Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 5(4(4(1(2(4(5(x1))))))) -> 2(1(5(3(2(1(5(0(3(5(x1))))))))))
, 5(4(0(0(2(3(4(x1))))))) -> 2(5(3(1(5(0(4(0(3(4(x1))))))))))
, 5(1(2(3(2(4(5(x1))))))) -> 5(5(2(2(2(1(5(4(4(4(x1))))))))))
, 4(5(4(2(1(2(4(x1))))))) -> 3(4(3(4(3(0(0(1(3(0(x1))))))))))
, 4(4(3(1(2(3(1(x1))))))) -> 3(3(0(5(2(0(0(2(5(4(x1))))))))))
, 4(2(4(5(5(5(0(x1))))))) -> 4(4(1(3(0(2(5(4(2(0(x1))))))))))
, 4(2(2(4(5(4(2(x1))))))) -> 3(1(0(1(4(1(2(5(3(3(x1))))))))))
, 4(1(5(3(4(1(5(x1))))))) -> 4(1(2(3(4(3(3(5(2(5(x1))))))))))
, 3(4(2(4(3(5(3(x1))))))) -> 1(3(4(1(0(2(2(2(5(3(x1))))))))))
, 3(4(2(4(0(0(4(x1))))))) -> 4(4(4(2(2(0(3(0(5(5(x1))))))))))
, 3(4(1(0(4(2(1(x1))))))) -> 1(3(5(5(3(3(2(5(2(1(x1))))))))))
, 2(4(1(0(4(3(2(x1))))))) -> 0(3(5(2(0(5(3(2(0(3(x1))))))))))
, 2(3(4(1(1(5(3(x1))))))) -> 1(4(4(5(2(2(5(1(5(3(x1))))))))))
, 2(1(2(4(1(2(4(x1))))))) -> 2(5(0(1(5(5(2(5(1(1(x1))))))))))
, 2(0(1(1(1(2(1(x1))))))) -> 2(2(0(4(3(1(2(2(5(5(x1))))))))))
, 1(5(3(5(4(4(2(x1))))))) -> 2(5(3(2(5(3(1(0(1(3(x1))))))))))
, 1(3(1(3(1(5(0(x1))))))) -> 1(1(3(2(5(2(2(3(2(5(x1))))))))))
, 1(2(0(1(5(0(1(x1))))))) -> 0(3(0(4(0(4(1(4(3(0(x1))))))))))
, 1(1(4(2(4(4(5(x1))))))) -> 1(4(4(1(3(5(1(1(2(5(x1))))))))))
, 1(1(3(5(4(0(1(x1))))))) -> 1(0(2(3(5(0(2(2(5(0(x1))))))))))
, 1(1(1(5(4(3(0(x1))))))) -> 1(2(5(5(2(0(0(1(3(0(x1))))))))))
, 1(1(1(1(4(5(5(x1))))))) -> 5(0(5(2(2(5(0(0(5(5(x1))))))))))
, 1(1(1(1(4(0(4(x1))))))) -> 5(2(5(4(1(5(0(2(0(4(x1))))))))))
, 0(4(2(4(5(1(1(x1))))))) -> 2(5(5(2(1(3(3(3(0(1(x1))))))))))
, 0(4(0(0(4(2(1(x1))))))) -> 2(3(0(0(0(1(2(5(2(5(x1))))))))))
, 0(3(1(2(3(3(1(x1))))))) -> 2(5(0(3(0(3(4(5(3(1(x1))))))))))
, 0(1(1(0(5(5(0(x1))))))) -> 0(0(3(3(2(2(1(4(2(0(x1))))))))))
, 5(5(3(0(0(3(x1)))))) -> 5(5(2(2(2(5(2(0(0(3(x1))))))))))
, 4(5(2(4(2(4(x1)))))) -> 2(0(4(4(3(1(2(2(5(5(x1))))))))))
, 4(5(2(3(4(1(x1)))))) -> 3(0(3(4(3(3(2(5(3(0(x1))))))))))
, 4(2(4(4(5(0(x1)))))) -> 3(3(5(1(2(2(5(1(0(0(x1))))))))))
, 4(1(1(4(5(1(x1)))))) -> 3(3(2(5(1(4(3(2(3(0(x1))))))))))
, 4(0(1(1(5(2(x1)))))) -> 2(2(1(1(2(5(1(2(1(3(x1))))))))))
, 4(0(0(1(1(0(x1)))))) -> 4(2(3(3(0(2(2(5(4(5(x1))))))))))
, 2(5(0(1(1(5(x1)))))) -> 2(0(4(1(5(4(4(2(5(3(x1))))))))))
, 2(4(2(4(5(2(x1)))))) -> 0(3(2(5(3(2(3(5(3(2(x1))))))))))
, 2(3(4(2(3(1(x1)))))) -> 2(2(2(5(5(2(0(0(5(4(x1))))))))))
, 1(5(2(4(1(0(x1)))))) -> 0(3(4(4(0(4(1(2(3(4(x1))))))))))
, 1(5(0(1(5(5(x1)))))) -> 2(5(5(3(4(3(2(0(3(4(x1))))))))))
, 1(4(4(1(1(5(x1)))))) -> 0(2(1(3(3(2(1(3(5(4(x1))))))))))
, 0(5(4(2(4(5(x1)))))) -> 3(1(5(3(0(3(5(2(5(3(x1))))))))))
, 0(5(1(2(4(5(x1)))))) -> 0(4(3(2(5(2(3(2(2(5(x1))))))))))
, 0(0(2(4(0(1(x1)))))) -> 2(2(1(2(2(3(1(2(5(1(x1))))))))))
, 3(1(2(4(1(x1))))) -> 4(2(2(1(4(2(0(3(5(3(x1))))))))))
, 1(3(4(2(4(x1))))) -> 1(4(2(0(3(4(0(2(5(1(x1))))))))))
, 0(1(1(5(1(x1))))) -> 4(0(2(2(2(5(2(4(2(5(x1))))))))))
, 0(0(2(4(1(x1))))) -> 3(5(0(1(4(0(3(0(4(1(x1))))))))))
, 4(5(1(1(x1)))) -> 4(5(2(0(3(2(5(3(4(1(x1))))))))))
, 4(0(1(0(x1)))) -> 3(5(2(2(2(5(1(0(2(5(x1))))))))))
, 4(0(1(0(x1)))) -> 2(2(5(4(0(2(0(0(2(5(x1))))))))))
, 3(2(2(4(x1)))) -> 4(2(0(2(0(4(1(3(2(0(x1))))))))))
, 1(1(5(5(x1)))) -> 2(2(0(2(1(3(0(3(0(4(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ 5_0(1) -> 1
, 5_1(1) -> 10
, 5_1(3) -> 10
, 5_1(4) -> 3
, 5_1(8) -> 7
, 5_1(10) -> 79
, 5_1(11) -> 2
, 5_1(14) -> 13
, 5_1(17) -> 459
, 5_1(18) -> 42
, 5_1(19) -> 1
, 5_1(19) -> 10
, 5_1(19) -> 79
, 5_1(19) -> 86
, 5_1(19) -> 111
, 5_1(19) -> 410
, 5_1(20) -> 19
, 5_1(25) -> 24
, 5_1(34) -> 265
, 5_1(35) -> 189
, 5_1(38) -> 37
, 5_1(43) -> 10
, 5_1(49) -> 48
, 5_1(57) -> 56
, 5_1(58) -> 73
, 5_1(65) -> 64
, 5_1(66) -> 10
, 5_1(72) -> 398
, 5_1(80) -> 67
, 5_1(81) -> 80
, 5_1(85) -> 84
, 5_1(86) -> 410
, 5_1(87) -> 10
, 5_1(89) -> 88
, 5_1(92) -> 91
, 5_1(97) -> 96
, 5_1(100) -> 99
, 5_1(104) -> 103
, 5_1(105) -> 104
, 5_1(111) -> 110
, 5_1(153) -> 152
, 5_1(172) -> 171
, 5_1(181) -> 180
, 5_1(183) -> 10
, 5_1(186) -> 185
, 5_1(191) -> 190
, 5_1(192) -> 191
, 5_1(193) -> 2
, 5_1(194) -> 193
, 5_1(197) -> 196
, 5_1(199) -> 198
, 5_1(202) -> 201
, 5_1(206) -> 11
, 5_1(241) -> 240
, 5_1(256) -> 23
, 5_1(264) -> 398
, 5_1(266) -> 36
, 5_1(270) -> 269
, 5_1(272) -> 271
, 5_1(279) -> 278
, 5_1(301) -> 300
, 5_1(303) -> 302
, 5_1(319) -> 318
, 5_1(323) -> 322
, 5_1(326) -> 325
, 5_1(327) -> 326
, 5_1(395) -> 51
, 5_1(399) -> 10
, 5_1(402) -> 401
, 5_1(437) -> 436
, 5_1(439) -> 27
, 5_1(455) -> 43
, 5_1(460) -> 459
, 5_1(473) -> 472
, 5_1(484) -> 122
, 5_2(183) -> 483
, 5_2(428) -> 427
, 5_2(447) -> 446
, 5_2(462) -> 461
, 5_2(467) -> 466
, 5_2(476) -> 475
, 5_2(480) -> 479
, 5_2(495) -> 494
, 5_2(547) -> 410
, 5_2(548) -> 547
, 5_2(553) -> 552
, 5_2(563) -> 562
, 5_2(568) -> 567
, 5_2(569) -> 568
, 5_2(573) -> 572
, 5_2(576) -> 575
, 5_2(580) -> 579
, 5_2(582) -> 581
, 5_2(584) -> 583
, 1_0(1) -> 1
, 1_1(1) -> 86
, 1_1(3) -> 2
, 1_1(7) -> 6
, 1_1(13) -> 12
, 1_1(24) -> 23
, 1_1(34) -> 33
, 1_1(42) -> 100
, 1_1(43) -> 86
, 1_1(45) -> 44
, 1_1(49) -> 255
, 1_1(51) -> 27
, 1_1(53) -> 52
, 1_1(55) -> 54
, 1_1(57) -> 156
, 1_1(58) -> 156
, 1_1(59) -> 43
, 1_1(65) -> 182
, 1_1(66) -> 1
, 1_1(66) -> 17
, 1_1(66) -> 35
, 1_1(66) -> 58
, 1_1(66) -> 86
, 1_1(66) -> 111
, 1_1(66) -> 156
, 1_1(66) -> 204
, 1_1(66) -> 324
, 1_1(66) -> 364
, 1_1(66) -> 460
, 1_1(69) -> 68
, 1_1(73) -> 100
, 1_1(86) -> 111
, 1_1(103) -> 102
, 1_1(126) -> 125
, 1_1(155) -> 154
, 1_1(169) -> 66
, 1_1(178) -> 177
, 1_1(179) -> 96
, 1_1(182) -> 181
, 1_1(197) -> 270
, 1_1(201) -> 200
, 1_1(209) -> 208
, 1_1(230) -> 229
, 1_1(267) -> 266
, 1_1(273) -> 272
, 1_1(276) -> 122
, 1_1(277) -> 276
, 1_1(280) -> 279
, 1_1(302) -> 123
, 1_1(364) -> 363
, 1_1(390) -> 389
, 1_1(394) -> 393
, 1_1(409) -> 408
, 1_1(417) -> 416
, 1_1(441) -> 440
, 1_1(474) -> 473
, 1_1(503) -> 502
, 1_1(514) -> 513
, 1_2(45) -> 591
, 1_2(59) -> 454
, 1_2(169) -> 469
, 1_2(423) -> 422
, 1_2(449) -> 448
, 1_2(481) -> 480
, 1_2(510) -> 509
, 1_2(527) -> 526
, 1_2(552) -> 551
, 1_2(575) -> 574
, 1_2(586) -> 585
, 1_2(598) -> 597
, 4_0(1) -> 1
, 4_1(1) -> 18
, 4_1(3) -> 18
, 4_1(10) -> 301
, 4_1(16) -> 15
, 4_1(18) -> 26
, 4_1(19) -> 18
, 4_1(20) -> 18
, 4_1(26) -> 25
, 4_1(28) -> 27
, 4_1(30) -> 29
, 4_1(34) -> 178
, 4_1(42) -> 239
, 4_1(43) -> 1
, 4_1(43) -> 17
, 4_1(43) -> 18
, 4_1(43) -> 35
, 4_1(43) -> 58
, 4_1(43) -> 212
, 4_1(43) -> 241
, 4_1(43) -> 301
, 4_1(43) -> 323
, 4_1(43) -> 445
, 4_1(44) -> 43
, 4_1(50) -> 49
, 4_1(51) -> 18
, 4_1(54) -> 53
, 4_1(62) -> 61
, 4_1(65) -> 438
, 4_1(66) -> 18
, 4_1(68) -> 67
, 4_1(72) -> 304
, 4_1(74) -> 44
, 4_1(86) -> 445
, 4_1(87) -> 18
, 4_1(95) -> 66
, 4_1(96) -> 95
, 4_1(123) -> 258
, 4_1(124) -> 123
, 4_1(175) -> 174
, 4_1(177) -> 176
, 4_1(183) -> 18
, 4_1(200) -> 199
, 4_1(240) -> 239
, 4_1(262) -> 261
, 4_1(274) -> 273
, 4_1(304) -> 303
, 4_1(328) -> 15
, 4_1(360) -> 88
, 4_1(361) -> 360
, 4_1(363) -> 362
, 4_1(368) -> 367
, 4_1(399) -> 87
, 4_1(418) -> 417
, 4_1(432) -> 431
, 4_1(442) -> 441
, 4_1(455) -> 18
, 4_1(485) -> 484
, 4_1(502) -> 501
, 4_2(3) -> 573
, 4_2(20) -> 531
, 4_2(66) -> 573
, 4_2(420) -> 241
, 4_2(424) -> 423
, 4_2(450) -> 449
, 4_2(454) -> 453
, 4_2(455) -> 555
, 4_2(461) -> 301
, 4_2(469) -> 468
, 4_2(496) -> 495
, 4_2(504) -> 323
, 4_2(504) -> 503
, 4_2(509) -> 508
, 4_2(554) -> 553
, 4_2(555) -> 554
, 4_2(559) -> 558
, 4_2(587) -> 586
, 4_2(591) -> 590
, 4_2(592) -> 403
, 4_2(597) -> 596
, 0_0(1) -> 1
, 0_1(1) -> 35
, 0_1(9) -> 8
, 0_1(15) -> 14
, 0_1(17) -> 16
, 0_1(18) -> 204
, 0_1(19) -> 197
, 0_1(32) -> 31
, 0_1(33) -> 32
, 0_1(34) -> 442
, 0_1(35) -> 197
, 0_1(37) -> 36
, 0_1(40) -> 39
, 0_1(41) -> 40
, 0_1(42) -> 329
, 0_1(43) -> 2
, 0_1(47) -> 46
, 0_1(52) -> 51
, 0_1(57) -> 94
, 0_1(58) -> 94
, 0_1(59) -> 35
, 0_1(65) -> 474
, 0_1(66) -> 35
, 0_1(70) -> 69
, 0_1(77) -> 76
, 0_1(78) -> 197
, 0_1(79) -> 78
, 0_1(86) -> 212
, 0_1(87) -> 1
, 0_1(87) -> 35
, 0_1(87) -> 86
, 0_1(87) -> 212
, 0_1(87) -> 324
, 0_1(91) -> 90
, 0_1(94) -> 257
, 0_1(102) -> 11
, 0_1(123) -> 122
, 0_1(155) -> 31
, 0_1(156) -> 155
, 0_1(174) -> 88
, 0_1(176) -> 175
, 0_1(183) -> 66
, 0_1(187) -> 186
, 0_1(193) -> 19
, 0_1(203) -> 202
, 0_1(212) -> 31
, 0_1(228) -> 87
, 0_1(229) -> 228
, 0_1(238) -> 237
, 0_1(258) -> 2
, 0_1(260) -> 27
, 0_1(298) -> 297
, 0_1(321) -> 419
, 0_1(324) -> 202
, 0_1(329) -> 328
, 0_1(362) -> 361
, 0_1(397) -> 396
, 0_1(409) -> 432
, 0_1(430) -> 429
, 0_1(433) -> 43
, 0_1(440) -> 439
, 0_1(443) -> 442
, 0_1(445) -> 444
, 0_1(457) -> 456
, 0_1(474) -> 491
, 0_1(486) -> 485
, 0_1(499) -> 295
, 0_1(501) -> 500
, 0_1(516) -> 515
, 0_2(43) -> 512
, 0_2(44) -> 600
, 0_2(59) -> 564
, 0_2(426) -> 425
, 0_2(448) -> 447
, 0_2(451) -> 450
, 0_2(453) -> 452
, 0_2(464) -> 463
, 0_2(481) -> 498
, 0_2(482) -> 481
, 0_2(497) -> 496
, 0_2(506) -> 505
, 0_2(508) -> 507
, 0_2(525) -> 524
, 0_2(529) -> 528
, 0_2(531) -> 530
, 0_2(557) -> 556
, 0_2(571) -> 570
, 0_2(572) -> 571
, 0_2(578) -> 577
, 0_2(585) -> 584
, 0_2(588) -> 587
, 0_2(590) -> 589
, 0_2(594) -> 593
, 0_2(596) -> 595
, 3_0(1) -> 1
, 3_1(1) -> 58
, 3_1(2) -> 58
, 3_1(5) -> 4
, 3_1(10) -> 9
, 3_1(12) -> 11
, 3_1(18) -> 17
, 3_1(19) -> 58
, 3_1(27) -> 1
, 3_1(27) -> 18
, 3_1(27) -> 26
, 3_1(27) -> 35
, 3_1(27) -> 197
, 3_1(27) -> 239
, 3_1(27) -> 301
, 3_1(27) -> 329
, 3_1(27) -> 445
, 3_1(29) -> 28
, 3_1(31) -> 30
, 3_1(34) -> 210
, 3_1(35) -> 34
, 3_1(36) -> 27
, 3_1(42) -> 394
, 3_1(43) -> 9
, 3_1(46) -> 45
, 3_1(50) -> 503
, 3_1(57) -> 57
, 3_1(58) -> 57
, 3_1(59) -> 34
, 3_1(61) -> 60
, 3_1(63) -> 62
, 3_1(64) -> 63
, 3_1(65) -> 82
, 3_1(66) -> 34
, 3_1(67) -> 66
, 3_1(71) -> 403
, 3_1(73) -> 321
, 3_1(78) -> 77
, 3_1(82) -> 81
, 3_1(83) -> 82
, 3_1(86) -> 241
, 3_1(88) -> 87
, 3_1(93) -> 92
, 3_1(125) -> 124
, 3_1(154) -> 153
, 3_1(170) -> 169
, 3_1(180) -> 179
, 3_1(185) -> 184
, 3_1(198) -> 57
, 3_1(204) -> 516
, 3_1(210) -> 209
, 3_1(211) -> 210
, 3_1(212) -> 211
, 3_1(237) -> 102
, 3_1(239) -> 238
, 3_1(252) -> 228
, 3_1(253) -> 252
, 3_1(261) -> 260
, 3_1(263) -> 262
, 3_1(264) -> 263
, 3_1(265) -> 321
, 3_1(275) -> 274
, 3_1(295) -> 57
, 3_1(296) -> 295
, 3_1(297) -> 296
, 3_1(320) -> 319
, 3_1(322) -> 321
, 3_1(324) -> 323
, 3_1(367) -> 206
, 3_1(371) -> 368
, 3_1(391) -> 390
, 3_1(392) -> 391
, 3_1(396) -> 395
, 3_1(398) -> 397
, 3_1(400) -> 399
, 3_1(401) -> 57
, 3_1(408) -> 407
, 3_1(431) -> 430
, 3_1(444) -> 443
, 3_1(445) -> 460
, 3_1(455) -> 34
, 3_1(458) -> 457
, 3_1(515) -> 514
, 3_2(59) -> 428
, 3_2(427) -> 426
, 3_2(446) -> 197
, 3_2(452) -> 451
, 3_2(455) -> 582
, 3_2(465) -> 464
, 3_2(468) -> 467
, 3_2(475) -> 15
, 3_2(511) -> 510
, 3_2(528) -> 527
, 3_2(530) -> 529
, 3_2(556) -> 301
, 3_2(558) -> 557
, 3_2(560) -> 559
, 3_2(561) -> 560
, 3_2(564) -> 563
, 3_2(574) -> 329
, 3_2(577) -> 576
, 3_2(579) -> 578
, 3_2(583) -> 491
, 3_2(589) -> 588
, 3_2(599) -> 598
, 2_0(1) -> 1
, 2_1(1) -> 324
, 2_1(2) -> 1
, 2_1(2) -> 10
, 2_1(2) -> 18
, 2_1(2) -> 35
, 2_1(2) -> 42
, 2_1(2) -> 50
, 2_1(2) -> 65
, 2_1(2) -> 85
, 2_1(2) -> 86
, 2_1(2) -> 94
, 2_1(2) -> 100
, 2_1(2) -> 111
, 2_1(2) -> 188
, 2_1(2) -> 197
, 2_1(2) -> 204
, 2_1(2) -> 301
, 2_1(2) -> 324
, 2_1(2) -> 364
, 2_1(6) -> 5
, 2_1(10) -> 65
, 2_1(16) -> 371
, 2_1(17) -> 364
, 2_1(19) -> 50
, 2_1(21) -> 20
, 2_1(22) -> 21
, 2_1(23) -> 22
, 2_1(31) -> 192
, 2_1(34) -> 275
, 2_1(35) -> 50
, 2_1(39) -> 38
, 2_1(42) -> 41
, 2_1(43) -> 65
, 2_1(48) -> 47
, 2_1(56) -> 55
, 2_1(58) -> 1
, 2_1(58) -> 35
, 2_1(58) -> 204
, 2_1(60) -> 59
, 2_1(64) -> 230
, 2_1(65) -> 71
, 2_1(71) -> 70
, 2_1(72) -> 71
, 2_1(73) -> 72
, 2_1(75) -> 74
, 2_1(76) -> 75
, 2_1(79) -> 132
, 2_1(82) -> 173
, 2_1(83) -> 21
, 2_1(84) -> 83
, 2_1(86) -> 85
, 2_1(90) -> 89
, 2_1(94) -> 93
, 2_1(98) -> 97
, 2_1(99) -> 98
, 2_1(110) -> 105
, 2_1(122) -> 2
, 2_1(132) -> 126
, 2_1(152) -> 12
, 2_1(156) -> 280
, 2_1(171) -> 170
, 2_1(173) -> 172
, 2_1(184) -> 183
, 2_1(188) -> 187
, 2_1(189) -> 188
, 2_1(190) -> 66
, 2_1(195) -> 194
, 2_1(196) -> 195
, 2_1(197) -> 256
, 2_1(198) -> 19
, 2_1(204) -> 203
, 2_1(208) -> 206
, 2_1(254) -> 253
, 2_1(255) -> 254
, 2_1(257) -> 256
, 2_1(265) -> 264
, 2_1(268) -> 267
, 2_1(269) -> 268
, 2_1(271) -> 36
, 2_1(278) -> 277
, 2_1(295) -> 43
, 2_1(299) -> 298
, 2_1(300) -> 299
, 2_1(318) -> 88
, 2_1(321) -> 320
, 2_1(325) -> 122
, 2_1(328) -> 327
, 2_1(389) -> 87
, 2_1(393) -> 392
, 2_1(401) -> 400
, 2_1(403) -> 402
, 2_1(406) -> 276
, 2_1(407) -> 406
, 2_1(410) -> 409
, 2_1(416) -> 295
, 2_1(419) -> 418
, 2_1(429) -> 95
, 2_1(434) -> 433
, 2_1(435) -> 434
, 2_1(436) -> 435
, 2_1(438) -> 437
, 2_1(456) -> 455
, 2_1(459) -> 458
, 2_1(470) -> 439
, 2_1(471) -> 470
, 2_1(472) -> 471
, 2_1(491) -> 486
, 2_1(500) -> 499
, 2_1(513) -> 123
, 2_2(421) -> 420
, 2_2(422) -> 421
, 2_2(425) -> 424
, 2_2(463) -> 462
, 2_2(466) -> 465
, 2_2(477) -> 476
, 2_2(478) -> 477
, 2_2(479) -> 478
, 2_2(483) -> 482
, 2_2(493) -> 15
, 2_2(494) -> 493
, 2_2(498) -> 497
, 2_2(505) -> 504
, 2_2(507) -> 506
, 2_2(512) -> 511
, 2_2(523) -> 111
, 2_2(524) -> 523
, 2_2(526) -> 525
, 2_2(549) -> 548
, 2_2(550) -> 549
, 2_2(551) -> 550
, 2_2(562) -> 561
, 2_2(565) -> 364
, 2_2(566) -> 565
, 2_2(567) -> 566
, 2_2(570) -> 569
, 2_2(581) -> 580
, 2_2(593) -> 592
, 2_2(595) -> 594
, 2_2(600) -> 599}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(4(4(1(2(4(5(x1))))))) -> 2(1(5(3(2(1(5(0(3(5(x1))))))))))
, 5(4(0(0(2(3(4(x1))))))) -> 2(5(3(1(5(0(4(0(3(4(x1))))))))))
, 5(1(2(3(2(4(5(x1))))))) -> 5(5(2(2(2(1(5(4(4(4(x1))))))))))
, 4(5(4(2(1(2(4(x1))))))) -> 3(4(3(4(3(0(0(1(3(0(x1))))))))))
, 4(4(3(1(2(3(1(x1))))))) -> 3(3(0(5(2(0(0(2(5(4(x1))))))))))
, 4(2(4(5(5(5(0(x1))))))) -> 4(4(1(3(0(2(5(4(2(0(x1))))))))))
, 4(2(2(4(5(4(2(x1))))))) -> 3(1(0(1(4(1(2(5(3(3(x1))))))))))
, 4(1(5(3(4(1(5(x1))))))) -> 4(1(2(3(4(3(3(5(2(5(x1))))))))))
, 3(4(2(4(3(5(3(x1))))))) -> 1(3(4(1(0(2(2(2(5(3(x1))))))))))
, 3(4(2(4(0(0(4(x1))))))) -> 4(4(4(2(2(0(3(0(5(5(x1))))))))))
, 3(4(1(0(4(2(1(x1))))))) -> 1(3(5(5(3(3(2(5(2(1(x1))))))))))
, 2(4(1(0(4(3(2(x1))))))) -> 0(3(5(2(0(5(3(2(0(3(x1))))))))))
, 2(3(4(1(1(5(3(x1))))))) -> 1(4(4(5(2(2(5(1(5(3(x1))))))))))
, 2(1(2(4(1(2(4(x1))))))) -> 2(5(0(1(5(5(2(5(1(1(x1))))))))))
, 2(0(1(1(1(2(1(x1))))))) -> 2(2(0(4(3(1(2(2(5(5(x1))))))))))
, 1(5(3(5(4(4(2(x1))))))) -> 2(5(3(2(5(3(1(0(1(3(x1))))))))))
, 1(3(1(3(1(5(0(x1))))))) -> 1(1(3(2(5(2(2(3(2(5(x1))))))))))
, 1(2(0(1(5(0(1(x1))))))) -> 0(3(0(4(0(4(1(4(3(0(x1))))))))))
, 1(1(4(2(4(4(5(x1))))))) -> 1(4(4(1(3(5(1(1(2(5(x1))))))))))
, 1(1(3(5(4(0(1(x1))))))) -> 1(0(2(3(5(0(2(2(5(0(x1))))))))))
, 1(1(1(5(4(3(0(x1))))))) -> 1(2(5(5(2(0(0(1(3(0(x1))))))))))
, 1(1(1(1(4(5(5(x1))))))) -> 5(0(5(2(2(5(0(0(5(5(x1))))))))))
, 1(1(1(1(4(0(4(x1))))))) -> 5(2(5(4(1(5(0(2(0(4(x1))))))))))
, 0(4(2(4(5(1(1(x1))))))) -> 2(5(5(2(1(3(3(3(0(1(x1))))))))))
, 0(4(0(0(4(2(1(x1))))))) -> 2(3(0(0(0(1(2(5(2(5(x1))))))))))
, 0(3(1(2(3(3(1(x1))))))) -> 2(5(0(3(0(3(4(5(3(1(x1))))))))))
, 0(1(1(0(5(5(0(x1))))))) -> 0(0(3(3(2(2(1(4(2(0(x1))))))))))
, 5(5(3(0(0(3(x1)))))) -> 5(5(2(2(2(5(2(0(0(3(x1))))))))))
, 4(5(2(4(2(4(x1)))))) -> 2(0(4(4(3(1(2(2(5(5(x1))))))))))
, 4(5(2(3(4(1(x1)))))) -> 3(0(3(4(3(3(2(5(3(0(x1))))))))))
, 4(2(4(4(5(0(x1)))))) -> 3(3(5(1(2(2(5(1(0(0(x1))))))))))
, 4(1(1(4(5(1(x1)))))) -> 3(3(2(5(1(4(3(2(3(0(x1))))))))))
, 4(0(1(1(5(2(x1)))))) -> 2(2(1(1(2(5(1(2(1(3(x1))))))))))
, 4(0(0(1(1(0(x1)))))) -> 4(2(3(3(0(2(2(5(4(5(x1))))))))))
, 2(5(0(1(1(5(x1)))))) -> 2(0(4(1(5(4(4(2(5(3(x1))))))))))
, 2(4(2(4(5(2(x1)))))) -> 0(3(2(5(3(2(3(5(3(2(x1))))))))))
, 2(3(4(2(3(1(x1)))))) -> 2(2(2(5(5(2(0(0(5(4(x1))))))))))
, 1(5(2(4(1(0(x1)))))) -> 0(3(4(4(0(4(1(2(3(4(x1))))))))))
, 1(5(0(1(5(5(x1)))))) -> 2(5(5(3(4(3(2(0(3(4(x1))))))))))
, 1(4(4(1(1(5(x1)))))) -> 0(2(1(3(3(2(1(3(5(4(x1))))))))))
, 0(5(4(2(4(5(x1)))))) -> 3(1(5(3(0(3(5(2(5(3(x1))))))))))
, 0(5(1(2(4(5(x1)))))) -> 0(4(3(2(5(2(3(2(2(5(x1))))))))))
, 0(0(2(4(0(1(x1)))))) -> 2(2(1(2(2(3(1(2(5(1(x1))))))))))
, 3(1(2(4(1(x1))))) -> 4(2(2(1(4(2(0(3(5(3(x1))))))))))
, 1(3(4(2(4(x1))))) -> 1(4(2(0(3(4(0(2(5(1(x1))))))))))
, 0(1(1(5(1(x1))))) -> 4(0(2(2(2(5(2(4(2(5(x1))))))))))
, 0(0(2(4(1(x1))))) -> 3(5(0(1(4(0(3(0(4(1(x1))))))))))
, 4(5(1(1(x1)))) -> 4(5(2(0(3(2(5(3(4(1(x1))))))))))
, 4(0(1(0(x1)))) -> 3(5(2(2(2(5(1(0(2(5(x1))))))))))
, 4(0(1(0(x1)))) -> 2(2(5(4(0(2(0(0(2(5(x1))))))))))
, 3(2(2(4(x1)))) -> 4(2(0(2(0(4(1(3(2(0(x1))))))))))
, 1(1(5(5(x1)))) -> 2(2(0(2(1(3(0(3(0(4(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(4(4(1(2(4(5(x1))))))) -> 2(1(5(3(2(1(5(0(3(5(x1))))))))))
, 5(4(0(0(2(3(4(x1))))))) -> 2(5(3(1(5(0(4(0(3(4(x1))))))))))
, 5(1(2(3(2(4(5(x1))))))) -> 5(5(2(2(2(1(5(4(4(4(x1))))))))))
, 4(5(4(2(1(2(4(x1))))))) -> 3(4(3(4(3(0(0(1(3(0(x1))))))))))
, 4(4(3(1(2(3(1(x1))))))) -> 3(3(0(5(2(0(0(2(5(4(x1))))))))))
, 4(2(4(5(5(5(0(x1))))))) -> 4(4(1(3(0(2(5(4(2(0(x1))))))))))
, 4(2(2(4(5(4(2(x1))))))) -> 3(1(0(1(4(1(2(5(3(3(x1))))))))))
, 4(1(5(3(4(1(5(x1))))))) -> 4(1(2(3(4(3(3(5(2(5(x1))))))))))
, 3(4(2(4(3(5(3(x1))))))) -> 1(3(4(1(0(2(2(2(5(3(x1))))))))))
, 3(4(2(4(0(0(4(x1))))))) -> 4(4(4(2(2(0(3(0(5(5(x1))))))))))
, 3(4(1(0(4(2(1(x1))))))) -> 1(3(5(5(3(3(2(5(2(1(x1))))))))))
, 2(4(1(0(4(3(2(x1))))))) -> 0(3(5(2(0(5(3(2(0(3(x1))))))))))
, 2(3(4(1(1(5(3(x1))))))) -> 1(4(4(5(2(2(5(1(5(3(x1))))))))))
, 2(1(2(4(1(2(4(x1))))))) -> 2(5(0(1(5(5(2(5(1(1(x1))))))))))
, 2(0(1(1(1(2(1(x1))))))) -> 2(2(0(4(3(1(2(2(5(5(x1))))))))))
, 1(5(3(5(4(4(2(x1))))))) -> 2(5(3(2(5(3(1(0(1(3(x1))))))))))
, 1(3(1(3(1(5(0(x1))))))) -> 1(1(3(2(5(2(2(3(2(5(x1))))))))))
, 1(2(0(1(5(0(1(x1))))))) -> 0(3(0(4(0(4(1(4(3(0(x1))))))))))
, 1(1(4(2(4(4(5(x1))))))) -> 1(4(4(1(3(5(1(1(2(5(x1))))))))))
, 1(1(3(5(4(0(1(x1))))))) -> 1(0(2(3(5(0(2(2(5(0(x1))))))))))
, 1(1(1(5(4(3(0(x1))))))) -> 1(2(5(5(2(0(0(1(3(0(x1))))))))))
, 1(1(1(1(4(5(5(x1))))))) -> 5(0(5(2(2(5(0(0(5(5(x1))))))))))
, 1(1(1(1(4(0(4(x1))))))) -> 5(2(5(4(1(5(0(2(0(4(x1))))))))))
, 0(4(2(4(5(1(1(x1))))))) -> 2(5(5(2(1(3(3(3(0(1(x1))))))))))
, 0(4(0(0(4(2(1(x1))))))) -> 2(3(0(0(0(1(2(5(2(5(x1))))))))))
, 0(3(1(2(3(3(1(x1))))))) -> 2(5(0(3(0(3(4(5(3(1(x1))))))))))
, 0(1(1(0(5(5(0(x1))))))) -> 0(0(3(3(2(2(1(4(2(0(x1))))))))))
, 5(5(3(0(0(3(x1)))))) -> 5(5(2(2(2(5(2(0(0(3(x1))))))))))
, 4(5(2(4(2(4(x1)))))) -> 2(0(4(4(3(1(2(2(5(5(x1))))))))))
, 4(5(2(3(4(1(x1)))))) -> 3(0(3(4(3(3(2(5(3(0(x1))))))))))
, 4(2(4(4(5(0(x1)))))) -> 3(3(5(1(2(2(5(1(0(0(x1))))))))))
, 4(1(1(4(5(1(x1)))))) -> 3(3(2(5(1(4(3(2(3(0(x1))))))))))
, 4(0(1(1(5(2(x1)))))) -> 2(2(1(1(2(5(1(2(1(3(x1))))))))))
, 4(0(0(1(1(0(x1)))))) -> 4(2(3(3(0(2(2(5(4(5(x1))))))))))
, 2(5(0(1(1(5(x1)))))) -> 2(0(4(1(5(4(4(2(5(3(x1))))))))))
, 2(4(2(4(5(2(x1)))))) -> 0(3(2(5(3(2(3(5(3(2(x1))))))))))
, 2(3(4(2(3(1(x1)))))) -> 2(2(2(5(5(2(0(0(5(4(x1))))))))))
, 1(5(2(4(1(0(x1)))))) -> 0(3(4(4(0(4(1(2(3(4(x1))))))))))
, 1(5(0(1(5(5(x1)))))) -> 2(5(5(3(4(3(2(0(3(4(x1))))))))))
, 1(4(4(1(1(5(x1)))))) -> 0(2(1(3(3(2(1(3(5(4(x1))))))))))
, 0(5(4(2(4(5(x1)))))) -> 3(1(5(3(0(3(5(2(5(3(x1))))))))))
, 0(5(1(2(4(5(x1)))))) -> 0(4(3(2(5(2(3(2(2(5(x1))))))))))
, 0(0(2(4(0(1(x1)))))) -> 2(2(1(2(2(3(1(2(5(1(x1))))))))))
, 3(1(2(4(1(x1))))) -> 4(2(2(1(4(2(0(3(5(3(x1))))))))))
, 1(3(4(2(4(x1))))) -> 1(4(2(0(3(4(0(2(5(1(x1))))))))))
, 0(1(1(5(1(x1))))) -> 4(0(2(2(2(5(2(4(2(5(x1))))))))))
, 0(0(2(4(1(x1))))) -> 3(5(0(1(4(0(3(0(4(1(x1))))))))))
, 4(5(1(1(x1)))) -> 4(5(2(0(3(2(5(3(4(1(x1))))))))))
, 4(0(1(0(x1)))) -> 3(5(2(2(2(5(1(0(2(5(x1))))))))))
, 4(0(1(0(x1)))) -> 2(2(5(4(0(2(0(0(2(5(x1))))))))))
, 3(2(2(4(x1)))) -> 4(2(0(2(0(4(1(3(2(0(x1))))))))))
, 1(1(5(5(x1)))) -> 2(2(0(2(1(3(0(3(0(4(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(4(4(1(2(4(5(x1))))))) -> 2(1(5(3(2(1(5(0(3(5(x1))))))))))
, 5(4(0(0(2(3(4(x1))))))) -> 2(5(3(1(5(0(4(0(3(4(x1))))))))))
, 5(1(2(3(2(4(5(x1))))))) -> 5(5(2(2(2(1(5(4(4(4(x1))))))))))
, 4(5(4(2(1(2(4(x1))))))) -> 3(4(3(4(3(0(0(1(3(0(x1))))))))))
, 4(4(3(1(2(3(1(x1))))))) -> 3(3(0(5(2(0(0(2(5(4(x1))))))))))
, 4(2(4(5(5(5(0(x1))))))) -> 4(4(1(3(0(2(5(4(2(0(x1))))))))))
, 4(2(2(4(5(4(2(x1))))))) -> 3(1(0(1(4(1(2(5(3(3(x1))))))))))
, 4(1(5(3(4(1(5(x1))))))) -> 4(1(2(3(4(3(3(5(2(5(x1))))))))))
, 3(4(2(4(3(5(3(x1))))))) -> 1(3(4(1(0(2(2(2(5(3(x1))))))))))
, 3(4(2(4(0(0(4(x1))))))) -> 4(4(4(2(2(0(3(0(5(5(x1))))))))))
, 3(4(1(0(4(2(1(x1))))))) -> 1(3(5(5(3(3(2(5(2(1(x1))))))))))
, 2(4(1(0(4(3(2(x1))))))) -> 0(3(5(2(0(5(3(2(0(3(x1))))))))))
, 2(3(4(1(1(5(3(x1))))))) -> 1(4(4(5(2(2(5(1(5(3(x1))))))))))
, 2(1(2(4(1(2(4(x1))))))) -> 2(5(0(1(5(5(2(5(1(1(x1))))))))))
, 2(0(1(1(1(2(1(x1))))))) -> 2(2(0(4(3(1(2(2(5(5(x1))))))))))
, 1(5(3(5(4(4(2(x1))))))) -> 2(5(3(2(5(3(1(0(1(3(x1))))))))))
, 1(3(1(3(1(5(0(x1))))))) -> 1(1(3(2(5(2(2(3(2(5(x1))))))))))
, 1(2(0(1(5(0(1(x1))))))) -> 0(3(0(4(0(4(1(4(3(0(x1))))))))))
, 1(1(4(2(4(4(5(x1))))))) -> 1(4(4(1(3(5(1(1(2(5(x1))))))))))
, 1(1(3(5(4(0(1(x1))))))) -> 1(0(2(3(5(0(2(2(5(0(x1))))))))))
, 1(1(1(5(4(3(0(x1))))))) -> 1(2(5(5(2(0(0(1(3(0(x1))))))))))
, 1(1(1(1(4(5(5(x1))))))) -> 5(0(5(2(2(5(0(0(5(5(x1))))))))))
, 1(1(1(1(4(0(4(x1))))))) -> 5(2(5(4(1(5(0(2(0(4(x1))))))))))
, 0(4(2(4(5(1(1(x1))))))) -> 2(5(5(2(1(3(3(3(0(1(x1))))))))))
, 0(4(0(0(4(2(1(x1))))))) -> 2(3(0(0(0(1(2(5(2(5(x1))))))))))
, 0(3(1(2(3(3(1(x1))))))) -> 2(5(0(3(0(3(4(5(3(1(x1))))))))))
, 0(1(1(0(5(5(0(x1))))))) -> 0(0(3(3(2(2(1(4(2(0(x1))))))))))
, 5(5(3(0(0(3(x1)))))) -> 5(5(2(2(2(5(2(0(0(3(x1))))))))))
, 4(5(2(4(2(4(x1)))))) -> 2(0(4(4(3(1(2(2(5(5(x1))))))))))
, 4(5(2(3(4(1(x1)))))) -> 3(0(3(4(3(3(2(5(3(0(x1))))))))))
, 4(2(4(4(5(0(x1)))))) -> 3(3(5(1(2(2(5(1(0(0(x1))))))))))
, 4(1(1(4(5(1(x1)))))) -> 3(3(2(5(1(4(3(2(3(0(x1))))))))))
, 4(0(1(1(5(2(x1)))))) -> 2(2(1(1(2(5(1(2(1(3(x1))))))))))
, 4(0(0(1(1(0(x1)))))) -> 4(2(3(3(0(2(2(5(4(5(x1))))))))))
, 2(5(0(1(1(5(x1)))))) -> 2(0(4(1(5(4(4(2(5(3(x1))))))))))
, 2(4(2(4(5(2(x1)))))) -> 0(3(2(5(3(2(3(5(3(2(x1))))))))))
, 2(3(4(2(3(1(x1)))))) -> 2(2(2(5(5(2(0(0(5(4(x1))))))))))
, 1(5(2(4(1(0(x1)))))) -> 0(3(4(4(0(4(1(2(3(4(x1))))))))))
, 1(5(0(1(5(5(x1)))))) -> 2(5(5(3(4(3(2(0(3(4(x1))))))))))
, 1(4(4(1(1(5(x1)))))) -> 0(2(1(3(3(2(1(3(5(4(x1))))))))))
, 0(5(4(2(4(5(x1)))))) -> 3(1(5(3(0(3(5(2(5(3(x1))))))))))
, 0(5(1(2(4(5(x1)))))) -> 0(4(3(2(5(2(3(2(2(5(x1))))))))))
, 0(0(2(4(0(1(x1)))))) -> 2(2(1(2(2(3(1(2(5(1(x1))))))))))
, 3(1(2(4(1(x1))))) -> 4(2(2(1(4(2(0(3(5(3(x1))))))))))
, 1(3(4(2(4(x1))))) -> 1(4(2(0(3(4(0(2(5(1(x1))))))))))
, 0(1(1(5(1(x1))))) -> 4(0(2(2(2(5(2(4(2(5(x1))))))))))
, 0(0(2(4(1(x1))))) -> 3(5(0(1(4(0(3(0(4(1(x1))))))))))
, 4(5(1(1(x1)))) -> 4(5(2(0(3(2(5(3(4(1(x1))))))))))
, 4(0(1(0(x1)))) -> 3(5(2(2(2(5(1(0(2(5(x1))))))))))
, 4(0(1(0(x1)))) -> 2(2(5(4(0(2(0(0(2(5(x1))))))))))
, 3(2(2(4(x1)))) -> 4(2(0(2(0(4(1(3(2(0(x1))))))))))
, 1(1(5(5(x1)))) -> 2(2(0(2(1(3(0(3(0(4(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI2
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(4(4(1(2(4(5(x1))))))) -> 2(1(5(3(2(1(5(0(3(5(x1))))))))))
, 5(4(0(0(2(3(4(x1))))))) -> 2(5(3(1(5(0(4(0(3(4(x1))))))))))
, 5(1(2(3(2(4(5(x1))))))) -> 5(5(2(2(2(1(5(4(4(4(x1))))))))))
, 4(5(4(2(1(2(4(x1))))))) -> 3(4(3(4(3(0(0(1(3(0(x1))))))))))
, 4(4(3(1(2(3(1(x1))))))) -> 3(3(0(5(2(0(0(2(5(4(x1))))))))))
, 4(2(4(5(5(5(0(x1))))))) -> 4(4(1(3(0(2(5(4(2(0(x1))))))))))
, 4(2(2(4(5(4(2(x1))))))) -> 3(1(0(1(4(1(2(5(3(3(x1))))))))))
, 4(1(5(3(4(1(5(x1))))))) -> 4(1(2(3(4(3(3(5(2(5(x1))))))))))
, 3(4(2(4(3(5(3(x1))))))) -> 1(3(4(1(0(2(2(2(5(3(x1))))))))))
, 3(4(2(4(0(0(4(x1))))))) -> 4(4(4(2(2(0(3(0(5(5(x1))))))))))
, 3(4(1(0(4(2(1(x1))))))) -> 1(3(5(5(3(3(2(5(2(1(x1))))))))))
, 2(4(1(0(4(3(2(x1))))))) -> 0(3(5(2(0(5(3(2(0(3(x1))))))))))
, 2(3(4(1(1(5(3(x1))))))) -> 1(4(4(5(2(2(5(1(5(3(x1))))))))))
, 2(1(2(4(1(2(4(x1))))))) -> 2(5(0(1(5(5(2(5(1(1(x1))))))))))
, 2(0(1(1(1(2(1(x1))))))) -> 2(2(0(4(3(1(2(2(5(5(x1))))))))))
, 1(5(3(5(4(4(2(x1))))))) -> 2(5(3(2(5(3(1(0(1(3(x1))))))))))
, 1(3(1(3(1(5(0(x1))))))) -> 1(1(3(2(5(2(2(3(2(5(x1))))))))))
, 1(2(0(1(5(0(1(x1))))))) -> 0(3(0(4(0(4(1(4(3(0(x1))))))))))
, 1(1(4(2(4(4(5(x1))))))) -> 1(4(4(1(3(5(1(1(2(5(x1))))))))))
, 1(1(3(5(4(0(1(x1))))))) -> 1(0(2(3(5(0(2(2(5(0(x1))))))))))
, 1(1(1(5(4(3(0(x1))))))) -> 1(2(5(5(2(0(0(1(3(0(x1))))))))))
, 1(1(1(1(4(5(5(x1))))))) -> 5(0(5(2(2(5(0(0(5(5(x1))))))))))
, 1(1(1(1(4(0(4(x1))))))) -> 5(2(5(4(1(5(0(2(0(4(x1))))))))))
, 0(4(2(4(5(1(1(x1))))))) -> 2(5(5(2(1(3(3(3(0(1(x1))))))))))
, 0(4(0(0(4(2(1(x1))))))) -> 2(3(0(0(0(1(2(5(2(5(x1))))))))))
, 0(3(1(2(3(3(1(x1))))))) -> 2(5(0(3(0(3(4(5(3(1(x1))))))))))
, 0(1(1(0(5(5(0(x1))))))) -> 0(0(3(3(2(2(1(4(2(0(x1))))))))))
, 5(5(3(0(0(3(x1)))))) -> 5(5(2(2(2(5(2(0(0(3(x1))))))))))
, 4(5(2(4(2(4(x1)))))) -> 2(0(4(4(3(1(2(2(5(5(x1))))))))))
, 4(5(2(3(4(1(x1)))))) -> 3(0(3(4(3(3(2(5(3(0(x1))))))))))
, 4(2(4(4(5(0(x1)))))) -> 3(3(5(1(2(2(5(1(0(0(x1))))))))))
, 4(1(1(4(5(1(x1)))))) -> 3(3(2(5(1(4(3(2(3(0(x1))))))))))
, 4(0(1(1(5(2(x1)))))) -> 2(2(1(1(2(5(1(2(1(3(x1))))))))))
, 4(0(0(1(1(0(x1)))))) -> 4(2(3(3(0(2(2(5(4(5(x1))))))))))
, 2(5(0(1(1(5(x1)))))) -> 2(0(4(1(5(4(4(2(5(3(x1))))))))))
, 2(4(2(4(5(2(x1)))))) -> 0(3(2(5(3(2(3(5(3(2(x1))))))))))
, 2(3(4(2(3(1(x1)))))) -> 2(2(2(5(5(2(0(0(5(4(x1))))))))))
, 1(5(2(4(1(0(x1)))))) -> 0(3(4(4(0(4(1(2(3(4(x1))))))))))
, 1(5(0(1(5(5(x1)))))) -> 2(5(5(3(4(3(2(0(3(4(x1))))))))))
, 1(4(4(1(1(5(x1)))))) -> 0(2(1(3(3(2(1(3(5(4(x1))))))))))
, 0(5(4(2(4(5(x1)))))) -> 3(1(5(3(0(3(5(2(5(3(x1))))))))))
, 0(5(1(2(4(5(x1)))))) -> 0(4(3(2(5(2(3(2(2(5(x1))))))))))
, 0(0(2(4(0(1(x1)))))) -> 2(2(1(2(2(3(1(2(5(1(x1))))))))))
, 3(1(2(4(1(x1))))) -> 4(2(2(1(4(2(0(3(5(3(x1))))))))))
, 1(3(4(2(4(x1))))) -> 1(4(2(0(3(4(0(2(5(1(x1))))))))))
, 0(1(1(5(1(x1))))) -> 4(0(2(2(2(5(2(4(2(5(x1))))))))))
, 0(0(2(4(1(x1))))) -> 3(5(0(1(4(0(3(0(4(1(x1))))))))))
, 4(5(1(1(x1)))) -> 4(5(2(0(3(2(5(3(4(1(x1))))))))))
, 4(0(1(0(x1)))) -> 3(5(2(2(2(5(1(0(2(5(x1))))))))))
, 4(0(1(0(x1)))) -> 2(2(5(4(0(2(0(0(2(5(x1))))))))))
, 3(2(2(4(x1)))) -> 4(2(0(2(0(4(1(3(2(0(x1))))))))))
, 1(1(5(5(x1)))) -> 2(2(0(2(1(3(0(3(0(4(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..