Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 5(2(3(5(2(0(2(x1))))))) -> 5(2(2(4(4(1(2(5(5(2(x1))))))))))
, 5(1(1(3(1(0(4(x1))))))) -> 5(1(2(3(1(4(4(5(3(3(x1))))))))))
, 5(0(2(0(5(1(5(x1))))))) -> 5(0(0(0(0(3(2(4(3(5(x1))))))))))
, 3(3(5(0(1(5(2(x1))))))) -> 3(1(5(1(1(2(4(3(1(3(x1))))))))))
, 3(3(0(4(0(0(4(x1))))))) -> 3(3(3(1(1(5(4(4(5(4(x1))))))))))
, 3(0(3(0(5(2(5(x1))))))) -> 3(3(1(2(3(3(1(2(1(5(x1))))))))))
, 2(4(5(1(0(0(2(x1))))))) -> 4(3(1(2(1(3(4(1(5(1(x1))))))))))
, 0(2(3(1(5(0(1(x1))))))) -> 4(5(5(3(4(1(0(4(2(2(x1))))))))))
, 0(2(3(1(0(2(4(x1))))))) -> 3(3(1(0(4(2(1(2(4(3(x1))))))))))
, 0(1(0(4(0(0(2(x1))))))) -> 5(5(3(4(2(0(5(2(2(3(x1))))))))))
, 0(1(0(0(0(4(2(x1))))))) -> 3(2(5(2(0(4(2(3(4(1(x1))))))))))
, 0(0(4(3(0(1(5(x1))))))) -> 2(5(4(5(1(2(4(1(0(5(x1))))))))))
, 0(0(2(0(0(4(2(x1))))))) -> 1(3(4(1(0(0(5(5(2(4(x1))))))))))
, 3(5(1(0(5(1(x1)))))) -> 5(3(0(1(3(1(0(5(3(4(x1))))))))))
, 3(1(5(1(1(5(x1)))))) -> 3(3(0(3(3(0(3(2(2(0(x1))))))))))
, 2(5(4(0(0(1(x1)))))) -> 4(4(2(4(1(0(1(1(0(1(x1))))))))))
, 2(5(0(4(3(0(x1)))))) -> 2(4(1(2(2(0(5(5(2(0(x1))))))))))
, 2(5(0(0(3(5(x1)))))) -> 4(1(3(3(3(5(4(0(5(5(x1))))))))))
, 2(0(0(1(3(5(x1)))))) -> 4(2(4(0(2(4(4(1(3(5(x1))))))))))
, 1(1(0(4(0(4(x1)))))) -> 1(2(1(3(4(4(5(4(4(2(x1))))))))))
, 0(4(0(0(4(2(x1)))))) -> 0(2(2(3(5(4(4(3(1(4(x1))))))))))
, 0(3(0(5(0(2(x1)))))) -> 4(2(1(2(4(4(0(0(1(1(x1))))))))))
, 0(2(5(2(5(2(x1)))))) -> 3(2(1(1(1(1(5(1(4(3(x1))))))))))
, 0(2(4(0(2(4(x1)))))) -> 5(0(5(4(2(2(0(1(4(2(x1))))))))))
, 0(1(0(4(0(1(x1)))))) -> 0(3(0(3(3(3(0(1(1(4(x1))))))))))
, 0(0(2(2(5(4(x1)))))) -> 1(4(5(5(5(2(4(4(4(3(x1))))))))))
, 0(0(2(0(2(4(x1)))))) -> 5(2(3(4(4(5(2(1(4(1(x1))))))))))
, 0(0(0(2(2(5(x1)))))) -> 1(3(2(1(4(2(0(1(4(0(x1))))))))))
, 5(4(5(0(2(x1))))) -> 5(4(0(3(4(5(2(1(3(1(x1))))))))))
, 5(3(3(5(1(x1))))) -> 5(3(2(5(4(4(1(1(4(4(x1))))))))))
, 3(3(5(0(1(x1))))) -> 3(2(4(1(1(0(5(1(2(4(x1))))))))))
, 3(0(2(2(1(x1))))) -> 3(2(0(5(4(1(3(1(4(3(x1))))))))))
, 3(0(0(1(5(x1))))) -> 3(2(4(3(2(2(1(2(0(5(x1))))))))))
, 0(2(0(4(1(x1))))) -> 2(3(0(3(2(4(2(0(4(1(x1))))))))))
, 0(2(0(0(1(x1))))) -> 0(2(2(0(5(4(4(3(4(1(x1))))))))))
, 4(5(1(0(x1)))) -> 2(0(3(2(4(2(5(2(2(2(x1))))))))))
, 0(4(5(4(x1)))) -> 1(1(5(4(1(2(4(1(4(3(x1))))))))))
, 0(2(2(1(x1)))) -> 3(0(5(2(1(1(2(2(3(1(x1))))))))))
, 0(1(2(5(x1)))) -> 1(4(3(0(3(4(4(2(3(5(x1))))))))))
, 1(5(1(x1))) -> 1(5(3(2(4(3(0(3(2(4(x1))))))))))
, 0(2(0(x1))) -> 3(0(0(3(2(2(2(4(1(3(x1))))))))))
, 0(0(1(x1))) -> 5(4(2(1(4(1(3(4(2(2(x1))))))))))
, 0(1(x1)) -> 4(4(4(2(1(0(3(4(1(4(x1))))))))))
, 0(1(x1)) -> 4(4(2(4(2(3(3(1(3(3(x1))))))))))
, 0(1(x1)) -> 2(0(3(4(3(1(1(2(1(3(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ 1_0(1) -> 1
, 1_1(1) -> 48
, 1_1(7) -> 6
, 1_1(11) -> 2
, 1_1(14) -> 13
, 1_1(17) -> 407
, 1_1(18) -> 34
, 1_1(23) -> 66
, 1_1(24) -> 161
, 1_1(25) -> 135
, 1_1(26) -> 48
, 1_1(28) -> 27
, 1_1(30) -> 29
, 1_1(31) -> 30
, 1_1(37) -> 36
, 1_1(38) -> 37
, 1_1(42) -> 150
, 1_1(43) -> 35
, 1_1(47) -> 46
, 1_1(48) -> 156
, 1_1(49) -> 48
, 1_1(51) -> 50
, 1_1(53) -> 52
, 1_1(56) -> 55
, 1_1(61) -> 60
, 1_1(80) -> 183
, 1_1(81) -> 48
, 1_1(85) -> 84
, 1_1(87) -> 114
, 1_1(88) -> 87
, 1_1(89) -> 1
, 1_1(89) -> 48
, 1_1(89) -> 88
, 1_1(89) -> 114
, 1_1(89) -> 116
, 1_1(89) -> 156
, 1_1(92) -> 91
, 1_1(96) -> 215
, 1_1(99) -> 98
, 1_1(101) -> 100
, 1_1(109) -> 222
, 1_1(113) -> 112
, 1_1(115) -> 114
, 1_1(116) -> 115
, 1_1(117) -> 48
, 1_1(118) -> 117
, 1_1(123) -> 49
, 1_1(127) -> 188
, 1_1(130) -> 48
, 1_1(137) -> 136
, 1_1(142) -> 166
, 1_1(144) -> 48
, 1_1(150) -> 172
, 1_1(151) -> 130
, 1_1(157) -> 74
, 1_1(158) -> 157
, 1_1(159) -> 158
, 1_1(160) -> 159
, 1_1(185) -> 184
, 1_1(195) -> 194
, 1_1(200) -> 199
, 1_1(201) -> 200
, 1_1(212) -> 211
, 1_1(213) -> 212
, 1_1(219) -> 218
, 1_1(238) -> 89
, 1_1(241) -> 240
, 1_1(246) -> 245
, 1_1(247) -> 246
, 1_1(318) -> 317
, 1_1(320) -> 319
, 1_1(332) -> 331
, 1_1(480) -> 479
, 1_1(481) -> 480
, 1_2(208) -> 207
, 1_2(209) -> 208
, 1_2(210) -> 350
, 1_2(254) -> 116
, 1_2(269) -> 55
, 1_2(277) -> 342
, 1_2(278) -> 34
, 1_2(278) -> 48
, 1_2(278) -> 55
, 1_2(278) -> 87
, 1_2(278) -> 115
, 1_2(278) -> 135
, 1_2(278) -> 489
, 1_2(286) -> 159
, 1_2(295) -> 27
, 1_2(316) -> 315
, 1_2(324) -> 323
, 1_2(326) -> 325
, 1_2(339) -> 338
, 1_2(347) -> 346
, 1_2(355) -> 354
, 1_2(359) -> 358
, 1_2(364) -> 363
, 1_2(368) -> 367
, 1_2(373) -> 372
, 1_2(377) -> 376
, 1_2(382) -> 381
, 1_2(386) -> 385
, 1_2(391) -> 390
, 1_2(395) -> 394
, 1_2(400) -> 399
, 1_2(404) -> 403
, 1_2(413) -> 412
, 1_2(414) -> 489
, 1_2(427) -> 426
, 1_2(428) -> 497
, 1_2(434) -> 433
, 1_2(435) -> 505
, 1_2(448) -> 447
, 1_2(449) -> 513
, 1_2(462) -> 461
, 1_2(463) -> 521
, 1_2(469) -> 468
, 1_2(470) -> 529
, 1_2(476) -> 475
, 1_2(477) -> 537
, 1_2(487) -> 486
, 1_2(488) -> 487
, 1_2(495) -> 494
, 1_2(496) -> 495
, 1_2(503) -> 502
, 1_2(504) -> 503
, 1_2(511) -> 510
, 1_2(512) -> 511
, 1_2(519) -> 518
, 1_2(520) -> 519
, 1_2(527) -> 526
, 1_2(528) -> 527
, 1_2(535) -> 534
, 1_2(536) -> 535
, 1_2(555) -> 554
, 0_0(1) -> 1
, 0_1(1) -> 88
, 0_1(2) -> 88
, 0_1(19) -> 2
, 0_1(20) -> 19
, 0_1(21) -> 20
, 0_1(22) -> 21
, 0_1(26) -> 88
, 0_1(48) -> 116
, 0_1(62) -> 61
, 0_1(64) -> 43
, 0_1(71) -> 70
, 0_1(77) -> 76
, 0_1(80) -> 228
, 0_1(82) -> 88
, 0_1(89) -> 88
, 0_1(93) -> 92
, 0_1(94) -> 93
, 0_1(98) -> 97
, 0_1(102) -> 101
, 0_1(104) -> 35
, 0_1(107) -> 106
, 0_1(114) -> 113
, 0_1(121) -> 120
, 0_1(129) -> 128
, 0_1(132) -> 131
, 0_1(143) -> 1
, 0_1(143) -> 88
, 0_1(143) -> 116
, 0_1(155) -> 154
, 0_1(156) -> 155
, 0_1(166) -> 165
, 0_1(168) -> 167
, 0_1(172) -> 171
, 0_1(188) -> 187
, 0_1(190) -> 189
, 0_1(214) -> 213
, 0_1(216) -> 74
, 0_1(224) -> 223
, 0_1(229) -> 145
, 0_1(232) -> 81
, 0_1(239) -> 88
, 0_1(243) -> 27
, 0_1(250) -> 249
, 0_1(263) -> 88
, 0_1(268) -> 267
, 0_1(304) -> 243
, 0_1(333) -> 332
, 0_2(239) -> 546
, 0_2(257) -> 256
, 0_2(275) -> 274
, 0_2(284) -> 283
, 0_2(292) -> 291
, 0_2(301) -> 300
, 0_2(309) -> 308
, 0_2(310) -> 309
, 0_2(340) -> 339
, 0_2(348) -> 347
, 0_2(356) -> 355
, 0_2(365) -> 364
, 0_2(374) -> 373
, 0_2(383) -> 382
, 0_2(392) -> 391
, 0_2(401) -> 400
, 0_2(483) -> 482
, 0_2(491) -> 490
, 0_2(499) -> 498
, 0_2(507) -> 506
, 0_2(515) -> 514
, 0_2(523) -> 522
, 0_2(531) -> 530
, 0_2(540) -> 539
, 0_2(543) -> 542
, 0_2(548) -> 547
, 0_2(549) -> 548
, 3_0(1) -> 1
, 3_1(1) -> 18
, 3_1(3) -> 18
, 3_1(13) -> 12
, 3_1(18) -> 17
, 3_1(23) -> 22
, 3_1(26) -> 25
, 3_1(27) -> 1
, 3_1(27) -> 17
, 3_1(27) -> 18
, 3_1(27) -> 88
, 3_1(27) -> 116
, 3_1(27) -> 195
, 3_1(27) -> 413
, 3_1(27) -> 414
, 3_1(27) -> 435
, 3_1(34) -> 33
, 3_1(35) -> 27
, 3_1(36) -> 35
, 3_1(42) -> 103
, 3_1(45) -> 44
, 3_1(46) -> 45
, 3_1(48) -> 195
, 3_1(49) -> 18
, 3_1(50) -> 49
, 3_1(54) -> 53
, 3_1(59) -> 58
, 3_1(62) -> 320
, 3_1(68) -> 67
, 3_1(80) -> 79
, 3_1(81) -> 18
, 3_1(83) -> 18
, 3_1(89) -> 18
, 3_1(90) -> 89
, 3_1(96) -> 268
, 3_1(97) -> 2
, 3_1(100) -> 99
, 3_1(105) -> 104
, 3_1(106) -> 105
, 3_1(108) -> 107
, 3_1(117) -> 18
, 3_1(124) -> 123
, 3_1(125) -> 124
, 3_1(126) -> 125
, 3_1(138) -> 137
, 3_1(143) -> 18
, 3_1(144) -> 18
, 3_1(146) -> 145
, 3_1(150) -> 149
, 3_1(161) -> 219
, 3_1(167) -> 143
, 3_1(169) -> 168
, 3_1(170) -> 169
, 3_1(171) -> 170
, 3_1(179) -> 3
, 3_1(189) -> 18
, 3_1(191) -> 190
, 3_1(220) -> 211
, 3_1(223) -> 81
, 3_1(225) -> 224
, 3_1(232) -> 18
, 3_1(233) -> 232
, 3_1(249) -> 173
, 3_1(251) -> 250
, 3_1(264) -> 263
, 3_1(267) -> 266
, 3_1(305) -> 304
, 3_1(334) -> 333
, 3_1(406) -> 405
, 3_1(407) -> 406
, 3_1(479) -> 478
, 3_2(1) -> 414
, 3_2(11) -> 428
, 3_2(26) -> 414
, 3_2(48) -> 435
, 3_2(49) -> 414
, 3_2(81) -> 414
, 3_2(87) -> 428
, 3_2(89) -> 428
, 3_2(99) -> 449
, 3_2(115) -> 428
, 3_2(117) -> 414
, 3_2(127) -> 463
, 3_2(130) -> 414
, 3_2(142) -> 470
, 3_2(144) -> 414
, 3_2(150) -> 477
, 3_2(203) -> 202
, 3_2(232) -> 316
, 3_2(238) -> 428
, 3_2(256) -> 255
, 3_2(258) -> 257
, 3_2(262) -> 261
, 3_2(271) -> 270
, 3_2(274) -> 273
, 3_2(276) -> 275
, 3_2(278) -> 414
, 3_2(280) -> 279
, 3_2(283) -> 282
, 3_2(285) -> 284
, 3_2(288) -> 287
, 3_2(291) -> 290
, 3_2(293) -> 292
, 3_2(297) -> 296
, 3_2(300) -> 299
, 3_2(302) -> 301
, 3_2(308) -> 88
, 3_2(311) -> 310
, 3_2(327) -> 326
, 3_2(341) -> 340
, 3_2(349) -> 348
, 3_2(357) -> 356
, 3_2(366) -> 365
, 3_2(375) -> 374
, 3_2(384) -> 383
, 3_2(393) -> 392
, 3_2(402) -> 401
, 3_2(411) -> 410
, 3_2(412) -> 411
, 3_2(414) -> 413
, 3_2(425) -> 424
, 3_2(426) -> 425
, 3_2(428) -> 427
, 3_2(432) -> 431
, 3_2(433) -> 432
, 3_2(435) -> 434
, 3_2(446) -> 445
, 3_2(447) -> 446
, 3_2(449) -> 448
, 3_2(460) -> 459
, 3_2(461) -> 460
, 3_2(463) -> 462
, 3_2(467) -> 466
, 3_2(468) -> 467
, 3_2(470) -> 469
, 3_2(474) -> 473
, 3_2(475) -> 474
, 3_2(477) -> 476
, 3_2(484) -> 483
, 3_2(486) -> 485
, 3_2(491) -> 555
, 3_2(492) -> 491
, 3_2(494) -> 493
, 3_2(499) -> 555
, 3_2(500) -> 499
, 3_2(502) -> 501
, 3_2(508) -> 507
, 3_2(510) -> 509
, 3_2(516) -> 515
, 3_2(518) -> 517
, 3_2(524) -> 523
, 3_2(526) -> 525
, 3_2(532) -> 531
, 3_2(534) -> 533
, 3_2(538) -> 195
, 3_2(538) -> 435
, 3_2(539) -> 538
, 3_2(541) -> 540
, 3_2(542) -> 541
, 3_2(544) -> 543
, 3_2(547) -> 154
, 3_2(550) -> 549
, 2_0(1) -> 1
, 2_1(1) -> 10
, 2_1(3) -> 2
, 2_1(4) -> 3
, 2_1(8) -> 7
, 2_1(10) -> 63
, 2_1(12) -> 11
, 2_1(18) -> 73
, 2_1(24) -> 23
, 2_1(25) -> 253
, 2_1(27) -> 109
, 2_1(32) -> 31
, 2_1(34) -> 481
, 2_1(42) -> 96
, 2_1(44) -> 43
, 2_1(48) -> 47
, 2_1(49) -> 10
, 2_1(52) -> 51
, 2_1(63) -> 237
, 2_1(66) -> 65
, 2_1(70) -> 69
, 2_1(73) -> 72
, 2_1(74) -> 27
, 2_1(76) -> 75
, 2_1(79) -> 78
, 2_1(81) -> 1
, 2_1(81) -> 10
, 2_1(81) -> 42
, 2_1(81) -> 88
, 2_1(81) -> 277
, 2_1(86) -> 85
, 2_1(88) -> 109
, 2_1(89) -> 10
, 2_1(109) -> 108
, 2_1(111) -> 110
, 2_1(117) -> 10
, 2_1(119) -> 118
, 2_1(120) -> 119
, 2_1(130) -> 49
, 2_1(133) -> 132
, 2_1(134) -> 307
, 2_1(136) -> 89
, 2_1(143) -> 10
, 2_1(144) -> 143
, 2_1(145) -> 144
, 2_1(152) -> 151
, 2_1(164) -> 163
, 2_1(165) -> 164
, 2_1(177) -> 176
, 2_1(183) -> 182
, 2_1(184) -> 90
, 2_1(187) -> 186
, 2_1(194) -> 193
, 2_1(195) -> 248
, 2_1(196) -> 97
, 2_1(221) -> 220
, 2_1(222) -> 221
, 2_1(226) -> 225
, 2_1(228) -> 227
, 2_1(234) -> 233
, 2_1(236) -> 235
, 2_1(242) -> 241
, 2_1(245) -> 244
, 2_1(248) -> 247
, 2_1(265) -> 264
, 2_1(306) -> 305
, 2_1(307) -> 306
, 2_1(317) -> 189
, 2_1(331) -> 330
, 2_1(405) -> 112
, 2_2(48) -> 329
, 2_2(89) -> 329
, 2_2(204) -> 203
, 2_2(210) -> 285
, 2_2(261) -> 260
, 2_2(272) -> 271
, 2_2(277) -> 276
, 2_2(281) -> 280
, 2_2(289) -> 288
, 2_2(294) -> 293
, 2_2(298) -> 297
, 2_2(303) -> 302
, 2_2(312) -> 311
, 2_2(313) -> 312
, 2_2(314) -> 313
, 2_2(323) -> 322
, 2_2(329) -> 328
, 2_2(338) -> 337
, 2_2(346) -> 345
, 2_2(354) -> 353
, 2_2(363) -> 362
, 2_2(372) -> 371
, 2_2(381) -> 380
, 2_2(390) -> 389
, 2_2(399) -> 398
, 2_2(408) -> 336
, 2_2(410) -> 409
, 2_2(422) -> 344
, 2_2(424) -> 423
, 2_2(429) -> 352
, 2_2(431) -> 430
, 2_2(443) -> 370
, 2_2(445) -> 444
, 2_2(457) -> 379
, 2_2(459) -> 458
, 2_2(464) -> 388
, 2_2(466) -> 465
, 2_2(471) -> 397
, 2_2(473) -> 472
, 2_2(482) -> 116
, 2_2(489) -> 488
, 2_2(490) -> 88
, 2_2(490) -> 113
, 2_2(490) -> 116
, 2_2(490) -> 155
, 2_2(497) -> 496
, 2_2(498) -> 155
, 2_2(505) -> 504
, 2_2(506) -> 97
, 2_2(513) -> 512
, 2_2(514) -> 187
, 2_2(521) -> 520
, 2_2(522) -> 165
, 2_2(529) -> 528
, 2_2(530) -> 171
, 2_2(537) -> 536
, 2_2(545) -> 544
, 2_2(546) -> 545
, 2_2(551) -> 550
, 2_2(552) -> 551
, 2_2(553) -> 552
, 4_0(1) -> 1
, 4_1(1) -> 42
, 4_1(5) -> 4
, 4_1(6) -> 5
, 4_1(10) -> 142
, 4_1(11) -> 42
, 4_1(15) -> 14
, 4_1(16) -> 15
, 4_1(18) -> 24
, 4_1(24) -> 178
, 4_1(25) -> 24
, 4_1(33) -> 32
, 4_1(34) -> 134
, 4_1(40) -> 39
, 4_1(41) -> 40
, 4_1(42) -> 201
, 4_1(48) -> 80
, 4_1(49) -> 1
, 4_1(49) -> 10
, 4_1(49) -> 88
, 4_1(49) -> 96
, 4_1(49) -> 109
, 4_1(49) -> 276
, 4_1(55) -> 54
, 4_1(60) -> 59
, 4_1(63) -> 62
, 4_1(65) -> 64
, 4_1(69) -> 68
, 4_1(73) -> 252
, 4_1(78) -> 77
, 4_1(79) -> 231
, 4_1(81) -> 42
, 4_1(83) -> 82
, 4_1(87) -> 86
, 4_1(88) -> 127
, 4_1(89) -> 42
, 4_1(91) -> 90
, 4_1(109) -> 226
, 4_1(110) -> 49
, 4_1(112) -> 111
, 4_1(117) -> 81
, 4_1(122) -> 40
, 4_1(128) -> 127
, 4_1(130) -> 42
, 4_1(131) -> 130
, 4_1(134) -> 133
, 4_1(135) -> 134
, 4_1(139) -> 138
, 4_1(140) -> 139
, 4_1(142) -> 141
, 4_1(148) -> 147
, 4_1(149) -> 148
, 4_1(150) -> 334
, 4_1(153) -> 152
, 4_1(154) -> 153
, 4_1(161) -> 242
, 4_1(163) -> 162
, 4_1(173) -> 89
, 4_1(178) -> 177
, 4_1(180) -> 179
, 4_1(181) -> 180
, 4_1(186) -> 185
, 4_1(189) -> 2
, 4_1(192) -> 191
, 4_1(198) -> 197
, 4_1(199) -> 198
, 4_1(211) -> 74
, 4_1(218) -> 217
, 4_1(227) -> 226
, 4_1(231) -> 230
, 4_1(235) -> 234
, 4_1(240) -> 239
, 4_1(252) -> 251
, 4_1(253) -> 252
, 4_1(266) -> 265
, 4_1(319) -> 318
, 4_1(330) -> 110
, 4_1(478) -> 233
, 4_2(1) -> 277
, 4_2(11) -> 210
, 4_2(24) -> 294
, 4_2(26) -> 277
, 4_2(30) -> 303
, 4_2(48) -> 359
, 4_2(49) -> 277
, 4_2(81) -> 277
, 4_2(85) -> 210
, 4_2(87) -> 368
, 4_2(89) -> 210
, 4_2(99) -> 377
, 4_2(115) -> 210
, 4_2(117) -> 210
, 4_2(127) -> 386
, 4_2(130) -> 210
, 4_2(142) -> 395
, 4_2(144) -> 210
, 4_2(150) -> 404
, 4_2(206) -> 205
, 4_2(207) -> 206
, 4_2(210) -> 209
, 4_2(238) -> 210
, 4_2(255) -> 254
, 4_2(259) -> 258
, 4_2(260) -> 259
, 4_2(273) -> 272
, 4_2(278) -> 210
, 4_2(282) -> 281
, 4_2(290) -> 289
, 4_2(299) -> 298
, 4_2(315) -> 314
, 4_2(322) -> 321
, 4_2(325) -> 324
, 4_2(328) -> 327
, 4_2(335) -> 116
, 4_2(336) -> 335
, 4_2(337) -> 336
, 4_2(342) -> 341
, 4_2(343) -> 88
, 4_2(343) -> 113
, 4_2(343) -> 116
, 4_2(343) -> 155
, 4_2(344) -> 343
, 4_2(345) -> 344
, 4_2(350) -> 349
, 4_2(351) -> 155
, 4_2(352) -> 351
, 4_2(353) -> 352
, 4_2(358) -> 357
, 4_2(360) -> 113
, 4_2(361) -> 360
, 4_2(362) -> 361
, 4_2(367) -> 366
, 4_2(369) -> 97
, 4_2(370) -> 369
, 4_2(371) -> 370
, 4_2(376) -> 375
, 4_2(378) -> 187
, 4_2(379) -> 378
, 4_2(380) -> 379
, 4_2(385) -> 384
, 4_2(387) -> 165
, 4_2(388) -> 387
, 4_2(389) -> 388
, 4_2(394) -> 393
, 4_2(396) -> 171
, 4_2(397) -> 396
, 4_2(398) -> 397
, 4_2(403) -> 402
, 4_2(409) -> 408
, 4_2(423) -> 422
, 4_2(430) -> 429
, 4_2(444) -> 443
, 4_2(458) -> 457
, 4_2(465) -> 464
, 4_2(472) -> 471
, 4_2(485) -> 484
, 4_2(493) -> 492
, 4_2(501) -> 500
, 4_2(509) -> 508
, 4_2(517) -> 516
, 4_2(525) -> 524
, 4_2(533) -> 532
, 4_2(554) -> 553
, 5_0(1) -> 1
, 5_1(1) -> 26
, 5_1(2) -> 1
, 5_1(2) -> 9
, 5_1(2) -> 16
, 5_1(2) -> 18
, 5_1(2) -> 25
, 5_1(2) -> 26
, 5_1(2) -> 41
, 5_1(2) -> 56
, 5_1(2) -> 88
, 5_1(2) -> 116
, 5_1(2) -> 414
, 5_1(9) -> 8
, 5_1(10) -> 9
, 5_1(17) -> 16
, 5_1(26) -> 129
, 5_1(29) -> 28
, 5_1(39) -> 38
, 5_1(42) -> 41
, 5_1(48) -> 56
, 5_1(57) -> 49
, 5_1(58) -> 57
, 5_1(67) -> 2
, 5_1(72) -> 71
, 5_1(75) -> 74
, 5_1(82) -> 81
, 5_1(84) -> 83
, 5_1(95) -> 94
, 5_1(96) -> 95
, 5_1(103) -> 102
, 5_1(109) -> 122
, 5_1(122) -> 121
, 5_1(127) -> 126
, 5_1(141) -> 140
, 5_1(143) -> 9
, 5_1(147) -> 146
, 5_1(161) -> 160
, 5_1(162) -> 19
, 5_1(174) -> 173
, 5_1(175) -> 174
, 5_1(176) -> 175
, 5_1(182) -> 181
, 5_1(193) -> 192
, 5_1(197) -> 196
, 5_1(215) -> 214
, 5_1(217) -> 216
, 5_1(230) -> 229
, 5_1(237) -> 236
, 5_1(239) -> 238
, 5_1(244) -> 243
, 5_1(263) -> 89
, 5_2(82) -> 262
, 5_2(202) -> 16
, 5_2(205) -> 204
, 5_2(270) -> 269
, 5_2(279) -> 278
, 5_2(287) -> 286
, 5_2(296) -> 295
, 5_2(321) -> 154}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(2(3(5(2(0(2(x1))))))) -> 5(2(2(4(4(1(2(5(5(2(x1))))))))))
, 5(1(1(3(1(0(4(x1))))))) -> 5(1(2(3(1(4(4(5(3(3(x1))))))))))
, 5(0(2(0(5(1(5(x1))))))) -> 5(0(0(0(0(3(2(4(3(5(x1))))))))))
, 3(3(5(0(1(5(2(x1))))))) -> 3(1(5(1(1(2(4(3(1(3(x1))))))))))
, 3(3(0(4(0(0(4(x1))))))) -> 3(3(3(1(1(5(4(4(5(4(x1))))))))))
, 3(0(3(0(5(2(5(x1))))))) -> 3(3(1(2(3(3(1(2(1(5(x1))))))))))
, 2(4(5(1(0(0(2(x1))))))) -> 4(3(1(2(1(3(4(1(5(1(x1))))))))))
, 0(2(3(1(5(0(1(x1))))))) -> 4(5(5(3(4(1(0(4(2(2(x1))))))))))
, 0(2(3(1(0(2(4(x1))))))) -> 3(3(1(0(4(2(1(2(4(3(x1))))))))))
, 0(1(0(4(0(0(2(x1))))))) -> 5(5(3(4(2(0(5(2(2(3(x1))))))))))
, 0(1(0(0(0(4(2(x1))))))) -> 3(2(5(2(0(4(2(3(4(1(x1))))))))))
, 0(0(4(3(0(1(5(x1))))))) -> 2(5(4(5(1(2(4(1(0(5(x1))))))))))
, 0(0(2(0(0(4(2(x1))))))) -> 1(3(4(1(0(0(5(5(2(4(x1))))))))))
, 3(5(1(0(5(1(x1)))))) -> 5(3(0(1(3(1(0(5(3(4(x1))))))))))
, 3(1(5(1(1(5(x1)))))) -> 3(3(0(3(3(0(3(2(2(0(x1))))))))))
, 2(5(4(0(0(1(x1)))))) -> 4(4(2(4(1(0(1(1(0(1(x1))))))))))
, 2(5(0(4(3(0(x1)))))) -> 2(4(1(2(2(0(5(5(2(0(x1))))))))))
, 2(5(0(0(3(5(x1)))))) -> 4(1(3(3(3(5(4(0(5(5(x1))))))))))
, 2(0(0(1(3(5(x1)))))) -> 4(2(4(0(2(4(4(1(3(5(x1))))))))))
, 1(1(0(4(0(4(x1)))))) -> 1(2(1(3(4(4(5(4(4(2(x1))))))))))
, 0(4(0(0(4(2(x1)))))) -> 0(2(2(3(5(4(4(3(1(4(x1))))))))))
, 0(3(0(5(0(2(x1)))))) -> 4(2(1(2(4(4(0(0(1(1(x1))))))))))
, 0(2(5(2(5(2(x1)))))) -> 3(2(1(1(1(1(5(1(4(3(x1))))))))))
, 0(2(4(0(2(4(x1)))))) -> 5(0(5(4(2(2(0(1(4(2(x1))))))))))
, 0(1(0(4(0(1(x1)))))) -> 0(3(0(3(3(3(0(1(1(4(x1))))))))))
, 0(0(2(2(5(4(x1)))))) -> 1(4(5(5(5(2(4(4(4(3(x1))))))))))
, 0(0(2(0(2(4(x1)))))) -> 5(2(3(4(4(5(2(1(4(1(x1))))))))))
, 0(0(0(2(2(5(x1)))))) -> 1(3(2(1(4(2(0(1(4(0(x1))))))))))
, 5(4(5(0(2(x1))))) -> 5(4(0(3(4(5(2(1(3(1(x1))))))))))
, 5(3(3(5(1(x1))))) -> 5(3(2(5(4(4(1(1(4(4(x1))))))))))
, 3(3(5(0(1(x1))))) -> 3(2(4(1(1(0(5(1(2(4(x1))))))))))
, 3(0(2(2(1(x1))))) -> 3(2(0(5(4(1(3(1(4(3(x1))))))))))
, 3(0(0(1(5(x1))))) -> 3(2(4(3(2(2(1(2(0(5(x1))))))))))
, 0(2(0(4(1(x1))))) -> 2(3(0(3(2(4(2(0(4(1(x1))))))))))
, 0(2(0(0(1(x1))))) -> 0(2(2(0(5(4(4(3(4(1(x1))))))))))
, 4(5(1(0(x1)))) -> 2(0(3(2(4(2(5(2(2(2(x1))))))))))
, 0(4(5(4(x1)))) -> 1(1(5(4(1(2(4(1(4(3(x1))))))))))
, 0(2(2(1(x1)))) -> 3(0(5(2(1(1(2(2(3(1(x1))))))))))
, 0(1(2(5(x1)))) -> 1(4(3(0(3(4(4(2(3(5(x1))))))))))
, 1(5(1(x1))) -> 1(5(3(2(4(3(0(3(2(4(x1))))))))))
, 0(2(0(x1))) -> 3(0(0(3(2(2(2(4(1(3(x1))))))))))
, 0(0(1(x1))) -> 5(4(2(1(4(1(3(4(2(2(x1))))))))))
, 0(1(x1)) -> 4(4(4(2(1(0(3(4(1(4(x1))))))))))
, 0(1(x1)) -> 4(4(2(4(2(3(3(1(3(3(x1))))))))))
, 0(1(x1)) -> 2(0(3(4(3(1(1(2(1(3(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(2(3(5(2(0(2(x1))))))) -> 5(2(2(4(4(1(2(5(5(2(x1))))))))))
, 5(1(1(3(1(0(4(x1))))))) -> 5(1(2(3(1(4(4(5(3(3(x1))))))))))
, 5(0(2(0(5(1(5(x1))))))) -> 5(0(0(0(0(3(2(4(3(5(x1))))))))))
, 3(3(5(0(1(5(2(x1))))))) -> 3(1(5(1(1(2(4(3(1(3(x1))))))))))
, 3(3(0(4(0(0(4(x1))))))) -> 3(3(3(1(1(5(4(4(5(4(x1))))))))))
, 3(0(3(0(5(2(5(x1))))))) -> 3(3(1(2(3(3(1(2(1(5(x1))))))))))
, 2(4(5(1(0(0(2(x1))))))) -> 4(3(1(2(1(3(4(1(5(1(x1))))))))))
, 0(2(3(1(5(0(1(x1))))))) -> 4(5(5(3(4(1(0(4(2(2(x1))))))))))
, 0(2(3(1(0(2(4(x1))))))) -> 3(3(1(0(4(2(1(2(4(3(x1))))))))))
, 0(1(0(4(0(0(2(x1))))))) -> 5(5(3(4(2(0(5(2(2(3(x1))))))))))
, 0(1(0(0(0(4(2(x1))))))) -> 3(2(5(2(0(4(2(3(4(1(x1))))))))))
, 0(0(4(3(0(1(5(x1))))))) -> 2(5(4(5(1(2(4(1(0(5(x1))))))))))
, 0(0(2(0(0(4(2(x1))))))) -> 1(3(4(1(0(0(5(5(2(4(x1))))))))))
, 3(5(1(0(5(1(x1)))))) -> 5(3(0(1(3(1(0(5(3(4(x1))))))))))
, 3(1(5(1(1(5(x1)))))) -> 3(3(0(3(3(0(3(2(2(0(x1))))))))))
, 2(5(4(0(0(1(x1)))))) -> 4(4(2(4(1(0(1(1(0(1(x1))))))))))
, 2(5(0(4(3(0(x1)))))) -> 2(4(1(2(2(0(5(5(2(0(x1))))))))))
, 2(5(0(0(3(5(x1)))))) -> 4(1(3(3(3(5(4(0(5(5(x1))))))))))
, 2(0(0(1(3(5(x1)))))) -> 4(2(4(0(2(4(4(1(3(5(x1))))))))))
, 1(1(0(4(0(4(x1)))))) -> 1(2(1(3(4(4(5(4(4(2(x1))))))))))
, 0(4(0(0(4(2(x1)))))) -> 0(2(2(3(5(4(4(3(1(4(x1))))))))))
, 0(3(0(5(0(2(x1)))))) -> 4(2(1(2(4(4(0(0(1(1(x1))))))))))
, 0(2(5(2(5(2(x1)))))) -> 3(2(1(1(1(1(5(1(4(3(x1))))))))))
, 0(2(4(0(2(4(x1)))))) -> 5(0(5(4(2(2(0(1(4(2(x1))))))))))
, 0(1(0(4(0(1(x1)))))) -> 0(3(0(3(3(3(0(1(1(4(x1))))))))))
, 0(0(2(2(5(4(x1)))))) -> 1(4(5(5(5(2(4(4(4(3(x1))))))))))
, 0(0(2(0(2(4(x1)))))) -> 5(2(3(4(4(5(2(1(4(1(x1))))))))))
, 0(0(0(2(2(5(x1)))))) -> 1(3(2(1(4(2(0(1(4(0(x1))))))))))
, 5(4(5(0(2(x1))))) -> 5(4(0(3(4(5(2(1(3(1(x1))))))))))
, 5(3(3(5(1(x1))))) -> 5(3(2(5(4(4(1(1(4(4(x1))))))))))
, 3(3(5(0(1(x1))))) -> 3(2(4(1(1(0(5(1(2(4(x1))))))))))
, 3(0(2(2(1(x1))))) -> 3(2(0(5(4(1(3(1(4(3(x1))))))))))
, 3(0(0(1(5(x1))))) -> 3(2(4(3(2(2(1(2(0(5(x1))))))))))
, 0(2(0(4(1(x1))))) -> 2(3(0(3(2(4(2(0(4(1(x1))))))))))
, 0(2(0(0(1(x1))))) -> 0(2(2(0(5(4(4(3(4(1(x1))))))))))
, 4(5(1(0(x1)))) -> 2(0(3(2(4(2(5(2(2(2(x1))))))))))
, 0(4(5(4(x1)))) -> 1(1(5(4(1(2(4(1(4(3(x1))))))))))
, 0(2(2(1(x1)))) -> 3(0(5(2(1(1(2(2(3(1(x1))))))))))
, 0(1(2(5(x1)))) -> 1(4(3(0(3(4(4(2(3(5(x1))))))))))
, 1(5(1(x1))) -> 1(5(3(2(4(3(0(3(2(4(x1))))))))))
, 0(2(0(x1))) -> 3(0(0(3(2(2(2(4(1(3(x1))))))))))
, 0(0(1(x1))) -> 5(4(2(1(4(1(3(4(2(2(x1))))))))))
, 0(1(x1)) -> 4(4(4(2(1(0(3(4(1(4(x1))))))))))
, 0(1(x1)) -> 4(4(2(4(2(3(3(1(3(3(x1))))))))))
, 0(1(x1)) -> 2(0(3(4(3(1(1(2(1(3(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(2(3(5(2(0(2(x1))))))) -> 5(2(2(4(4(1(2(5(5(2(x1))))))))))
, 5(1(1(3(1(0(4(x1))))))) -> 5(1(2(3(1(4(4(5(3(3(x1))))))))))
, 5(0(2(0(5(1(5(x1))))))) -> 5(0(0(0(0(3(2(4(3(5(x1))))))))))
, 3(3(5(0(1(5(2(x1))))))) -> 3(1(5(1(1(2(4(3(1(3(x1))))))))))
, 3(3(0(4(0(0(4(x1))))))) -> 3(3(3(1(1(5(4(4(5(4(x1))))))))))
, 3(0(3(0(5(2(5(x1))))))) -> 3(3(1(2(3(3(1(2(1(5(x1))))))))))
, 2(4(5(1(0(0(2(x1))))))) -> 4(3(1(2(1(3(4(1(5(1(x1))))))))))
, 0(2(3(1(5(0(1(x1))))))) -> 4(5(5(3(4(1(0(4(2(2(x1))))))))))
, 0(2(3(1(0(2(4(x1))))))) -> 3(3(1(0(4(2(1(2(4(3(x1))))))))))
, 0(1(0(4(0(0(2(x1))))))) -> 5(5(3(4(2(0(5(2(2(3(x1))))))))))
, 0(1(0(0(0(4(2(x1))))))) -> 3(2(5(2(0(4(2(3(4(1(x1))))))))))
, 0(0(4(3(0(1(5(x1))))))) -> 2(5(4(5(1(2(4(1(0(5(x1))))))))))
, 0(0(2(0(0(4(2(x1))))))) -> 1(3(4(1(0(0(5(5(2(4(x1))))))))))
, 3(5(1(0(5(1(x1)))))) -> 5(3(0(1(3(1(0(5(3(4(x1))))))))))
, 3(1(5(1(1(5(x1)))))) -> 3(3(0(3(3(0(3(2(2(0(x1))))))))))
, 2(5(4(0(0(1(x1)))))) -> 4(4(2(4(1(0(1(1(0(1(x1))))))))))
, 2(5(0(4(3(0(x1)))))) -> 2(4(1(2(2(0(5(5(2(0(x1))))))))))
, 2(5(0(0(3(5(x1)))))) -> 4(1(3(3(3(5(4(0(5(5(x1))))))))))
, 2(0(0(1(3(5(x1)))))) -> 4(2(4(0(2(4(4(1(3(5(x1))))))))))
, 1(1(0(4(0(4(x1)))))) -> 1(2(1(3(4(4(5(4(4(2(x1))))))))))
, 0(4(0(0(4(2(x1)))))) -> 0(2(2(3(5(4(4(3(1(4(x1))))))))))
, 0(3(0(5(0(2(x1)))))) -> 4(2(1(2(4(4(0(0(1(1(x1))))))))))
, 0(2(5(2(5(2(x1)))))) -> 3(2(1(1(1(1(5(1(4(3(x1))))))))))
, 0(2(4(0(2(4(x1)))))) -> 5(0(5(4(2(2(0(1(4(2(x1))))))))))
, 0(1(0(4(0(1(x1)))))) -> 0(3(0(3(3(3(0(1(1(4(x1))))))))))
, 0(0(2(2(5(4(x1)))))) -> 1(4(5(5(5(2(4(4(4(3(x1))))))))))
, 0(0(2(0(2(4(x1)))))) -> 5(2(3(4(4(5(2(1(4(1(x1))))))))))
, 0(0(0(2(2(5(x1)))))) -> 1(3(2(1(4(2(0(1(4(0(x1))))))))))
, 5(4(5(0(2(x1))))) -> 5(4(0(3(4(5(2(1(3(1(x1))))))))))
, 5(3(3(5(1(x1))))) -> 5(3(2(5(4(4(1(1(4(4(x1))))))))))
, 3(3(5(0(1(x1))))) -> 3(2(4(1(1(0(5(1(2(4(x1))))))))))
, 3(0(2(2(1(x1))))) -> 3(2(0(5(4(1(3(1(4(3(x1))))))))))
, 3(0(0(1(5(x1))))) -> 3(2(4(3(2(2(1(2(0(5(x1))))))))))
, 0(2(0(4(1(x1))))) -> 2(3(0(3(2(4(2(0(4(1(x1))))))))))
, 0(2(0(0(1(x1))))) -> 0(2(2(0(5(4(4(3(4(1(x1))))))))))
, 4(5(1(0(x1)))) -> 2(0(3(2(4(2(5(2(2(2(x1))))))))))
, 0(4(5(4(x1)))) -> 1(1(5(4(1(2(4(1(4(3(x1))))))))))
, 0(2(2(1(x1)))) -> 3(0(5(2(1(1(2(2(3(1(x1))))))))))
, 0(1(2(5(x1)))) -> 1(4(3(0(3(4(4(2(3(5(x1))))))))))
, 1(5(1(x1))) -> 1(5(3(2(4(3(0(3(2(4(x1))))))))))
, 0(2(0(x1))) -> 3(0(0(3(2(2(2(4(1(3(x1))))))))))
, 0(0(1(x1))) -> 5(4(2(1(4(1(3(4(2(2(x1))))))))))
, 0(1(x1)) -> 4(4(4(2(1(0(3(4(1(4(x1))))))))))
, 0(1(x1)) -> 4(4(2(4(2(3(3(1(3(3(x1))))))))))
, 0(1(x1)) -> 2(0(3(4(3(1(1(2(1(3(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..