))))))) -> 3(4(4(4(1(3(4(1(0(2(x1))))))))))
, 3(3(5(2(4(3(2(x1))))))) -> 3(0(4(1(1(5(0(3(1(1(x1))))))))))
, 3(3(0(4(3(0(5(x1))))))) -> 4(1(2(0(2(1(1(4(3(4(x1))))))))))
, 2(4(3(2(3(3(2(x1))))))) -> 2(5(4(0(2(5(4(4(1(1(x1))))))))))
, 2(2(3(5(5(0(0(x1))))))) -> 1(5(3(2(2(3(5(4(3(1(x1))))))))))
, 2(2(3(3(3(3(5(x1))))))) -> 2(2(3(5(4(5(5(1(2(5(x1))))))))))
, 0(5(3(2(2(4(5(x1))))))) -> 0(0(0(1(3(1(1(0(5(3(x1))))))))))
, 0(5(1(0(3(3(2(x1))))))) -> 2(0(4(5(1(1(4(5(5(1(x1))))))))))
, 0(4(3(0(3(3(2(x1))))))) -> 3(1(4(5(3(4(1(1(0(2(x1))))))))))
, 0(3(4(5(3(4(4(x1))))))) -> 2(3(5(0(1(0(1(4(5(0(x1))))))))))
, 0(3(4(0(3(0(3(x1))))))) -> 0(4(1(1(5(1(0(3(5(3(x1))))))))))
, 0(3(0(3(2(3(0(x1))))))) -> 2(3(0(0(4(1(3(1(1(2(x1))))))))))
, 0(2(1(4(3(3(5(x1))))))) -> 0(5(5(1(0(5(3(1(1(4(x1))))))))))
, 0(2(0(3(3(5(5(x1))))))) -> 3(2(2(5(4(4(3(3(1(4(x1))))))))))
, 5(5(0(2(0(3(x1)))))) -> 4(1(5(4(4(5(0(2(5(3(x1))))))))))
, 5(3(3(0(3(2(x1)))))) -> 2(5(4(1(5(3(4(2(5(1(x1))))))))))
, 4(5(3(5(2(0(x1)))))) -> 5(0(2(5(5(5(4(5(0(1(x1))))))))))
, 4(5(0(0(3(2(x1)))))) -> 4(4(2(1(1(5(2(5(0(2(x1))))))))))
, 4(3(4(0(3(3(x1)))))) -> 1(5(2(4(2(4(2(4(0(3(x1))))))))))
, 4(0(3(0(2(2(x1)))))) -> 4(1(1(5(2(0(5(4(1(1(x1))))))))))
, 4(0(2(3(5(5(x1)))))) -> 5(1(2(1(1(1(1(0(2(4(x1))))))))))
, 3(4(0(3(0(2(x1)))))) -> 3(2(0(1(1(3(4(1(1(2(x1))))))))))
, 3(3(0(5(3(2(x1)))))) -> 3(5(5(4(1(0(5(1(0(4(x1))))))))))
, 2(2(3(3(4(3(x1)))))) -> 5(2(5(4(5(5(1(3(1(4(x1))))))))))
, 2(0(3(5(3(0(x1)))))) -> 2(4(5(2(0(1(2(2(3(1(x1))))))))))
, 0(5(4(5(4(0(x1)))))) -> 0(2(1(2(5(4(5(1(5(5(x1))))))))))
, 0(5(0(0(3(5(x1)))))) -> 1(3(0(3(1(3(5(1(3(5(x1))))))))))
, 0(4(3(0(3(3(x1)))))) -> 0(0(1(3(5(4(1(5(5(5(x1))))))))))
, 0(3(0(3(3(5(x1)))))) -> 0(3(2(4(2(3(5(1(5(0(x1))))))))))
, 0(2(2(2(3(0(x1)))))) -> 0(2(5(4(5(1(5(4(4(2(x1))))))))))
, 0(0(3(2(0(3(x1)))))) -> 1(2(5(4(5(4(2(5(1(3(x1))))))))))
, 5(3(3(2(2(x1))))) -> 2(5(1(4(0(3(1(0(1(5(x1))))))))))
, 5(2(4(3(0(x1))))) -> 2(4(2(5(4(0(1(1(0(1(x1))))))))))
, 4(5(3(5(3(x1))))) -> 4(3(1(5(1(2(4(2(1(3(x1))))))))))
, 3(3(5(5(5(x1))))) -> 4(1(2(0(5(1(2(3(1(3(x1))))))))))
, 3(3(3(3(0(x1))))) -> 1(3(0(0(0(4(0(4(1(0(x1))))))))))
, 2(0(3(5(5(x1))))) -> 1(5(4(2(1(0(2(2(4(5(x1))))))))))
, 0(5(4(3(2(x1))))) -> 3(1(5(5(0(1(5(2(0(2(x1))))))))))
, 0(2(4(3(2(x1))))) -> 0(2(2(3(1(2(0(0(4(1(x1))))))))))
, 5(4(3(0(x1)))) -> 1(2(5(2(4(1(4(4(2(4(x1))))))))))
, 3(3(0(5(x1)))) -> 1(3(2(5(0(1(1(5(0(5(x1))))))))))
, 3(3(0(2(x1)))) -> 3(3(4(1(0(4(3(1(1(5(x1))))))))))
, 3(0(0(0(x1)))) -> 3(3(1(0(1(5(4(5(2(4(x1))))))))))
, 2(4(0(3(x1)))) -> 2(5(2(5(2(5(1(1(2(0(x1))))))))))
, 0(4(3(0(x1)))) -> 3(1(2(5(5(2(1(5(1(0(x1))))))))))
, 3(3(3(x1))) -> 1(1(3(3(1(1(1(0(1(5(x1))))))))))
, 3(3(0(x1))) -> 1(4(1(4(5(4(3(4(1(5(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ 0_0(1) -> 1
, 0_1(1) -> 27
, 0_1(5) -> 4
, 0_1(7) -> 6
, 0_1(9) -> 107
, 0_1(10) -> 175
, 0_1(12) -> 11
, 0_1(18) -> 195
, 0_1(19) -> 66
, 0_1(20) -> 27
, 0_1(22) -> 21
, 0_1(25) -> 24
, 0_1(33) -> 50
, 0_1(34) -> 246
, 0_1(35) -> 316
, 0_1(36) -> 27
, 0_1(38) -> 37
, 0_1(43) -> 42
, 0_1(44) -> 1
, 0_1(44) -> 18
, 0_1(44) -> 27
, 0_1(44) -> 66
, 0_1(44) -> 107
, 0_1(44) -> 175
, 0_1(44) -> 184
, 0_1(44) -> 195
, 0_1(44) -> 235
, 0_1(44) -> 316
, 0_1(44) -> 360
, 0_1(51) -> 50
, 0_1(53) -> 52
, 0_1(57) -> 56
, 0_1(59) -> 66
, 0_1(61) -> 27
, 0_1(67) -> 19
, 0_1(72) -> 71
, 0_1(74) -> 163
, 0_1(75) -> 27
, 0_1(78) -> 77
, 0_1(83) -> 66
, 0_1(86) -> 85
, 0_1(102) -> 44
, 0_1(103) -> 102
, 0_1(108) -> 83
, 0_1(122) -> 121
, 0_1(124) -> 123
, 0_1(132) -> 131
, 0_1(133) -> 120
, 0_1(134) -> 133
, 0_1(142) -> 141
, 0_1(157) -> 36
, 0_1(164) -> 27
, 0_1(179) -> 178
, 0_1(185) -> 184
, 0_1(186) -> 28
, 0_1(193) -> 192
, 0_1(204) -> 203
, 0_1(211) -> 6
, 0_1(214) -> 213
, 0_1(219) -> 131
, 0_1(225) -> 27
, 0_1(244) -> 243
, 0_1(259) -> 258
, 0_1(279) -> 214
, 0_1(280) -> 279
, 0_1(284) -> 283
, 0_1(289) -> 288
, 0_1(296) -> 295
, 0_1(297) -> 296
, 0_1(313) -> 312
, 0_1(320) -> 319
, 0_1(324) -> 323
, 0_2(1) -> 360
, 0_2(19) -> 360
, 0_2(22) -> 374
, 0_2(36) -> 360
, 0_2(52) -> 360
, 0_2(67) -> 374
, 0_2(120) -> 360
, 0_2(133) -> 374
, 0_2(202) -> 360
, 0_2(225) -> 360
, 0_2(251) -> 250
, 0_2(254) -> 253
, 0_2(298) -> 184
, 0_2(304) -> 303
, 0_2(305) -> 304
, 0_2(317) -> 360
, 0_2(328) -> 360
, 0_2(331) -> 330
, 0_2(340) -> 339
, 0_2(386) -> 385
, 0_2(410) -> 409
, 0_2(416) -> 415
, 0_2(427) -> 426
, 0_2(433) -> 432
, 0_2(437) -> 445
, 0_2(443) -> 442
, 0_2(451) -> 450
, 3_0(1) -> 1
, 3_1(1) -> 10
, 3_1(9) -> 132
, 3_1(14) -> 13
, 3_1(16) -> 15
, 3_1(17) -> 149
, 3_1(18) -> 82
, 3_1(19) -> 1
, 3_1(19) -> 9
, 3_1(19) -> 10
, 3_1(19) -> 27
, 3_1(19) -> 35
, 3_1(19) -> 66
, 3_1(19) -> 82
, 3_1(19) -> 195
, 3_1(19) -> 316
, 3_1(19) -> 360
, 3_1(21) -> 20
, 3_1(24) -> 23
, 3_1(29) -> 28
, 3_1(30) -> 29
, 3_1(35) -> 219
, 3_1(36) -> 10
, 3_1(41) -> 40
, 3_1(52) -> 10
, 3_1(64) -> 63
, 3_1(73) -> 72
, 3_1(74) -> 95
, 3_1(89) -> 188
, 3_1(90) -> 3
, 3_1(93) -> 92
, 3_1(97) -> 96
, 3_1(105) -> 104
, 3_1(114) -> 216
, 3_1(118) -> 117
, 3_1(120) -> 83
, 3_1(137) -> 136
, 3_1(144) -> 143
, 3_1(149) -> 148
, 3_1(155) -> 154
, 3_1(189) -> 188
, 3_1(202) -> 10
, 3_1(213) -> 2
, 3_1(215) -> 214
, 3_1(217) -> 216
, 3_1(221) -> 220
, 3_1(225) -> 44
, 3_1(229) -> 228
, 3_1(241) -> 278
, 3_1(245) -> 244
, 3_1(261) -> 75
, 3_1(293) -> 292
, 3_1(317) -> 19
, 3_1(322) -> 321
, 3_1(337) -> 2
, 3_1(376) -> 375
, 3_1(377) -> 376
, 3_1(393) -> 392
, 3_2(21) -> 275
, 3_2(252) -> 251
, 3_2(268) -> 267
, 3_2(301) -> 300
, 3_2(328) -> 10
, 3_2(328) -> 82
, 3_2(329) -> 328
, 3_2(337) -> 2
, 3_2(338) -> 337
, 3_2(366) -> 195
, 3_2(381) -> 380
, 3_2(382) -> 381
, 3_2(399) -> 398
, 3_2(437) -> 436
, 5_0(1) -> 1
, 5_1(1) -> 35
, 5_1(3) -> 2
, 5_1(4) -> 3
, 5_1(6) -> 5
, 5_1(9) -> 8
, 5_1(10) -> 9
, 5_1(15) -> 14
, 5_1(19) -> 58
, 5_1(20) -> 19
, 5_1(26) -> 365
, 5_1(27) -> 126
, 5_1(32) -> 31
, 5_1(35) -> 212
, 5_1(36) -> 1
, 5_1(36) -> 18
, 5_1(36) -> 35
, 5_1(36) -> 59
, 5_1(36) -> 126
, 5_1(36) -> 174
, 5_1(36) -> 235
, 5_1(36) -> 286
, 5_1(42) -> 152
, 5_1(44) -> 35
, 5_1(45) -> 35
, 5_1(46) -> 45
, 5_1(47) -> 46
, 5_1(50) -> 152
, 5_1(52) -> 36
, 5_1(58) -> 212
, 5_1(59) -> 58
, 5_1(66) -> 169
, 5_1(67) -> 35
, 5_1(71) -> 70
, 5_1(74) -> 114
, 5_1(83) -> 35
, 5_1(84) -> 83
, 5_1(88) -> 87
, 5_1(89) -> 179
, 5_1(94) -> 93
, 5_1(96) -> 35
, 5_1(98) -> 97
, 5_1(100) -> 99
, 5_1(101) -> 100
, 5_1(110) -> 109
, 5_1(114) -> 113
, 5_1(117) -> 116
, 5_1(121) -> 120
, 5_1(130) -> 129
, 5_1(139) -> 44
, 5_1(140) -> 139
, 5_1(143) -> 142
, 5_1(145) -> 35
, 5_1(146) -> 145
, 5_1(150) -> 76
, 5_1(154) -> 153
, 5_1(155) -> 237
, 5_1(159) -> 158
, 5_1(160) -> 159
, 5_1(161) -> 160
, 5_1(163) -> 162
, 5_1(168) -> 167
, 5_1(177) -> 176
, 5_1(185) -> 327
, 5_1(190) -> 20
, 5_1(194) -> 193
, 5_1(197) -> 196
, 5_1(199) -> 198
, 5_1(200) -> 199
, 5_1(202) -> 201
, 5_1(209) -> 208
, 5_1(211) -> 210
, 5_1(212) -> 224
, 5_1(218) -> 217
, 5_1(222) -> 221
, 5_1(230) -> 229
, 5_1(232) -> 231
, 5_1(234) -> 233
, 5_1(236) -> 11
, 5_1(238) -> 237
, 5_1(241) -> 240
, 5_1(257) -> 256
, 5_1(263) -> 262
, 5_1(276) -> 78
, 5_1(287) -> 115
, 5_1(288) -> 287
, 5_1(291) -> 290
, 5_1(312) -> 311
, 5_1(316) -> 315
, 5_1(317) -> 35
, 5_1(326) -> 325
, 5_1(347) -> 346
, 5_1(349) -> 348
, 5_1(362) -> 361
, 5_1(363) -> 362
, 5_1(391) -> 390
, 5_2(67) -> 401
, 5_2(145) -> 255
, 5_2(190) -> 454
, 5_2(248) -> 247
, 5_2(270) -> 269
, 5_2(317) -> 387
, 5_2(333) -> 332
, 5_2(335) -> 334
, 5_2(342) -> 341
, 5_2(344) -> 343
, 5_2(353) -> 352
, 5_2(355) -> 354
, 5_2(357) -> 356
, 5_2(369) -> 368
, 5_2(370) -> 369
, 5_2(373) -> 372
, 5_2(397) -> 396
, 5_2(407) -> 406
, 5_2(409) -> 408
, 5_2(414) -> 413
, 5_2(417) -> 416
, 5_2(420) -> 41
, 5_2(420) -> 174
, 5_2(431) -> 430
, 5_2(441) -> 440
, 5_2(447) -> 446
, 1_0(1) -> 1
, 1_1(1) -> 74
, 1_1(2) -> 1
, 1_1(2) -> 9
, 1_1(2) -> 10
, 1_1(2) -> 18
, 1_1(2) -> 27
, 1_1(2) -> 35
, 1_1(2) -> 59
, 1_1(2) -> 81
, 1_1(2) -> 212
, 1_1(2) -> 316
, 1_1(2) -> 351
, 1_1(2) -> 359
, 1_1(2) -> 360
, 1_1(8) -> 7
, 1_1(10) -> 241
, 1_1(13) -> 12
, 1_1(17) -> 144
, 1_1(18) -> 17
, 1_1(19) -> 26
, 1_1(20) -> 241
, 1_1(22) -> 74
, 1_1(23) -> 22
, 1_1(27) -> 26
, 1_1(28) -> 74
, 1_1(31) -> 30
, 1_1(33) -> 32
, 1_1(34) -> 322
, 1_1(35) -> 34
, 1_1(37) -> 36
, 1_1(39) -> 38
, 1_1(40) -> 39
, 1_1(43) -> 101
, 1_1(44) -> 74
, 1_1(50) -> 49
, 1_1(55) -> 54
, 1_1(56) -> 55
, 1_1(58) -> 34
, 1_1(59) -> 138
, 1_1(63) -> 62
, 1_1(65) -> 119
, 1_1(66) -> 65
, 1_1(67) -> 74
, 1_1(69) -> 68
, 1_1(70) -> 69
, 1_1(74) -> 73
, 1_1(76) -> 75
, 1_1(80) -> 79
, 1_1(81) -> 80
, 1_1(83) -> 74
, 1_1(96) -> 74
, 1_1(100) -> 30
, 1_1(102) -> 74
, 1_1(104) -> 103
, 1_1(106) -> 105
, 1_1(107) -> 106
, 1_1(108) -> 74
, 1_1(111) -> 110
, 1_1(112) -> 111
, 1_1(115) -> 19
, 1_1(123) -> 122
, 1_1(125) -> 124
, 1_1(126) -> 230
, 1_1(128) -> 127
, 1_1(129) -> 128
, 1_1(131) -> 130
, 1_1(136) -> 135
, 1_1(138) -> 137
, 1_1(141) -> 140
, 1_1(149) -> 200
, 1_1(153) -> 85
, 1_1(163) -> 260
, 1_1(166) -> 165
, 1_1(167) -> 166
, 1_1(176) -> 76
, 1_1(181) -> 180
, 1_1(182) -> 181
, 1_1(183) -> 182
, 1_1(184) -> 183
, 1_1(187) -> 186
, 1_1(188) -> 187
, 1_1(192) -> 191
, 1_1(195) -> 194
, 1_1(205) -> 204
, 1_1(207) -> 45
, 1_1(212) -> 211
, 1_1(216) -> 215
, 1_1(219) -> 218
, 1_1(220) -> 102
, 1_1(224) -> 223
, 1_1(226) -> 74
, 1_1(230) -> 313
, 1_1(233) -> 232
, 1_1(242) -> 84
, 1_1(245) -> 378
, 1_1(246) -> 245
, 1_1(260) -> 259
, 1_1(262) -> 261
, 1_1(264) -> 263
, 1_1(277) -> 276
, 1_1(283) -> 282
, 1_1(290) -> 289
, 1_1(291) -> 350
, 1_1(292) -> 74
, 1_1(294) -> 293
, 1_1(309) -> 308
, 1_1(314) -> 313
, 1_1(315) -> 314
, 1_1(319) -> 318
, 1_1(323) -> 317
, 1_1(325) -> 324
, 1_1(350) -> 349
, 1_1(351) -> 350
, 1_1(365) -> 364
, 1_1(375) -> 2
, 1_1(378) -> 377
, 1_1(389) -> 388
, 1_2(22) -> 437
, 1_2(28) -> 306
, 1_2(67) -> 437
, 1_2(133) -> 437
, 1_2(226) -> 306
, 1_2(249) -> 248
, 1_2(253) -> 252
, 1_2(255) -> 254
, 1_2(269) -> 268
, 1_2(271) -> 270
, 1_2(275) -> 274
, 1_2(292) -> 419
, 1_2(302) -> 301
, 1_2(330) -> 329
, 1_2(332) -> 331
, 1_2(339) -> 338
, 1_2(341) -> 340
, 1_2(358) -> 357
, 1_2(359) -> 358
, 1_2(367) -> 366
, 1_2(372) -> 371
, 1_2(374) -> 373
, 1_2(379) -> 10
, 1_2(379) -> 132
, 1_2(379) -> 219
, 1_2(380) -> 379
, 1_2(383) -> 382
, 1_2(384) -> 383
, 1_2(385) -> 384
, 1_2(387) -> 386
, 1_2(395) -> 394
, 1_2(401) -> 400
, 1_2(405) -> 404
, 1_2(406) -> 405
, 1_2(412) -> 411
, 1_2(413) -> 412
, 1_2(419) -> 418
, 1_2(421) -> 420
, 1_2(423) -> 422
, 1_2(424) -> 423
, 1_2(425) -> 424
, 1_2(426) -> 425
, 1_2(434) -> 433
, 1_2(444) -> 443
, 1_2(445) -> 444
, 1_2(446) -> 351
, 1_2(446) -> 359
, 1_2(450) -> 449
, 4_0(1) -> 1
, 4_1(1) -> 18
, 4_1(17) -> 16
, 4_1(19) -> 18
, 4_1(20) -> 18
, 4_1(24) -> 280
, 4_1(26) -> 25
, 4_1(28) -> 18
, 4_1(34) -> 393
, 4_1(35) -> 286
, 4_1(36) -> 18
, 4_1(42) -> 41
, 4_1(44) -> 18
, 4_1(49) -> 48
, 4_1(52) -> 18
, 4_1(54) -> 53
, 4_1(58) -> 57
, 4_1(59) -> 235
, 4_1(60) -> 19
, 4_1(61) -> 60
, 4_1(62) -> 61
, 4_1(65) -> 64
, 4_1(66) -> 174
, 4_1(67) -> 18
, 4_1(68) -> 67
, 4_1(73) -> 89
, 4_1(74) -> 297
, 4_1(75) -> 1
, 4_1(75) -> 10
, 4_1(75) -> 18
, 4_1(75) -> 35
, 4_1(75) -> 125
, 4_1(75) -> 174
, 4_1(75) -> 212
, 4_1(75) -> 286
, 4_1(82) -> 81
, 4_1(83) -> 18
, 4_1(85) -> 84
, 4_1(89) -> 88
, 4_1(95) -> 94
, 4_1(99) -> 98
, 4_1(102) -> 18
, 4_1(103) -> 18
, 4_1(109) -> 108
, 4_1(113) -> 112
, 4_1(116) -> 115
, 4_1(119) -> 118
, 4_1(126) -> 125
, 4_1(127) -> 44
, 4_1(135) -> 134
, 4_1(137) -> 189
, 4_1(139) -> 18
, 4_1(147) -> 146
, 4_1(148) -> 147
, 4_1(151) -> 150
, 4_1(152) -> 151
, 4_1(156) -> 155
, 4_1(162) -> 161
, 4_1(164) -> 75
, 4_1(171) -> 170
, 4_1(173) -> 172
, 4_1(175) -> 174
, 4_1(185) -> 310
, 4_1(190) -> 18
, 4_1(191) -> 190
, 4_1(198) -> 197
, 4_1(201) -> 83
, 4_1(210) -> 209
, 4_1(223) -> 222
, 4_1(227) -> 226
, 4_1(231) -> 46
, 4_1(235) -> 234
, 4_1(237) -> 236
, 4_1(239) -> 238
, 4_1(243) -> 242
, 4_1(258) -> 257
, 4_1(261) -> 18
, 4_1(266) -> 265
, 4_1(281) -> 3
, 4_1(308) -> 307
, 4_1(310) -> 309
, 4_1(318) -> 317
, 4_1(321) -> 320
, 4_1(327) -> 326
, 4_1(388) -> 2
, 4_1(390) -> 389
, 4_1(392) -> 391
, 4_2(103) -> 336
, 4_2(190) -> 428
, 4_2(250) -> 249
, 4_2(267) -> 125
, 4_2(267) -> 286
, 4_2(273) -> 272
, 4_2(280) -> 345
, 4_2(306) -> 305
, 4_2(334) -> 333
, 4_2(343) -> 342
, 4_2(394) -> 379
, 4_2(396) -> 395
, 4_2(398) -> 397
, 4_2(400) -> 399
, 4_2(403) -> 267
, 4_2(411) -> 174
, 4_2(418) -> 417
, 4_2(430) -> 429
, 4_2(439) -> 438
, 4_2(442) -> 441
, 4_2(448) -> 447
, 4_2(454) -> 453
, 2_0(1) -> 1
, 2_1(1) -> 59
, 2_1(2) -> 33
, 2_1(9) -> 33
, 2_1(10) -> 51
, 2_1(11) -> 2
, 2_1(18) -> 185
, 2_1(19) -> 43
, 2_1(27) -> 351
, 2_1(28) -> 19
, 2_1(34) -> 33
, 2_1(35) -> 43
, 2_1(44) -> 59
, 2_1(45) -> 44
, 2_1(48) -> 47
, 2_1(66) -> 291
, 2_1(67) -> 59
, 2_1(77) -> 76
, 2_1(79) -> 78
, 2_1(83) -> 1
, 2_1(83) -> 9
, 2_1(83) -> 27
, 2_1(83) -> 35
, 2_1(83) -> 58
, 2_1(83) -> 59
, 2_1(83) -> 175
, 2_1(83) -> 185
, 2_1(83) -> 316
, 2_1(83) -> 327
, 2_1(83) -> 351
, 2_1(83) -> 359
, 2_1(83) -> 360
, 2_1(87) -> 86
, 2_1(91) -> 90
, 2_1(92) -> 91
, 2_1(95) -> 206
, 2_1(96) -> 83
, 2_1(114) -> 156
, 2_1(126) -> 168
, 2_1(133) -> 59
, 2_1(145) -> 28
, 2_1(158) -> 157
, 2_1(165) -> 164
, 2_1(169) -> 168
, 2_1(170) -> 3
, 2_1(172) -> 171
, 2_1(174) -> 173
, 2_1(178) -> 177
, 2_1(180) -> 37
, 2_1(185) -> 284
, 2_1(196) -> 36
, 2_1(203) -> 202
, 2_1(206) -> 205
, 2_1(208) -> 207
, 2_1(226) -> 225
, 2_1(228) -> 227
, 2_1(240) -> 239
, 2_1(241) -> 266
, 2_1(256) -> 201
, 2_1(261) -> 33
, 2_1(265) -> 264
, 2_1(278) -> 277
, 2_1(282) -> 281
, 2_1(285) -> 284
, 2_1(286) -> 285
, 2_1(292) -> 45
, 2_1(295) -> 294
, 2_1(307) -> 236
, 2_1(311) -> 213
, 2_1(346) -> 84
, 2_1(348) -> 347
, 2_1(361) -> 115
, 2_1(364) -> 363
, 2_2(226) -> 410
, 2_2(247) -> 9
, 2_2(272) -> 271
, 2_2(274) -> 273
, 2_2(299) -> 298
, 2_2(300) -> 299
, 2_2(303) -> 302
, 2_2(336) -> 335
, 2_2(345) -> 344
, 2_2(352) -> 173
, 2_2(352) -> 185
, 2_2(354) -> 353
, 2_2(356) -> 355
, 2_2(360) -> 359
, 2_2(368) -> 367
, 2_2(371) -> 370
, 2_2(404) -> 403
, 2_2(408) -> 407
, 2_2(415) -> 414
, 2_2(422) -> 421
, 2_2(428) -> 427
, 2_2(429) -> 351
, 2_2(429) -> 359
, 2_2(432) -> 431
, 2_2(435) -> 434
, 2_2(436) -> 435
, 2_2(438) -> 327
, 2_2(440) -> 439
, 2_2(449) -> 448
, 2_2(452) -> 451
, 2_2(453) -> 452}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(0(3(4(3(3(x1))))))) -> 1(5(5(0(5(0(1(5(5(3(x1))))))))))
, 5(3(3(5(0(4(3(x1))))))) -> 1(2(0(1(3(5(3(4(1(4(x1))))))))))
, 5(3(3(3(0(3(0(x1))))))) -> 3(5(3(0(1(3(0(4(1(0(x1))))))))))
, 5(3(2(4(3(1(5(x1))))))) -> 3(2(3(3(1(5(1(2(1(5(x1))))))))))
, 5(0(4(5(4(3(0(x1))))))) -> 5(1(0(1(1(3(4(0(2(5(x1))))))))))
, 4(2(3(3(5(1(3(x1))))))) -> 0(2(5(5(2(4(1(0(2(3(x1))))))))))
, 4(2(3(0(3(3(2(x1))))))) -> 5(5(0(4(1(1(0(4(5(2(x1))))))))))
, 3(3(5(5(4(2(2(x1))))))) -> 3(4(4(4(1(3(4(1(0(2(x1))))))))))
, 3(3(5(2(4(3(2(x1))))))) -> 3(0(4(1(1(5(0(3(1(1(x1))))))))))
, 3(3(0(4(3(0(5(x1))))))) -> 4(1(2(0(2(1(1(4(3(4(x1))))))))))
, 2(4(3(2(3(3(2(x1))))))) -> 2(5(4(0(2(5(4(4(1(1(x1))))))))))
, 2(2(3(5(5(0(0(x1))))))) -> 1(5(3(2(2(3(5(4(3(1(x1))))))))))
, 2(2(3(3(3(3(5(x1))))))) -> 2(2(3(5(4(5(5(1(2(5(x1))))))))))
, 0(5(3(2(2(4(5(x1))))))) -> 0(0(0(1(3(1(1(0(5(3(x1))))))))))
, 0(5(1(0(3(3(2(x1))))))) -> 2(0(4(5(1(1(4(5(5(1(x1))))))))))
, 0(4(3(0(3(3(2(x1))))))) -> 3(1(4(5(3(4(1(1(0(2(x1))))))))))
, 0(3(4(5(3(4(4(x1))))))) -> 2(3(5(0(1(0(1(4(5(0(x1))))))))))
, 0(3(4(0(3(0(3(x1))))))) -> 0(4(1(1(5(1(0(3(5(3(x1))))))))))
, 0(3(0(3(2(3(0(x1))))))) -> 2(3(0(0(4(1(3(1(1(2(x1))))))))))
, 0(2(1(4(3(3(5(x1))))))) -> 0(5(5(1(0(5(3(1(1(4(x1))))))))))
, 0(2(0(3(3(5(5(x1))))))) -> 3(2(2(5(4(4(3(3(1(4(x1))))))))))
, 5(5(0(2(0(3(x1)))))) -> 4(1(5(4(4(5(0(2(5(3(x1))))))))))
, 5(3(3(0(3(2(x1)))))) -> 2(5(4(1(5(3(4(2(5(1(x1))))))))))
, 4(5(3(5(2(0(x1)))))) -> 5(0(2(5(5(5(4(5(0(1(x1))))))))))
, 4(5(0(0(3(2(x1)))))) -> 4(4(2(1(1(5(2(5(0(2(x1))))))))))
, 4(3(4(0(3(3(x1)))))) -> 1(5(2(4(2(4(2(4(0(3(x1))))))))))
, 4(0(3(0(2(2(x1)))))) -> 4(1(1(5(2(0(5(4(1(1(x1))))))))))
, 4(0(2(3(5(5(x1)))))) -> 5(1(2(1(1(1(1(0(2(4(x1))))))))))
, 3(4(0(3(0(2(x1)))))) -> 3(2(0(1(1(3(4(1(1(2(x1))))))))))
, 3(3(0(5(3(2(x1)))))) -> 3(5(5(4(1(0(5(1(0(4(x1))))))))))
, 2(2(3(3(4(3(x1)))))) -> 5(2(5(4(5(5(1(3(1(4(x1))))))))))
, 2(0(3(5(3(0(x1)))))) -> 2(4(5(2(0(1(2(2(3(1(x1))))))))))
, 0(5(4(5(4(0(x1)))))) -> 0(2(1(2(5(4(5(1(5(5(x1))))))))))
, 0(5(0(0(3(5(x1)))))) -> 1(3(0(3(1(3(5(1(3(5(x1))))))))))
, 0(4(3(0(3(3(x1)))))) -> 0(0(1(3(5(4(1(5(5(5(x1))))))))))
, 0(3(0(3(3(5(x1)))))) -> 0(3(2(4(2(3(5(1(5(0(x1))))))))))
, 0(2(2(2(3(0(x1)))))) -> 0(2(5(4(5(1(5(4(4(2(x1))))))))))
, 0(0(3(2(0(3(x1)))))) -> 1(2(5(4(5(4(2(5(1(3(x1))))))))))
, 5(3(3(2(2(x1))))) -> 2(5(1(4(0(3(1(0(1(5(x1))))))))))
, 5(2(4(3(0(x1))))) -> 2(4(2(5(4(0(1(1(0(1(x1))))))))))
, 4(5(3(5(3(x1))))) -> 4(3(1(5(1(2(4(2(1(3(x1))))))))))
, 3(3(5(5(5(x1))))) -> 4(1(2(0(5(1(2(3(1(3(x1))))))))))
, 3(3(3(3(0(x1))))) -> 1(3(0(0(0(4(0(4(1(0(x1))))))))))
, 2(0(3(5(5(x1))))) -> 1(5(4(2(1(0(2(2(4(5(x1))))))))))
, 0(5(4(3(2(x1))))) -> 3(1(5(5(0(1(5(2(0(2(x1))))))))))
, 0(2(4(3(2(x1))))) -> 0(2(2(3(1(2(0(0(4(1(x1))))))))))
, 5(4(3(0(x1)))) -> 1(2(5(2(4(1(4(4(2(4(x1))))))))))
, 3(3(0(5(x1)))) -> 1(3(2(5(0(1(1(5(0(5(x1))))))))))
, 3(3(0(2(x1)))) -> 3(3(4(1(0(4(3(1(1(5(x1))))))))))
, 3(0(0(0(x1)))) -> 3(3(1(0(1(5(4(5(2(4(x1))))))))))
, 2(4(0(3(x1)))) -> 2(5(2(5(2(5(1(1(2(0(x1))))))))))
, 0(4(3(0(x1)))) -> 3(1(2(5(5(2(1(5(1(0(x1))))))))))
, 3(3(3(x1))) -> 1(1(3(3(1(1(1(0(1(5(x1))))))))))
, 3(3(0(x1))) -> 1(4(1(4(5(4(3(4(1(5(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(0(3(4(3(3(x1))))))) -> 1(5(5(0(5(0(1(5(5(3(x1))))))))))
, 5(3(3(5(0(4(3(x1))))))) -> 1(2(0(1(3(5(3(4(1(4(x1))))))))))
, 5(3(3(3(0(3(0(x1))))))) -> 3(5(3(0(1(3(0(4(1(0(x1))))))))))
, 5(3(2(4(3(1(5(x1))))))) -> 3(2(3(3(1(5(1(2(1(5(x1))))))))))
, 5(0(4(5(4(3(0(x1))))))) -> 5(1(0(1(1(3(4(0(2(5(x1))))))))))
, 4(2(3(3(5(1(3(x1))))))) -> 0(2(5(5(2(4(1(0(2(3(x1))))))))))
, 4(2(3(0(3(3(2(x1))))))) -> 5(5(0(4(1(1(0(4(5(2(x1))))))))))
, 3(3(5(5(4(2(2(x1))))))) -> 3(4(4(4(1(3(4(1(0(2(x1))))))))))
, 3(3(5(2(4(3(2(x1))))))) -> 3(0(4(1(1(5(0(3(1(1(x1))))))))))
, 3(3(0(4(3(0(5(x1))))))) -> 4(1(2(0(2(1(1(4(3(4(x1))))))))))
, 2(4(3(2(3(3(2(x1))))))) -> 2(5(4(0(2(5(4(4(1(1(x1))))))))))
, 2(2(3(5(5(0(0(x1))))))) -> 1(5(3(2(2(3(5(4(3(1(x1))))))))))
, 2(2(3(3(3(3(5(x1))))))) -> 2(2(3(5(4(5(5(1(2(5(x1))))))))))
, 0(5(3(2(2(4(5(x1))))))) -> 0(0(0(1(3(1(1(0(5(3(x1))))))))))
, 0(5(1(0(3(3(2(x1))))))) -> 2(0(4(5(1(1(4(5(5(1(x1))))))))))
, 0(4(3(0(3(3(2(x1))))))) -> 3(1(4(5(3(4(1(1(0(2(x1))))))))))
, 0(3(4(5(3(4(4(x1))))))) -> 2(3(5(0(1(0(1(4(5(0(x1))))))))))
, 0(3(4(0(3(0(3(x1))))))) -> 0(4(1(1(5(1(0(3(5(3(x1))))))))))
, 0(3(0(3(2(3(0(x1))))))) -> 2(3(0(0(4(1(3(1(1(2(x1))))))))))
, 0(2(1(4(3(3(5(x1))))))) -> 0(5(5(1(0(5(3(1(1(4(x1))))))))))
, 0(2(0(3(3(5(5(x1))))))) -> 3(2(2(5(4(4(3(3(1(4(x1))))))))))
, 5(5(0(2(0(3(x1)))))) -> 4(1(5(4(4(5(0(2(5(3(x1))))))))))
, 5(3(3(0(3(2(x1)))))) -> 2(5(4(1(5(3(4(2(5(1(x1))))))))))
, 4(5(3(5(2(0(x1)))))) -> 5(0(2(5(5(5(4(5(0(1(x1))))))))))
, 4(5(0(0(3(2(x1)))))) -> 4(4(2(1(1(5(2(5(0(2(x1))))))))))
, 4(3(4(0(3(3(x1)))))) -> 1(5(2(4(2(4(2(4(0(3(x1))))))))))
, 4(0(3(0(2(2(x1)))))) -> 4(1(1(5(2(0(5(4(1(1(x1))))))))))
, 4(0(2(3(5(5(x1)))))) -> 5(1(2(1(1(1(1(0(2(4(x1))))))))))
, 3(4(0(3(0(2(x1)))))) -> 3(2(0(1(1(3(4(1(1(2(x1))))))))))
, 3(3(0(5(3(2(x1)))))) -> 3(5(5(4(1(0(5(1(0(4(x1))))))))))
, 2(2(3(3(4(3(x1)))))) -> 5(2(5(4(5(5(1(3(1(4(x1))))))))))
, 2(0(3(5(3(0(x1)))))) -> 2(4(5(2(0(1(2(2(3(1(x1))))))))))
, 0(5(4(5(4(0(x1)))))) -> 0(2(1(2(5(4(5(1(5(5(x1))))))))))
, 0(5(0(0(3(5(x1)))))) -> 1(3(0(3(1(3(5(1(3(5(x1))))))))))
, 0(4(3(0(3(3(x1)))))) -> 0(0(1(3(5(4(1(5(5(5(x1))))))))))
, 0(3(0(3(3(5(x1)))))) -> 0(3(2(4(2(3(5(1(5(0(x1))))))))))
, 0(2(2(2(3(0(x1)))))) -> 0(2(5(4(5(1(5(4(4(2(x1))))))))))
, 0(0(3(2(0(3(x1)))))) -> 1(2(5(4(5(4(2(5(1(3(x1))))))))))
, 5(3(3(2(2(x1))))) -> 2(5(1(4(0(3(1(0(1(5(x1))))))))))
, 5(2(4(3(0(x1))))) -> 2(4(2(5(4(0(1(1(0(1(x1))))))))))
, 4(5(3(5(3(x1))))) -> 4(3(1(5(1(2(4(2(1(3(x1))))))))))
, 3(3(5(5(5(x1))))) -> 4(1(2(0(5(1(2(3(1(3(x1))))))))))
, 3(3(3(3(0(x1))))) -> 1(3(0(0(0(4(0(4(1(0(x1))))))))))
, 2(0(3(5(5(x1))))) -> 1(5(4(2(1(0(2(2(4(5(x1))))))))))
, 0(5(4(3(2(x1))))) -> 3(1(5(5(0(1(5(2(0(2(x1))))))))))
, 0(2(4(3(2(x1))))) -> 0(2(2(3(1(2(0(0(4(1(x1))))))))))
, 5(4(3(0(x1)))) -> 1(2(5(2(4(1(4(4(2(4(x1))))))))))
, 3(3(0(5(x1)))) -> 1(3(2(5(0(1(1(5(0(5(x1))))))))))
, 3(3(0(2(x1)))) -> 3(3(4(1(0(4(3(1(1(5(x1))))))))))
, 3(0(0(0(x1)))) -> 3(3(1(0(1(5(4(5(2(4(x1))))))))))
, 2(4(0(3(x1)))) -> 2(5(2(5(2(5(1(1(2(0(x1))))))))))
, 0(4(3(0(x1)))) -> 3(1(2(5(5(2(1(5(1(0(x1))))))))))
, 3(3(3(x1))) -> 1(1(3(3(1(1(1(0(1(5(x1))))))))))
, 3(3(0(x1))) -> 1(4(1(4(5(4(3(4(1(5(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(0(3(4(3(3(x1))))))) -> 1(5(5(0(5(0(1(5(5(3(x1))))))))))
, 5(3(3(5(0(4(3(x1))))))) -> 1(2(0(1(3(5(3(4(1(4(x1))))))))))
, 5(3(3(3(0(3(0(x1))))))) -> 3(5(3(0(1(3(0(4(1(0(x1))))))))))
, 5(3(2(4(3(1(5(x1))))))) -> 3(2(3(3(1(5(1(2(1(5(x1))))))))))
, 5(0(4(5(4(3(0(x1))))))) -> 5(1(0(1(1(3(4(0(2(5(x1))))))))))
, 4(2(3(3(5(1(3(x1))))))) -> 0(2(5(5(2(4(1(0(2(3(x1))))))))))
, 4(2(3(0(3(3(2(x1))))))) -> 5(5(0(4(1(1(0(4(5(2(x1))))))))))
, 3(3(5(5(4(2(2(x1))))))) -> 3(4(4(4(1(3(4(1(0(2(x1))))))))))
, 3(3(5(2(4(3(2(x1))))))) -> 3(0(4(1(1(5(0(3(1(1(x1))))))))))
, 3(3(0(4(3(0(5(x1))))))) -> 4(1(2(0(2(1(1(4(3(4(x1))))))))))
, 2(4(3(2(3(3(2(x1))))))) -> 2(5(4(0(2(5(4(4(1(1(x1))))))))))
, 2(2(3(5(5(0(0(x1))))))) -> 1(5(3(2(2(3(5(4(3(1(x1))))))))))
, 2(2(3(3(3(3(5(x1))))))) -> 2(2(3(5(4(5(5(1(2(5(x1))))))))))
, 0(5(3(2(2(4(5(x1))))))) -> 0(0(0(1(3(1(1(0(5(3(x1))))))))))
, 0(5(1(0(3(3(2(x1))))))) -> 2(0(4(5(1(1(4(5(5(1(x1))))))))))
, 0(4(3(0(3(3(2(x1))))))) -> 3(1(4(5(3(4(1(1(0(2(x1))))))))))
, 0(3(4(5(3(4(4(x1))))))) -> 2(3(5(0(1(0(1(4(5(0(x1))))))))))
, 0(3(4(0(3(0(3(x1))))))) -> 0(4(1(1(5(1(0(3(5(3(x1))))))))))
, 0(3(0(3(2(3(0(x1))))))) -> 2(3(0(0(4(1(3(1(1(2(x1))))))))))
, 0(2(1(4(3(3(5(x1))))))) -> 0(5(5(1(0(5(3(1(1(4(x1))))))))))
, 0(2(0(3(3(5(5(x1))))))) -> 3(2(2(5(4(4(3(3(1(4(x1))))))))))
, 5(5(0(2(0(3(x1)))))) -> 4(1(5(4(4(5(0(2(5(3(x1))))))))))
, 5(3(3(0(3(2(x1)))))) -> 2(5(4(1(5(3(4(2(5(1(x1))))))))))
, 4(5(3(5(2(0(x1)))))) -> 5(0(2(5(5(5(4(5(0(1(x1))))))))))
, 4(5(0(0(3(2(x1)))))) -> 4(4(2(1(1(5(2(5(0(2(x1))))))))))
, 4(3(4(0(3(3(x1)))))) -> 1(5(2(4(2(4(2(4(0(3(x1))))))))))
, 4(0(3(0(2(2(x1)))))) -> 4(1(1(5(2(0(5(4(1(1(x1))))))))))
, 4(0(2(3(5(5(x1)))))) -> 5(1(2(1(1(1(1(0(2(4(x1))))))))))
, 3(4(0(3(0(2(x1)))))) -> 3(2(0(1(1(3(4(1(1(2(x1))))))))))
, 3(3(0(5(3(2(x1)))))) -> 3(5(5(4(1(0(5(1(0(4(x1))))))))))
, 2(2(3(3(4(3(x1)))))) -> 5(2(5(4(5(5(1(3(1(4(x1))))))))))
, 2(0(3(5(3(0(x1)))))) -> 2(4(5(2(0(1(2(2(3(1(x1))))))))))
, 0(5(4(5(4(0(x1)))))) -> 0(2(1(2(5(4(5(1(5(5(x1))))))))))
, 0(5(0(0(3(5(x1)))))) -> 1(3(0(3(1(3(5(1(3(5(x1))))))))))
, 0(4(3(0(3(3(x1)))))) -> 0(0(1(3(5(4(1(5(5(5(x1))))))))))
, 0(3(0(3(3(5(x1)))))) -> 0(3(2(4(2(3(5(1(5(0(x1))))))))))
, 0(2(2(2(3(0(x1)))))) -> 0(2(5(4(5(1(5(4(4(2(x1))))))))))
, 0(0(3(2(0(3(x1)))))) -> 1(2(5(4(5(4(2(5(1(3(x1))))))))))
, 5(3(3(2(2(x1))))) -> 2(5(1(4(0(3(1(0(1(5(x1))))))))))
, 5(2(4(3(0(x1))))) -> 2(4(2(5(4(0(1(1(0(1(x1))))))))))
, 4(5(3(5(3(x1))))) -> 4(3(1(5(1(2(4(2(1(3(x1))))))))))
, 3(3(5(5(5(x1))))) -> 4(1(2(0(5(1(2(3(1(3(x1))))))))))
, 3(3(3(3(0(x1))))) -> 1(3(0(0(0(4(0(4(1(0(x1))))))))))
, 2(0(3(5(5(x1))))) -> 1(5(4(2(1(0(2(2(4(5(x1))))))))))
, 0(5(4(3(2(x1))))) -> 3(1(5(5(0(1(5(2(0(2(x1))))))))))
, 0(2(4(3(2(x1))))) -> 0(2(2(3(1(2(0(0(4(1(x1))))))))))
, 5(4(3(0(x1)))) -> 1(2(5(2(4(1(4(4(2(4(x1))))))))))
, 3(3(0(5(x1)))) -> 1(3(2(5(0(1(1(5(0(5(x1))))))))))
, 3(3(0(2(x1)))) -> 3(3(4(1(0(4(3(1(1(5(x1))))))))))
, 3(0(0(0(x1)))) -> 3(3(1(0(1(5(4(5(2(4(x1))))))))))
, 2(4(0(3(x1)))) -> 2(5(2(5(2(5(1(1(2(0(x1))))))))))
, 0(4(3(0(x1)))) -> 3(1(2(5(5(2(1(5(1(0(x1))))))))))
, 3(3(3(x1))) -> 1(1(3(3(1(1(1(0(1(5(x1))))))))))
, 3(3(0(x1))) -> 1(4(1(4(5(4(3(4(1(5(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI2
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(0(3(4(3(3(x1))))))) -> 1(5(5(0(5(0(1(5(5(3(x1))))))))))
, 5(3(3(5(0(4(3(x1))))))) -> 1(2(0(1(3(5(3(4(1(4(x1))))))))))
, 5(3(3(3(0(3(0(x1))))))) -> 3(5(3(0(1(3(0(4(1(0(x1))))))))))
, 5(3(2(4(3(1(5(x1))))))) -> 3(2(3(3(1(5(1(2(1(5(x1))))))))))
, 5(0(4(5(4(3(0(x1))))))) -> 5(1(0(1(1(3(4(0(2(5(x1))))))))))
, 4(2(3(3(5(1(3(x1))))))) -> 0(2(5(5(2(4(1(0(2(3(x1))))))))))
, 4(2(3(0(3(3(2(x1))))))) -> 5(5(0(4(1(1(0(4(5(2(x1))))))))))
, 3(3(5(5(4(2(2(x1))))))) -> 3(4(4(4(1(3(4(1(0(2(x1))))))))))
, 3(3(5(2(4(3(2(x1))))))) -> 3(0(4(1(1(5(0(3(1(1(x1))))))))))
, 3(3(0(4(3(0(5(x1))))))) -> 4(1(2(0(2(1(1(4(3(4(x1))))))))))
, 2(4(3(2(3(3(2(x1))))))) -> 2(5(4(0(2(5(4(4(1(1(x1))))))))))
, 2(2(3(5(5(0(0(x1))))))) -> 1(5(3(2(2(3(5(4(3(1(x1))))))))))
, 2(2(3(3(3(3(5(x1))))))) -> 2(2(3(5(4(5(5(1(2(5(x1))))))))))
, 0(5(3(2(2(4(5(x1))))))) -> 0(0(0(1(3(1(1(0(5(3(x1))))))))))
, 0(5(1(0(3(3(2(x1))))))) -> 2(0(4(5(1(1(4(5(5(1(x1))))))))))
, 0(4(3(0(3(3(2(x1))))))) -> 3(1(4(5(3(4(1(1(0(2(x1))))))))))
, 0(3(4(5(3(4(4(x1))))))) -> 2(3(5(0(1(0(1(4(5(0(x1))))))))))
, 0(3(4(0(3(0(3(x1))))))) -> 0(4(1(1(5(1(0(3(5(3(x1))))))))))
, 0(3(0(3(2(3(0(x1))))))) -> 2(3(0(0(4(1(3(1(1(2(x1))))))))))
, 0(2(1(4(3(3(5(x1))))))) -> 0(5(5(1(0(5(3(1(1(4(x1))))))))))
, 0(2(0(3(3(5(5(x1))))))) -> 3(2(2(5(4(4(3(3(1(4(x1))))))))))
, 5(5(0(2(0(3(x1)))))) -> 4(1(5(4(4(5(0(2(5(3(x1))))))))))
, 5(3(3(0(3(2(x1)))))) -> 2(5(4(1(5(3(4(2(5(1(x1))))))))))
, 4(5(3(5(2(0(x1)))))) -> 5(0(2(5(5(5(4(5(0(1(x1))))))))))
, 4(5(0(0(3(2(x1)))))) -> 4(4(2(1(1(5(2(5(0(2(x1))))))))))
, 4(3(4(0(3(3(x1)))))) -> 1(5(2(4(2(4(2(4(0(3(x1))))))))))
, 4(0(3(0(2(2(x1)))))) -> 4(1(1(5(2(0(5(4(1(1(x1))))))))))
, 4(0(2(3(5(5(x1)))))) -> 5(1(2(1(1(1(1(0(2(4(x1))))))))))
, 3(4(0(3(0(2(x1)))))) -> 3(2(0(1(1(3(4(1(1(2(x1))))))))))
, 3(3(0(5(3(2(x1)))))) -> 3(5(5(4(1(0(5(1(0(4(x1))))))))))
, 2(2(3(3(4(3(x1)))))) -> 5(2(5(4(5(5(1(3(1(4(x1))))))))))
, 2(0(3(5(3(0(x1)))))) -> 2(4(5(2(0(1(2(2(3(1(x1))))))))))
, 0(5(4(5(4(0(x1)))))) -> 0(2(1(2(5(4(5(1(5(5(x1))))))))))
, 0(5(0(0(3(5(x1)))))) -> 1(3(0(3(1(3(5(1(3(5(x1))))))))))
, 0(4(3(0(3(3(x1)))))) -> 0(0(1(3(5(4(1(5(5(5(x1))))))))))
, 0(3(0(3(3(5(x1)))))) -> 0(3(2(4(2(3(5(1(5(0(x1))))))))))
, 0(2(2(2(3(0(x1)))))) -> 0(2(5(4(5(1(5(4(4(2(x1))))))))))
, 0(0(3(2(0(3(x1)))))) -> 1(2(5(4(5(4(2(5(1(3(x1))))))))))
, 5(3(3(2(2(x1))))) -> 2(5(1(4(0(3(1(0(1(5(x1))))))))))
, 5(2(4(3(0(x1))))) -> 2(4(2(5(4(0(1(1(0(1(x1))))))))))
, 4(5(3(5(3(x1))))) -> 4(3(1(5(1(2(4(2(1(3(x1))))))))))
, 3(3(5(5(5(x1))))) -> 4(1(2(0(5(1(2(3(1(3(x1))))))))))
, 3(3(3(3(0(x1))))) -> 1(3(0(0(0(4(0(4(1(0(x1))))))))))
, 2(0(3(5(5(x1))))) -> 1(5(4(2(1(0(2(2(4(5(x1))))))))))
, 0(5(4(3(2(x1))))) -> 3(1(5(5(0(1(5(2(0(2(x1))))))))))
, 0(2(4(3(2(x1))))) -> 0(2(2(3(1(2(0(0(4(1(x1))))))))))
, 5(4(3(0(x1)))) -> 1(2(5(2(4(1(4(4(2(4(x1))))))))))
, 3(3(0(5(x1)))) -> 1(3(2(5(0(1(1(5(0(5(x1))))))))))
, 3(3(0(2(x1)))) -> 3(3(4(1(0(4(3(1(1(5(x1))))))))))
, 3(0(0(0(x1)))) -> 3(3(1(0(1(5(4(5(2(4(x1))))))))))
, 2(4(0(3(x1)))) -> 2(5(2(5(2(5(1(1(2(0(x1))))))))))
, 0(4(3(0(x1)))) -> 3(1(2(5(5(2(1(5(1(0(x1))))))))))
, 3(3(3(x1))) -> 1(1(3(3(1(1(1(0(1(5(x1))))))))))
, 3(3(0(x1))) -> 1(4(1(4(5(4(3(4(1(5(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..