Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 5(2(0(5(4(1(5(x1))))))) -> 1(1(5(2(1(5(5(1(1(5(x1))))))))))
, 5(2(0(2(1(1(4(x1))))))) -> 5(1(3(3(3(5(3(0(3(0(x1))))))))))
, 5(2(0(1(4(1(3(x1))))))) -> 5(4(0(0(4(1(4(5(5(4(x1))))))))))
, 3(4(0(2(2(4(0(x1))))))) -> 0(4(5(3(0(3(0(5(3(0(x1))))))))))
, 3(2(3(5(1(3(1(x1))))))) -> 3(1(4(3(0(5(5(5(5(1(x1))))))))))
, 3(2(3(1(1(3(2(x1))))))) -> 0(3(1(2(0(0(2(0(0(3(x1))))))))))
, 3(1(4(2(1(1(2(x1))))))) -> 0(1(2(2(3(2(4(0(0(4(x1))))))))))
, 2(3(3(5(2(5(2(x1))))))) -> 1(0(0(4(2(2(0(5(1(2(x1))))))))))
, 2(3(2(4(0(2(4(x1))))))) -> 4(4(5(4(3(0(3(3(5(4(x1))))))))))
, 2(3(2(0(5(1(0(x1))))))) -> 4(3(5(0(3(3(0(3(5(0(x1))))))))))
, 2(3(1(1(1(1(4(x1))))))) -> 2(0(3(3(1(4(3(5(0(5(x1))))))))))
, 2(1(5(0(2(4(0(x1))))))) -> 2(5(3(2(5(0(3(1(5(0(x1))))))))))
, 2(1(2(5(2(5(1(x1))))))) -> 2(4(5(3(3(5(3(1(0(1(x1))))))))))
, 2(0(1(4(1(1(3(x1))))))) -> 2(0(2(0(0(4(5(0(4(5(x1))))))))))
, 2(0(1(1(1(2(5(x1))))))) -> 5(2(0(3(4(0(0(4(2(5(x1))))))))))
, 1(4(1(1(1(2(0(x1))))))) -> 1(5(0(5(1(5(2(5(2(0(x1))))))))))
, 1(3(4(1(1(2(5(x1))))))) -> 1(5(3(4(2(2(2(0(3(1(x1))))))))))
, 1(3(0(5(2(3(5(x1))))))) -> 1(0(0(4(2(3(5(3(2(5(x1))))))))))
, 1(2(3(5(3(4(5(x1))))))) -> 1(0(5(3(5(1(5(2(0(1(x1))))))))))
, 1(2(3(2(4(2(4(x1))))))) -> 5(5(0(0(3(3(5(0(4(4(x1))))))))))
, 1(2(1(2(2(1(5(x1))))))) -> 5(4(1(0(3(4(3(3(1(3(x1))))))))))
, 1(1(4(2(4(3(4(x1))))))) -> 5(5(4(3(0(0(4(0(0(2(x1))))))))))
, 1(1(4(2(1(4(1(x1))))))) -> 1(3(0(0(5(4(1(5(3(1(x1))))))))))
, 1(1(4(1(2(1(4(x1))))))) -> 1(0(2(3(0(5(0(4(3(0(x1))))))))))
, 1(0(1(2(5(1(2(x1))))))) -> 1(5(2(3(5(1(1(0(0(3(x1))))))))))
, 0(5(2(5(2(3(1(x1))))))) -> 0(0(1(0(2(5(5(1(2(1(x1))))))))))
, 0(4(1(1(4(2(3(x1))))))) -> 0(1(0(0(0(1(2(0(4(3(x1))))))))))
, 5(2(4(4(1(2(x1)))))) -> 5(2(3(3(0(0(3(2(2(3(x1))))))))))
, 4(5(1(2(0(5(x1)))))) -> 1(3(4(0(3(5(5(3(0(3(x1))))))))))
, 3(3(1(2(5(3(x1)))))) -> 0(4(2(2(2(2(3(3(1(3(x1))))))))))
, 3(2(5(2(1(2(x1)))))) -> 4(3(1(0(0(4(2(0(4(3(x1))))))))))
, 2(3(5(1(2(4(x1)))))) -> 1(2(1(5(5(0(3(3(0(0(x1))))))))))
, 2(3(5(1(1(3(x1)))))) -> 1(0(3(4(0(4(0(1(0(1(x1))))))))))
, 2(3(5(1(1(2(x1)))))) -> 2(3(4(3(2(2(0(4(0(3(x1))))))))))
, 2(3(1(2(1(2(x1)))))) -> 1(3(3(3(0(2(0(0(3(4(x1))))))))))
, 2(1(1(4(1(3(x1)))))) -> 4(1(1(5(5(1(5(2(1(5(x1))))))))))
, 1(4(1(0(1(2(x1)))))) -> 2(5(2(0(2(0(0(0(3(3(x1))))))))))
, 0(5(2(0(1(1(x1)))))) -> 0(5(5(5(1(0(3(0(1(1(x1))))))))))
, 0(1(2(5(1(3(x1)))))) -> 0(4(0(3(0(2(1(5(5(0(x1))))))))))
, 0(1(2(4(2(4(x1)))))) -> 0(5(3(4(1(0(0(3(2(0(x1))))))))))
, 5(1(1(0(2(x1))))) -> 5(5(3(1(1(0(0(4(2(2(x1))))))))))
, 4(5(1(1(2(x1))))) -> 1(0(1(5(5(0(5(2(0(3(x1))))))))))
, 4(3(1(2(5(x1))))) -> 4(3(0(2(5(0(3(4(3(1(x1))))))))))
, 3(5(2(5(2(x1))))) -> 3(5(5(3(0(0(3(0(4(3(x1))))))))))
, 2(5(5(1(3(x1))))) -> 2(5(0(1(1(5(5(1(5(5(x1))))))))))
, 1(2(5(5(2(x1))))) -> 1(0(5(0(3(5(4(0(3(2(x1))))))))))
, 0(5(1(4(4(x1))))) -> 0(5(1(5(0(0(1(0(3(2(x1))))))))))
, 0(1(2(x1))) -> 0(0(3(4(0(3(0(3(0(2(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ 2_0(1) -> 1
, 2_1(1) -> 66
, 2_1(5) -> 4
, 2_1(9) -> 263
, 2_1(10) -> 114
, 2_1(19) -> 121
, 2_1(35) -> 175
, 2_1(43) -> 175
, 2_1(46) -> 45
, 2_1(49) -> 48
, 2_1(50) -> 309
, 2_1(51) -> 187
, 2_1(53) -> 52
, 2_1(54) -> 53
, 2_1(56) -> 55
, 2_1(58) -> 179
, 2_1(59) -> 292
, 2_1(62) -> 61
, 2_1(63) -> 62
, 2_1(66) -> 292
, 2_1(67) -> 66
, 2_1(68) -> 66
, 2_1(81) -> 1
, 2_1(81) -> 43
, 2_1(81) -> 66
, 2_1(81) -> 114
, 2_1(81) -> 121
, 2_1(81) -> 134
, 2_1(81) -> 175
, 2_1(81) -> 187
, 2_1(81) -> 263
, 2_1(91) -> 90
, 2_1(101) -> 134
, 2_1(102) -> 82
, 2_1(108) -> 11
, 2_1(120) -> 119
, 2_1(124) -> 123
, 2_1(125) -> 124
, 2_1(126) -> 125
, 2_1(145) -> 195
, 2_1(160) -> 59
, 2_1(165) -> 115
, 2_1(172) -> 171
, 2_1(180) -> 179
, 2_1(187) -> 186
, 2_1(193) -> 29
, 2_1(194) -> 193
, 2_1(195) -> 194
, 2_1(199) -> 2
, 2_1(221) -> 220
, 2_1(222) -> 221
, 2_1(226) -> 292
, 2_1(227) -> 226
, 2_1(264) -> 89
, 2_1(266) -> 265
, 2_1(280) -> 279
, 2_1(319) -> 318
, 2_1(323) -> 114
, 2_1(341) -> 4
, 2_2(53) -> 402
, 2_2(58) -> 411
, 2_2(68) -> 388
, 2_2(81) -> 402
, 2_2(108) -> 402
, 2_2(160) -> 301
, 2_2(180) -> 411
, 2_2(199) -> 402
, 2_2(227) -> 301
, 2_2(264) -> 402
, 2_2(301) -> 300
, 2_2(342) -> 114
, 2_2(342) -> 119
, 2_2(474) -> 473
, 2_2(475) -> 474
, 2_2(476) -> 475
, 2_2(477) -> 476
, 2_2(523) -> 522
, 2_2(529) -> 171
, 1_0(1) -> 1
, 1_1(1) -> 43
, 1_1(2) -> 1
, 1_1(2) -> 10
, 1_1(2) -> 27
, 1_1(2) -> 43
, 1_1(2) -> 65
, 1_1(2) -> 66
, 1_1(2) -> 100
, 1_1(2) -> 107
, 1_1(2) -> 120
, 1_1(2) -> 147
, 1_1(2) -> 187
, 1_1(2) -> 276
, 1_1(3) -> 2
, 1_1(6) -> 5
, 1_1(9) -> 8
, 1_1(10) -> 9
, 1_1(11) -> 43
, 1_1(12) -> 11
, 1_1(17) -> 272
, 1_1(19) -> 100
, 1_1(24) -> 23
, 1_1(35) -> 1
, 1_1(36) -> 35
, 1_1(41) -> 341
, 1_1(43) -> 276
, 1_1(45) -> 44
, 1_1(49) -> 168
, 1_1(51) -> 147
, 1_1(52) -> 28
, 1_1(66) -> 65
, 1_1(80) -> 94
, 1_1(85) -> 84
, 1_1(89) -> 43
, 1_1(101) -> 100
, 1_1(118) -> 117
, 1_1(120) -> 261
, 1_1(133) -> 132
, 1_1(142) -> 20
, 1_1(154) -> 1
, 1_1(159) -> 158
, 1_1(168) -> 167
, 1_1(170) -> 169
, 1_1(175) -> 174
, 1_1(179) -> 178
, 1_1(196) -> 74
, 1_1(200) -> 199
, 1_1(224) -> 1
, 1_1(225) -> 1
, 1_1(258) -> 67
, 1_1(259) -> 258
, 1_1(262) -> 261
, 1_1(273) -> 272
, 1_1(281) -> 280
, 1_1(284) -> 283
, 1_1(288) -> 287
, 1_1(289) -> 288
, 1_1(302) -> 59
, 1_1(323) -> 1
, 1_1(324) -> 1
, 1_1(325) -> 1
, 1_1(338) -> 337
, 1_1(339) -> 338
, 1_1(341) -> 337
, 1_1(361) -> 379
, 1_1(376) -> 270
, 1_2(89) -> 528
, 1_2(296) -> 295
, 1_2(297) -> 296
, 1_2(345) -> 344
, 1_2(346) -> 345
, 1_2(349) -> 348
, 1_2(382) -> 381
, 1_2(386) -> 385
, 1_2(480) -> 479
, 1_2(532) -> 531
, 1_2(533) -> 532
, 1_2(536) -> 535
, 0_0(1) -> 1
, 0_1(1) -> 19
, 0_1(2) -> 153
, 0_1(10) -> 88
, 0_1(11) -> 19
, 0_1(13) -> 19
, 0_1(18) -> 17
, 0_1(19) -> 205
, 0_1(21) -> 20
, 0_1(22) -> 21
, 0_1(27) -> 58
, 0_1(28) -> 1
, 0_1(28) -> 19
, 0_1(28) -> 51
, 0_1(28) -> 58
, 0_1(28) -> 63
, 0_1(28) -> 88
, 0_1(28) -> 101
, 0_1(28) -> 127
, 0_1(28) -> 145
, 0_1(28) -> 229
, 0_1(28) -> 269
, 0_1(28) -> 362
, 0_1(32) -> 31
, 0_1(34) -> 33
, 0_1(35) -> 19
, 0_1(37) -> 19
, 0_1(39) -> 38
, 0_1(42) -> 63
, 0_1(43) -> 101
, 0_1(47) -> 46
, 0_1(48) -> 47
, 0_1(50) -> 49
, 0_1(51) -> 50
, 0_1(58) -> 57
, 0_1(59) -> 2
, 0_1(60) -> 59
, 0_1(64) -> 63
, 0_1(66) -> 153
, 0_1(67) -> 19
, 0_1(72) -> 71
, 0_1(76) -> 75
, 0_1(79) -> 78
, 0_1(82) -> 81
, 0_1(93) -> 92
, 0_1(95) -> 19
, 0_1(100) -> 209
, 0_1(103) -> 102
, 0_1(104) -> 103
, 0_1(107) -> 106
, 0_1(109) -> 108
, 0_1(112) -> 111
, 0_1(113) -> 112
, 0_1(116) -> 115
, 0_1(127) -> 126
, 0_1(136) -> 135
, 0_1(137) -> 136
, 0_1(141) -> 140
, 0_1(143) -> 142
, 0_1(150) -> 149
, 0_1(151) -> 150
, 0_1(153) -> 152
, 0_1(154) -> 19
, 0_1(155) -> 154
, 0_1(156) -> 155
, 0_1(162) -> 161
, 0_1(164) -> 163
, 0_1(169) -> 28
, 0_1(171) -> 170
, 0_1(176) -> 52
, 0_1(177) -> 176
, 0_1(178) -> 177
, 0_1(181) -> 180
, 0_1(184) -> 183
, 0_1(185) -> 184
, 0_1(188) -> 19
, 0_1(189) -> 188
, 0_1(197) -> 196
, 0_1(198) -> 197
, 0_1(203) -> 202
, 0_1(208) -> 207
, 0_1(223) -> 222
, 0_1(224) -> 19
, 0_1(225) -> 19
, 0_1(226) -> 225
, 0_1(228) -> 227
, 0_1(229) -> 228
, 0_1(265) -> 264
, 0_1(267) -> 266
, 0_1(268) -> 267
, 0_1(269) -> 268
, 0_1(274) -> 273
, 0_1(276) -> 275
, 0_1(277) -> 29
, 0_1(279) -> 278
, 0_1(285) -> 284
, 0_1(286) -> 285
, 0_1(290) -> 289
, 0_1(291) -> 290
, 0_1(308) -> 307
, 0_1(318) -> 74
, 0_1(321) -> 320
, 0_1(323) -> 19
, 0_1(324) -> 19
, 0_1(325) -> 19
, 0_1(326) -> 325
, 0_1(327) -> 326
, 0_1(337) -> 89
, 0_1(352) -> 130
, 0_1(362) -> 361
, 0_1(378) -> 377
, 0_1(379) -> 378
, 0_1(391) -> 390
, 0_1(393) -> 392
, 0_1(394) -> 19
, 0_2(298) -> 297
, 0_2(299) -> 298
, 0_2(332) -> 331
, 0_2(333) -> 332
, 0_2(335) -> 334
, 0_2(344) -> 343
, 0_2(380) -> 63
, 0_2(384) -> 383
, 0_2(385) -> 384
, 0_2(387) -> 386
, 0_2(394) -> 1
, 0_2(394) -> 19
, 0_2(394) -> 51
, 0_2(394) -> 58
, 0_2(394) -> 63
, 0_2(394) -> 88
, 0_2(394) -> 101
, 0_2(394) -> 106
, 0_2(394) -> 127
, 0_2(394) -> 145
, 0_2(394) -> 153
, 0_2(394) -> 209
, 0_2(394) -> 229
, 0_2(394) -> 269
, 0_2(394) -> 275
, 0_2(394) -> 362
, 0_2(395) -> 394
, 0_2(398) -> 397
, 0_2(400) -> 399
, 0_2(402) -> 401
, 0_2(403) -> 177
, 0_2(404) -> 403
, 0_2(407) -> 406
, 0_2(409) -> 408
, 0_2(411) -> 410
, 0_2(472) -> 145
, 0_2(522) -> 521
, 0_2(525) -> 524
, 0_2(531) -> 530
, 3_0(1) -> 1
, 3_1(1) -> 51
, 3_1(2) -> 79
, 3_1(9) -> 93
, 3_1(10) -> 79
, 3_1(11) -> 51
, 3_1(13) -> 12
, 3_1(14) -> 13
, 3_1(15) -> 14
, 3_1(17) -> 16
, 3_1(19) -> 18
, 3_1(26) -> 73
, 3_1(27) -> 229
, 3_1(31) -> 30
, 3_1(33) -> 32
, 3_1(35) -> 1
, 3_1(35) -> 51
, 3_1(35) -> 79
, 3_1(35) -> 362
, 3_1(38) -> 37
, 3_1(43) -> 127
, 3_1(44) -> 28
, 3_1(50) -> 192
, 3_1(51) -> 269
, 3_1(53) -> 51
, 3_1(55) -> 54
, 3_1(56) -> 109
, 3_1(66) -> 362
, 3_1(67) -> 51
, 3_1(71) -> 70
, 3_1(73) -> 72
, 3_1(74) -> 67
, 3_1(77) -> 76
, 3_1(78) -> 77
, 3_1(80) -> 79
, 3_1(81) -> 51
, 3_1(83) -> 82
, 3_1(84) -> 83
, 3_1(87) -> 86
, 3_1(90) -> 89
, 3_1(94) -> 93
, 3_1(97) -> 96
, 3_1(98) -> 97
, 3_1(100) -> 99
, 3_1(101) -> 18
, 3_1(108) -> 51
, 3_1(110) -> 109
, 3_1(114) -> 129
, 3_1(115) -> 51
, 3_1(121) -> 286
, 3_1(122) -> 115
, 3_1(127) -> 145
, 3_1(128) -> 62
, 3_1(131) -> 130
, 3_1(138) -> 137
, 3_1(139) -> 138
, 3_1(144) -> 143
, 3_1(146) -> 145
, 3_1(147) -> 146
, 3_1(149) -> 148
, 3_1(153) -> 393
, 3_1(154) -> 2
, 3_1(161) -> 160
, 3_1(166) -> 165
, 3_1(175) -> 129
, 3_1(180) -> 327
, 3_1(182) -> 108
, 3_1(183) -> 182
, 3_1(186) -> 185
, 3_1(190) -> 189
, 3_1(199) -> 51
, 3_1(204) -> 203
, 3_1(205) -> 204
, 3_1(206) -> 59
, 3_1(218) -> 81
, 3_1(220) -> 219
, 3_1(224) -> 154
, 3_1(225) -> 224
, 3_1(264) -> 51
, 3_1(270) -> 51
, 3_1(275) -> 274
, 3_1(278) -> 277
, 3_1(282) -> 270
, 3_1(287) -> 135
, 3_1(322) -> 321
, 3_1(323) -> 1
, 3_1(324) -> 1
, 3_1(325) -> 324
, 3_1(353) -> 352
, 3_1(389) -> 169
, 3_1(392) -> 391
, 3_2(90) -> 480
, 3_2(264) -> 336
, 3_2(295) -> 294
, 3_2(328) -> 79
, 3_2(331) -> 330
, 3_2(334) -> 333
, 3_2(388) -> 387
, 3_2(396) -> 395
, 3_2(399) -> 398
, 3_2(401) -> 400
, 3_2(405) -> 404
, 3_2(408) -> 407
, 3_2(410) -> 409
, 3_2(478) -> 477
, 3_2(479) -> 478
, 3_2(521) -> 520
, 3_2(526) -> 525
, 3_2(528) -> 527
, 4_0(1) -> 1
, 4_1(1) -> 27
, 4_1(2) -> 27
, 4_1(10) -> 107
, 4_1(18) -> 164
, 4_1(20) -> 11
, 4_1(23) -> 22
, 4_1(25) -> 24
, 4_1(27) -> 141
, 4_1(29) -> 28
, 4_1(35) -> 27
, 4_1(37) -> 36
, 4_1(50) -> 223
, 4_1(51) -> 181
, 4_1(57) -> 56
, 4_1(61) -> 60
, 4_1(67) -> 1
, 4_1(67) -> 27
, 4_1(67) -> 51
, 4_1(67) -> 66
, 4_1(67) -> 129
, 4_1(67) -> 175
, 4_1(67) -> 181
, 4_1(67) -> 187
, 4_1(67) -> 322
, 4_1(67) -> 362
, 4_1(68) -> 67
, 4_1(70) -> 69
, 4_1(81) -> 27
, 4_1(86) -> 85
, 4_1(95) -> 81
, 4_1(105) -> 104
, 4_1(111) -> 110
, 4_1(114) -> 113
, 4_1(123) -> 122
, 4_1(127) -> 322
, 4_1(139) -> 104
, 4_1(145) -> 144
, 4_1(148) -> 135
, 4_1(152) -> 151
, 4_1(154) -> 27
, 4_1(158) -> 157
, 4_1(179) -> 198
, 4_1(188) -> 154
, 4_1(199) -> 27
, 4_1(207) -> 206
, 4_1(209) -> 208
, 4_1(219) -> 218
, 4_1(224) -> 27
, 4_1(225) -> 27
, 4_1(269) -> 144
, 4_1(283) -> 282
, 4_1(292) -> 291
, 4_1(323) -> 27
, 4_1(324) -> 27
, 4_1(325) -> 27
, 4_1(361) -> 360
, 4_1(390) -> 389
, 4_2(300) -> 299
, 4_2(336) -> 335
, 4_2(397) -> 396
, 4_2(406) -> 405
, 4_2(473) -> 472
, 4_2(520) -> 322
, 4_2(527) -> 526
, 5_0(1) -> 1
, 5_1(1) -> 10
, 5_1(2) -> 10
, 5_1(4) -> 3
, 5_1(7) -> 6
, 5_1(8) -> 7
, 5_1(9) -> 340
, 5_1(10) -> 41
, 5_1(11) -> 1
, 5_1(11) -> 10
, 5_1(11) -> 42
, 5_1(11) -> 43
, 5_1(11) -> 65
, 5_1(11) -> 66
, 5_1(11) -> 120
, 5_1(11) -> 121
, 5_1(11) -> 133
, 5_1(11) -> 134
, 5_1(11) -> 174
, 5_1(11) -> 276
, 5_1(13) -> 10
, 5_1(16) -> 15
, 5_1(18) -> 34
, 5_1(19) -> 80
, 5_1(26) -> 25
, 5_1(27) -> 26
, 5_1(30) -> 29
, 5_1(35) -> 10
, 5_1(37) -> 10
, 5_1(40) -> 39
, 5_1(41) -> 40
, 5_1(42) -> 41
, 5_1(43) -> 42
, 5_1(51) -> 159
, 5_1(58) -> 139
, 5_1(64) -> 172
, 5_1(65) -> 64
, 5_1(66) -> 120
, 5_1(67) -> 10
, 5_1(69) -> 68
, 5_1(75) -> 74
, 5_1(80) -> 281
, 5_1(81) -> 26
, 5_1(88) -> 87
, 5_1(89) -> 81
, 5_1(92) -> 91
, 5_1(96) -> 95
, 5_1(99) -> 98
, 5_1(106) -> 105
, 5_1(115) -> 2
, 5_1(117) -> 116
, 5_1(119) -> 118
, 5_1(121) -> 120
, 5_1(127) -> 159
, 5_1(129) -> 128
, 5_1(130) -> 59
, 5_1(132) -> 131
, 5_1(134) -> 133
, 5_1(135) -> 11
, 5_1(140) -> 139
, 5_1(154) -> 10
, 5_1(157) -> 156
, 5_1(163) -> 162
, 5_1(167) -> 166
, 5_1(173) -> 172
, 5_1(174) -> 173
, 5_1(188) -> 10
, 5_1(191) -> 190
, 5_1(192) -> 191
, 5_1(201) -> 200
, 5_1(202) -> 201
, 5_1(223) -> 353
, 5_1(224) -> 10
, 5_1(225) -> 10
, 5_1(260) -> 259
, 5_1(261) -> 260
, 5_1(263) -> 262
, 5_1(270) -> 28
, 5_1(271) -> 270
, 5_1(272) -> 271
, 5_1(306) -> 302
, 5_1(307) -> 306
, 5_1(309) -> 308
, 5_1(320) -> 319
, 5_1(323) -> 35
, 5_1(324) -> 323
, 5_1(325) -> 2
, 5_1(340) -> 339
, 5_1(341) -> 340
, 5_1(360) -> 353
, 5_1(377) -> 376
, 5_2(13) -> 350
, 5_2(154) -> 537
, 5_2(293) -> 42
, 5_2(293) -> 64
, 5_2(293) -> 260
, 5_2(293) -> 340
, 5_2(294) -> 293
, 5_2(329) -> 328
, 5_2(330) -> 329
, 5_2(343) -> 342
, 5_2(347) -> 346
, 5_2(348) -> 347
, 5_2(350) -> 349
, 5_2(381) -> 380
, 5_2(383) -> 382
, 5_2(524) -> 523
, 5_2(530) -> 529
, 5_2(534) -> 533
, 5_2(535) -> 534
, 5_2(537) -> 536}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(2(0(5(4(1(5(x1))))))) -> 1(1(5(2(1(5(5(1(1(5(x1))))))))))
, 5(2(0(2(1(1(4(x1))))))) -> 5(1(3(3(3(5(3(0(3(0(x1))))))))))
, 5(2(0(1(4(1(3(x1))))))) -> 5(4(0(0(4(1(4(5(5(4(x1))))))))))
, 3(4(0(2(2(4(0(x1))))))) -> 0(4(5(3(0(3(0(5(3(0(x1))))))))))
, 3(2(3(5(1(3(1(x1))))))) -> 3(1(4(3(0(5(5(5(5(1(x1))))))))))
, 3(2(3(1(1(3(2(x1))))))) -> 0(3(1(2(0(0(2(0(0(3(x1))))))))))
, 3(1(4(2(1(1(2(x1))))))) -> 0(1(2(2(3(2(4(0(0(4(x1))))))))))
, 2(3(3(5(2(5(2(x1))))))) -> 1(0(0(4(2(2(0(5(1(2(x1))))))))))
, 2(3(2(4(0(2(4(x1))))))) -> 4(4(5(4(3(0(3(3(5(4(x1))))))))))
, 2(3(2(0(5(1(0(x1))))))) -> 4(3(5(0(3(3(0(3(5(0(x1))))))))))
, 2(3(1(1(1(1(4(x1))))))) -> 2(0(3(3(1(4(3(5(0(5(x1))))))))))
, 2(1(5(0(2(4(0(x1))))))) -> 2(5(3(2(5(0(3(1(5(0(x1))))))))))
, 2(1(2(5(2(5(1(x1))))))) -> 2(4(5(3(3(5(3(1(0(1(x1))))))))))
, 2(0(1(4(1(1(3(x1))))))) -> 2(0(2(0(0(4(5(0(4(5(x1))))))))))
, 2(0(1(1(1(2(5(x1))))))) -> 5(2(0(3(4(0(0(4(2(5(x1))))))))))
, 1(4(1(1(1(2(0(x1))))))) -> 1(5(0(5(1(5(2(5(2(0(x1))))))))))
, 1(3(4(1(1(2(5(x1))))))) -> 1(5(3(4(2(2(2(0(3(1(x1))))))))))
, 1(3(0(5(2(3(5(x1))))))) -> 1(0(0(4(2(3(5(3(2(5(x1))))))))))
, 1(2(3(5(3(4(5(x1))))))) -> 1(0(5(3(5(1(5(2(0(1(x1))))))))))
, 1(2(3(2(4(2(4(x1))))))) -> 5(5(0(0(3(3(5(0(4(4(x1))))))))))
, 1(2(1(2(2(1(5(x1))))))) -> 5(4(1(0(3(4(3(3(1(3(x1))))))))))
, 1(1(4(2(4(3(4(x1))))))) -> 5(5(4(3(0(0(4(0(0(2(x1))))))))))
, 1(1(4(2(1(4(1(x1))))))) -> 1(3(0(0(5(4(1(5(3(1(x1))))))))))
, 1(1(4(1(2(1(4(x1))))))) -> 1(0(2(3(0(5(0(4(3(0(x1))))))))))
, 1(0(1(2(5(1(2(x1))))))) -> 1(5(2(3(5(1(1(0(0(3(x1))))))))))
, 0(5(2(5(2(3(1(x1))))))) -> 0(0(1(0(2(5(5(1(2(1(x1))))))))))
, 0(4(1(1(4(2(3(x1))))))) -> 0(1(0(0(0(1(2(0(4(3(x1))))))))))
, 5(2(4(4(1(2(x1)))))) -> 5(2(3(3(0(0(3(2(2(3(x1))))))))))
, 4(5(1(2(0(5(x1)))))) -> 1(3(4(0(3(5(5(3(0(3(x1))))))))))
, 3(3(1(2(5(3(x1)))))) -> 0(4(2(2(2(2(3(3(1(3(x1))))))))))
, 3(2(5(2(1(2(x1)))))) -> 4(3(1(0(0(4(2(0(4(3(x1))))))))))
, 2(3(5(1(2(4(x1)))))) -> 1(2(1(5(5(0(3(3(0(0(x1))))))))))
, 2(3(5(1(1(3(x1)))))) -> 1(0(3(4(0(4(0(1(0(1(x1))))))))))
, 2(3(5(1(1(2(x1)))))) -> 2(3(4(3(2(2(0(4(0(3(x1))))))))))
, 2(3(1(2(1(2(x1)))))) -> 1(3(3(3(0(2(0(0(3(4(x1))))))))))
, 2(1(1(4(1(3(x1)))))) -> 4(1(1(5(5(1(5(2(1(5(x1))))))))))
, 1(4(1(0(1(2(x1)))))) -> 2(5(2(0(2(0(0(0(3(3(x1))))))))))
, 0(5(2(0(1(1(x1)))))) -> 0(5(5(5(1(0(3(0(1(1(x1))))))))))
, 0(1(2(5(1(3(x1)))))) -> 0(4(0(3(0(2(1(5(5(0(x1))))))))))
, 0(1(2(4(2(4(x1)))))) -> 0(5(3(4(1(0(0(3(2(0(x1))))))))))
, 5(1(1(0(2(x1))))) -> 5(5(3(1(1(0(0(4(2(2(x1))))))))))
, 4(5(1(1(2(x1))))) -> 1(0(1(5(5(0(5(2(0(3(x1))))))))))
, 4(3(1(2(5(x1))))) -> 4(3(0(2(5(0(3(4(3(1(x1))))))))))
, 3(5(2(5(2(x1))))) -> 3(5(5(3(0(0(3(0(4(3(x1))))))))))
, 2(5(5(1(3(x1))))) -> 2(5(0(1(1(5(5(1(5(5(x1))))))))))
, 1(2(5(5(2(x1))))) -> 1(0(5(0(3(5(4(0(3(2(x1))))))))))
, 0(5(1(4(4(x1))))) -> 0(5(1(5(0(0(1(0(3(2(x1))))))))))
, 0(1(2(x1))) -> 0(0(3(4(0(3(0(3(0(2(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(2(0(5(4(1(5(x1))))))) -> 1(1(5(2(1(5(5(1(1(5(x1))))))))))
, 5(2(0(2(1(1(4(x1))))))) -> 5(1(3(3(3(5(3(0(3(0(x1))))))))))
, 5(2(0(1(4(1(3(x1))))))) -> 5(4(0(0(4(1(4(5(5(4(x1))))))))))
, 3(4(0(2(2(4(0(x1))))))) -> 0(4(5(3(0(3(0(5(3(0(x1))))))))))
, 3(2(3(5(1(3(1(x1))))))) -> 3(1(4(3(0(5(5(5(5(1(x1))))))))))
, 3(2(3(1(1(3(2(x1))))))) -> 0(3(1(2(0(0(2(0(0(3(x1))))))))))
, 3(1(4(2(1(1(2(x1))))))) -> 0(1(2(2(3(2(4(0(0(4(x1))))))))))
, 2(3(3(5(2(5(2(x1))))))) -> 1(0(0(4(2(2(0(5(1(2(x1))))))))))
, 2(3(2(4(0(2(4(x1))))))) -> 4(4(5(4(3(0(3(3(5(4(x1))))))))))
, 2(3(2(0(5(1(0(x1))))))) -> 4(3(5(0(3(3(0(3(5(0(x1))))))))))
, 2(3(1(1(1(1(4(x1))))))) -> 2(0(3(3(1(4(3(5(0(5(x1))))))))))
, 2(1(5(0(2(4(0(x1))))))) -> 2(5(3(2(5(0(3(1(5(0(x1))))))))))
, 2(1(2(5(2(5(1(x1))))))) -> 2(4(5(3(3(5(3(1(0(1(x1))))))))))
, 2(0(1(4(1(1(3(x1))))))) -> 2(0(2(0(0(4(5(0(4(5(x1))))))))))
, 2(0(1(1(1(2(5(x1))))))) -> 5(2(0(3(4(0(0(4(2(5(x1))))))))))
, 1(4(1(1(1(2(0(x1))))))) -> 1(5(0(5(1(5(2(5(2(0(x1))))))))))
, 1(3(4(1(1(2(5(x1))))))) -> 1(5(3(4(2(2(2(0(3(1(x1))))))))))
, 1(3(0(5(2(3(5(x1))))))) -> 1(0(0(4(2(3(5(3(2(5(x1))))))))))
, 1(2(3(5(3(4(5(x1))))))) -> 1(0(5(3(5(1(5(2(0(1(x1))))))))))
, 1(2(3(2(4(2(4(x1))))))) -> 5(5(0(0(3(3(5(0(4(4(x1))))))))))
, 1(2(1(2(2(1(5(x1))))))) -> 5(4(1(0(3(4(3(3(1(3(x1))))))))))
, 1(1(4(2(4(3(4(x1))))))) -> 5(5(4(3(0(0(4(0(0(2(x1))))))))))
, 1(1(4(2(1(4(1(x1))))))) -> 1(3(0(0(5(4(1(5(3(1(x1))))))))))
, 1(1(4(1(2(1(4(x1))))))) -> 1(0(2(3(0(5(0(4(3(0(x1))))))))))
, 1(0(1(2(5(1(2(x1))))))) -> 1(5(2(3(5(1(1(0(0(3(x1))))))))))
, 0(5(2(5(2(3(1(x1))))))) -> 0(0(1(0(2(5(5(1(2(1(x1))))))))))
, 0(4(1(1(4(2(3(x1))))))) -> 0(1(0(0(0(1(2(0(4(3(x1))))))))))
, 5(2(4(4(1(2(x1)))))) -> 5(2(3(3(0(0(3(2(2(3(x1))))))))))
, 4(5(1(2(0(5(x1)))))) -> 1(3(4(0(3(5(5(3(0(3(x1))))))))))
, 3(3(1(2(5(3(x1)))))) -> 0(4(2(2(2(2(3(3(1(3(x1))))))))))
, 3(2(5(2(1(2(x1)))))) -> 4(3(1(0(0(4(2(0(4(3(x1))))))))))
, 2(3(5(1(2(4(x1)))))) -> 1(2(1(5(5(0(3(3(0(0(x1))))))))))
, 2(3(5(1(1(3(x1)))))) -> 1(0(3(4(0(4(0(1(0(1(x1))))))))))
, 2(3(5(1(1(2(x1)))))) -> 2(3(4(3(2(2(0(4(0(3(x1))))))))))
, 2(3(1(2(1(2(x1)))))) -> 1(3(3(3(0(2(0(0(3(4(x1))))))))))
, 2(1(1(4(1(3(x1)))))) -> 4(1(1(5(5(1(5(2(1(5(x1))))))))))
, 1(4(1(0(1(2(x1)))))) -> 2(5(2(0(2(0(0(0(3(3(x1))))))))))
, 0(5(2(0(1(1(x1)))))) -> 0(5(5(5(1(0(3(0(1(1(x1))))))))))
, 0(1(2(5(1(3(x1)))))) -> 0(4(0(3(0(2(1(5(5(0(x1))))))))))
, 0(1(2(4(2(4(x1)))))) -> 0(5(3(4(1(0(0(3(2(0(x1))))))))))
, 5(1(1(0(2(x1))))) -> 5(5(3(1(1(0(0(4(2(2(x1))))))))))
, 4(5(1(1(2(x1))))) -> 1(0(1(5(5(0(5(2(0(3(x1))))))))))
, 4(3(1(2(5(x1))))) -> 4(3(0(2(5(0(3(4(3(1(x1))))))))))
, 3(5(2(5(2(x1))))) -> 3(5(5(3(0(0(3(0(4(3(x1))))))))))
, 2(5(5(1(3(x1))))) -> 2(5(0(1(1(5(5(1(5(5(x1))))))))))
, 1(2(5(5(2(x1))))) -> 1(0(5(0(3(5(4(0(3(2(x1))))))))))
, 0(5(1(4(4(x1))))) -> 0(5(1(5(0(0(1(0(3(2(x1))))))))))
, 0(1(2(x1))) -> 0(0(3(4(0(3(0(3(0(2(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(2(0(5(4(1(5(x1))))))) -> 1(1(5(2(1(5(5(1(1(5(x1))))))))))
, 5(2(0(2(1(1(4(x1))))))) -> 5(1(3(3(3(5(3(0(3(0(x1))))))))))
, 5(2(0(1(4(1(3(x1))))))) -> 5(4(0(0(4(1(4(5(5(4(x1))))))))))
, 3(4(0(2(2(4(0(x1))))))) -> 0(4(5(3(0(3(0(5(3(0(x1))))))))))
, 3(2(3(5(1(3(1(x1))))))) -> 3(1(4(3(0(5(5(5(5(1(x1))))))))))
, 3(2(3(1(1(3(2(x1))))))) -> 0(3(1(2(0(0(2(0(0(3(x1))))))))))
, 3(1(4(2(1(1(2(x1))))))) -> 0(1(2(2(3(2(4(0(0(4(x1))))))))))
, 2(3(3(5(2(5(2(x1))))))) -> 1(0(0(4(2(2(0(5(1(2(x1))))))))))
, 2(3(2(4(0(2(4(x1))))))) -> 4(4(5(4(3(0(3(3(5(4(x1))))))))))
, 2(3(2(0(5(1(0(x1))))))) -> 4(3(5(0(3(3(0(3(5(0(x1))))))))))
, 2(3(1(1(1(1(4(x1))))))) -> 2(0(3(3(1(4(3(5(0(5(x1))))))))))
, 2(1(5(0(2(4(0(x1))))))) -> 2(5(3(2(5(0(3(1(5(0(x1))))))))))
, 2(1(2(5(2(5(1(x1))))))) -> 2(4(5(3(3(5(3(1(0(1(x1))))))))))
, 2(0(1(4(1(1(3(x1))))))) -> 2(0(2(0(0(4(5(0(4(5(x1))))))))))
, 2(0(1(1(1(2(5(x1))))))) -> 5(2(0(3(4(0(0(4(2(5(x1))))))))))
, 1(4(1(1(1(2(0(x1))))))) -> 1(5(0(5(1(5(2(5(2(0(x1))))))))))
, 1(3(4(1(1(2(5(x1))))))) -> 1(5(3(4(2(2(2(0(3(1(x1))))))))))
, 1(3(0(5(2(3(5(x1))))))) -> 1(0(0(4(2(3(5(3(2(5(x1))))))))))
, 1(2(3(5(3(4(5(x1))))))) -> 1(0(5(3(5(1(5(2(0(1(x1))))))))))
, 1(2(3(2(4(2(4(x1))))))) -> 5(5(0(0(3(3(5(0(4(4(x1))))))))))
, 1(2(1(2(2(1(5(x1))))))) -> 5(4(1(0(3(4(3(3(1(3(x1))))))))))
, 1(1(4(2(4(3(4(x1))))))) -> 5(5(4(3(0(0(4(0(0(2(x1))))))))))
, 1(1(4(2(1(4(1(x1))))))) -> 1(3(0(0(5(4(1(5(3(1(x1))))))))))
, 1(1(4(1(2(1(4(x1))))))) -> 1(0(2(3(0(5(0(4(3(0(x1))))))))))
, 1(0(1(2(5(1(2(x1))))))) -> 1(5(2(3(5(1(1(0(0(3(x1))))))))))
, 0(5(2(5(2(3(1(x1))))))) -> 0(0(1(0(2(5(5(1(2(1(x1))))))))))
, 0(4(1(1(4(2(3(x1))))))) -> 0(1(0(0(0(1(2(0(4(3(x1))))))))))
, 5(2(4(4(1(2(x1)))))) -> 5(2(3(3(0(0(3(2(2(3(x1))))))))))
, 4(5(1(2(0(5(x1)))))) -> 1(3(4(0(3(5(5(3(0(3(x1))))))))))
, 3(3(1(2(5(3(x1)))))) -> 0(4(2(2(2(2(3(3(1(3(x1))))))))))
, 3(2(5(2(1(2(x1)))))) -> 4(3(1(0(0(4(2(0(4(3(x1))))))))))
, 2(3(5(1(2(4(x1)))))) -> 1(2(1(5(5(0(3(3(0(0(x1))))))))))
, 2(3(5(1(1(3(x1)))))) -> 1(0(3(4(0(4(0(1(0(1(x1))))))))))
, 2(3(5(1(1(2(x1)))))) -> 2(3(4(3(2(2(0(4(0(3(x1))))))))))
, 2(3(1(2(1(2(x1)))))) -> 1(3(3(3(0(2(0(0(3(4(x1))))))))))
, 2(1(1(4(1(3(x1)))))) -> 4(1(1(5(5(1(5(2(1(5(x1))))))))))
, 1(4(1(0(1(2(x1)))))) -> 2(5(2(0(2(0(0(0(3(3(x1))))))))))
, 0(5(2(0(1(1(x1)))))) -> 0(5(5(5(1(0(3(0(1(1(x1))))))))))
, 0(1(2(5(1(3(x1)))))) -> 0(4(0(3(0(2(1(5(5(0(x1))))))))))
, 0(1(2(4(2(4(x1)))))) -> 0(5(3(4(1(0(0(3(2(0(x1))))))))))
, 5(1(1(0(2(x1))))) -> 5(5(3(1(1(0(0(4(2(2(x1))))))))))
, 4(5(1(1(2(x1))))) -> 1(0(1(5(5(0(5(2(0(3(x1))))))))))
, 4(3(1(2(5(x1))))) -> 4(3(0(2(5(0(3(4(3(1(x1))))))))))
, 3(5(2(5(2(x1))))) -> 3(5(5(3(0(0(3(0(4(3(x1))))))))))
, 2(5(5(1(3(x1))))) -> 2(5(0(1(1(5(5(1(5(5(x1))))))))))
, 1(2(5(5(2(x1))))) -> 1(0(5(0(3(5(4(0(3(2(x1))))))))))
, 0(5(1(4(4(x1))))) -> 0(5(1(5(0(0(1(0(3(2(x1))))))))))
, 0(1(2(x1))) -> 0(0(3(4(0(3(0(3(0(2(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI2
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(2(0(5(4(1(5(x1))))))) -> 1(1(5(2(1(5(5(1(1(5(x1))))))))))
, 5(2(0(2(1(1(4(x1))))))) -> 5(1(3(3(3(5(3(0(3(0(x1))))))))))
, 5(2(0(1(4(1(3(x1))))))) -> 5(4(0(0(4(1(4(5(5(4(x1))))))))))
, 3(4(0(2(2(4(0(x1))))))) -> 0(4(5(3(0(3(0(5(3(0(x1))))))))))
, 3(2(3(5(1(3(1(x1))))))) -> 3(1(4(3(0(5(5(5(5(1(x1))))))))))
, 3(2(3(1(1(3(2(x1))))))) -> 0(3(1(2(0(0(2(0(0(3(x1))))))))))
, 3(1(4(2(1(1(2(x1))))))) -> 0(1(2(2(3(2(4(0(0(4(x1))))))))))
, 2(3(3(5(2(5(2(x1))))))) -> 1(0(0(4(2(2(0(5(1(2(x1))))))))))
, 2(3(2(4(0(2(4(x1))))))) -> 4(4(5(4(3(0(3(3(5(4(x1))))))))))
, 2(3(2(0(5(1(0(x1))))))) -> 4(3(5(0(3(3(0(3(5(0(x1))))))))))
, 2(3(1(1(1(1(4(x1))))))) -> 2(0(3(3(1(4(3(5(0(5(x1))))))))))
, 2(1(5(0(2(4(0(x1))))))) -> 2(5(3(2(5(0(3(1(5(0(x1))))))))))
, 2(1(2(5(2(5(1(x1))))))) -> 2(4(5(3(3(5(3(1(0(1(x1))))))))))
, 2(0(1(4(1(1(3(x1))))))) -> 2(0(2(0(0(4(5(0(4(5(x1))))))))))
, 2(0(1(1(1(2(5(x1))))))) -> 5(2(0(3(4(0(0(4(2(5(x1))))))))))
, 1(4(1(1(1(2(0(x1))))))) -> 1(5(0(5(1(5(2(5(2(0(x1))))))))))
, 1(3(4(1(1(2(5(x1))))))) -> 1(5(3(4(2(2(2(0(3(1(x1))))))))))
, 1(3(0(5(2(3(5(x1))))))) -> 1(0(0(4(2(3(5(3(2(5(x1))))))))))
, 1(2(3(5(3(4(5(x1))))))) -> 1(0(5(3(5(1(5(2(0(1(x1))))))))))
, 1(2(3(2(4(2(4(x1))))))) -> 5(5(0(0(3(3(5(0(4(4(x1))))))))))
, 1(2(1(2(2(1(5(x1))))))) -> 5(4(1(0(3(4(3(3(1(3(x1))))))))))
, 1(1(4(2(4(3(4(x1))))))) -> 5(5(4(3(0(0(4(0(0(2(x1))))))))))
, 1(1(4(2(1(4(1(x1))))))) -> 1(3(0(0(5(4(1(5(3(1(x1))))))))))
, 1(1(4(1(2(1(4(x1))))))) -> 1(0(2(3(0(5(0(4(3(0(x1))))))))))
, 1(0(1(2(5(1(2(x1))))))) -> 1(5(2(3(5(1(1(0(0(3(x1))))))))))
, 0(5(2(5(2(3(1(x1))))))) -> 0(0(1(0(2(5(5(1(2(1(x1))))))))))
, 0(4(1(1(4(2(3(x1))))))) -> 0(1(0(0(0(1(2(0(4(3(x1))))))))))
, 5(2(4(4(1(2(x1)))))) -> 5(2(3(3(0(0(3(2(2(3(x1))))))))))
, 4(5(1(2(0(5(x1)))))) -> 1(3(4(0(3(5(5(3(0(3(x1))))))))))
, 3(3(1(2(5(3(x1)))))) -> 0(4(2(2(2(2(3(3(1(3(x1))))))))))
, 3(2(5(2(1(2(x1)))))) -> 4(3(1(0(0(4(2(0(4(3(x1))))))))))
, 2(3(5(1(2(4(x1)))))) -> 1(2(1(5(5(0(3(3(0(0(x1))))))))))
, 2(3(5(1(1(3(x1)))))) -> 1(0(3(4(0(4(0(1(0(1(x1))))))))))
, 2(3(5(1(1(2(x1)))))) -> 2(3(4(3(2(2(0(4(0(3(x1))))))))))
, 2(3(1(2(1(2(x1)))))) -> 1(3(3(3(0(2(0(0(3(4(x1))))))))))
, 2(1(1(4(1(3(x1)))))) -> 4(1(1(5(5(1(5(2(1(5(x1))))))))))
, 1(4(1(0(1(2(x1)))))) -> 2(5(2(0(2(0(0(0(3(3(x1))))))))))
, 0(5(2(0(1(1(x1)))))) -> 0(5(5(5(1(0(3(0(1(1(x1))))))))))
, 0(1(2(5(1(3(x1)))))) -> 0(4(0(3(0(2(1(5(5(0(x1))))))))))
, 0(1(2(4(2(4(x1)))))) -> 0(5(3(4(1(0(0(3(2(0(x1))))))))))
, 5(1(1(0(2(x1))))) -> 5(5(3(1(1(0(0(4(2(2(x1))))))))))
, 4(5(1(1(2(x1))))) -> 1(0(1(5(5(0(5(2(0(3(x1))))))))))
, 4(3(1(2(5(x1))))) -> 4(3(0(2(5(0(3(4(3(1(x1))))))))))
, 3(5(2(5(2(x1))))) -> 3(5(5(3(0(0(3(0(4(3(x1))))))))))
, 2(5(5(1(3(x1))))) -> 2(5(0(1(1(5(5(1(5(5(x1))))))))))
, 1(2(5(5(2(x1))))) -> 1(0(5(0(3(5(4(0(3(2(x1))))))))))
, 0(5(1(4(4(x1))))) -> 0(5(1(5(0(0(1(0(3(2(x1))))))))))
, 0(1(2(x1))) -> 0(0(3(4(0(3(0(3(0(2(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..