Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 5(5(0(3(2(0(3(x1))))))) -> 0(4(4(0(2(5(4(1(0(3(x1))))))))))
, 5(3(3(2(1(5(5(x1))))))) -> 1(3(5(0(2(1(2(0(2(3(x1))))))))))
, 5(1(4(2(0(5(2(x1))))))) -> 4(0(5(1(0(4(4(0(4(2(x1))))))))))
, 5(0(3(3(2(2(0(x1))))))) -> 4(2(2(2(2(5(3(5(1(0(x1))))))))))
, 5(0(3(2(0(5(0(x1))))))) -> 5(1(2(4(0(0(1(5(1(0(x1))))))))))
, 5(0(3(0(5(0(1(x1))))))) -> 5(1(3(3(4(5(3(0(4(1(x1))))))))))
, 5(0(0(4(4(5(0(x1))))))) -> 4(2(1(1(3(4(4(0(5(0(x1))))))))))
, 5(0(0(3(1(5(0(x1))))))) -> 4(0(0(4(0(5(4(4(1(0(x1))))))))))
, 4(2(1(5(1(5(0(x1))))))) -> 4(4(5(4(0(2(3(4(5(0(x1))))))))))
, 3(3(5(2(2(5(2(x1))))))) -> 3(0(1(0(5(1(5(5(4(2(x1))))))))))
, 3(2(5(0(0(3(0(x1))))))) -> 4(3(4(1(2(2(0(2(5(4(x1))))))))))
, 3(2(2(2(2(4(2(x1))))))) -> 3(1(3(0(1(1(4(2(1(0(x1))))))))))
, 3(2(1(4(2(1(4(x1))))))) -> 3(5(4(2(3(0(1(1(5(5(x1))))))))))
, 3(1(4(2(3(0(0(x1))))))) -> 1(0(3(4(3(3(4(2(4(1(x1))))))))))
, 2(4(4(3(1(0(0(x1))))))) -> 2(4(2(1(3(5(4(4(0(1(x1))))))))))
, 2(4(1(3(0(5(2(x1))))))) -> 2(4(4(1(5(3(4(4(4(0(x1))))))))))
, 2(1(5(5(0(1(1(x1))))))) -> 0(1(2(3(4(4(3(3(4(0(x1))))))))))
, 2(0(1(4(5(2(0(x1))))))) -> 2(2(1(0(0(0(3(3(4(4(x1))))))))))
, 1(0(3(2(1(3(2(x1))))))) -> 1(1(1(1(5(5(3(5(1(5(x1))))))))))
, 0(5(2(0(4(3(0(x1))))))) -> 1(1(1(2(4(3(3(4(5(4(x1))))))))))
, 0(5(2(0(3(2(2(x1))))))) -> 2(1(2(4(3(5(2(2(2(2(x1))))))))))
, 0(0(5(2(4(2(5(x1))))))) -> 0(2(0(4(2(1(2(1(3(3(x1))))))))))
, 5(2(5(2(2(5(x1)))))) -> 4(4(5(5(1(0(5(2(1(2(x1))))))))))
, 5(0(5(2(5(2(x1)))))) -> 5(4(2(4(4(3(4(5(0(0(x1))))))))))
, 4(5(2(5(3(2(x1)))))) -> 4(1(3(4(3(2(4(4(0(2(x1))))))))))
, 4(5(2(3(1(2(x1)))))) -> 4(4(4(0(1(2(4(2(0(2(x1))))))))))
, 3(2(0(3(0(0(x1)))))) -> 3(4(1(3(4(0(2(0(4(1(x1))))))))))
, 3(1(5(1(3(2(x1)))))) -> 1(1(5(3(5(1(2(4(1(5(x1))))))))))
, 2(4(5(2(5(4(x1)))))) -> 2(4(1(0(0(4(4(3(5(4(x1))))))))))
, 2(4(0(2(0(0(x1)))))) -> 2(0(0(2(5(4(1(1(2(1(x1))))))))))
, 2(2(4(5(2(5(x1)))))) -> 2(2(4(3(5(4(5(5(2(5(x1))))))))))
, 1(5(2(5(3(1(x1)))))) -> 2(5(4(1(1(0(2(5(3(2(x1))))))))))
, 1(3(2(2(5(2(x1)))))) -> 1(3(5(2(4(5(2(3(4(4(x1))))))))))
, 0(0(2(2(5(0(x1)))))) -> 0(2(5(3(4(0(1(2(5(0(x1))))))))))
, 4(5(2(5(2(x1))))) -> 5(2(1(1(1(0(2(5(0(2(x1))))))))))
, 4(0(3(0(0(x1))))) -> 4(3(5(2(4(1(2(1(2(0(x1))))))))))
, 2(3(3(2(4(x1))))) -> 2(1(2(5(0(1(0(5(5(4(x1))))))))))
, 0(2(2(5(5(x1))))) -> 2(5(4(3(0(4(1(3(5(4(x1))))))))))
, 3(1(0(0(x1)))) -> 3(5(5(3(5(0(0(0(0(0(x1))))))))))
, 0(5(0(0(x1)))) -> 2(3(0(3(5(2(2(3(4(1(x1))))))))))
, 5(1(5(x1))) -> 4(4(1(0(0(3(4(1(0(2(x1))))))))))
, 3(3(0(x1))) -> 3(0(2(1(0(0(1(2(1(0(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ 0_0(1) -> 1
, 0_1(1) -> 35
, 0_1(2) -> 1
, 0_1(2) -> 53
, 0_1(2) -> 90
, 0_1(5) -> 4
, 0_1(10) -> 9
, 0_1(11) -> 1
, 0_1(14) -> 13
, 0_1(18) -> 17
, 0_1(19) -> 318
, 0_1(20) -> 19
, 0_1(23) -> 22
, 0_1(26) -> 25
, 0_1(27) -> 325
, 0_1(28) -> 1
, 0_1(28) -> 27
, 0_1(28) -> 35
, 0_1(28) -> 83
, 0_1(28) -> 318
, 0_1(28) -> 496
, 0_1(34) -> 112
, 0_1(35) -> 318
, 0_1(36) -> 325
, 0_1(40) -> 39
, 0_1(41) -> 40
, 0_1(47) -> 46
, 0_1(48) -> 1
, 0_1(49) -> 1
, 0_1(53) -> 52
, 0_1(54) -> 20
, 0_1(56) -> 55
, 0_1(61) -> 60
, 0_1(64) -> 1
, 0_1(65) -> 64
, 0_1(66) -> 1
, 0_1(67) -> 66
, 0_1(76) -> 75
, 0_1(78) -> 1
, 0_1(80) -> 79
, 0_1(88) -> 87
, 0_1(90) -> 459
, 0_1(91) -> 11
, 0_1(105) -> 35
, 0_1(107) -> 1
, 0_1(108) -> 1
, 0_1(183) -> 182
, 0_1(184) -> 183
, 0_1(185) -> 184
, 0_1(191) -> 1
, 0_1(249) -> 29
, 0_1(309) -> 308
, 0_1(318) -> 468
, 0_1(327) -> 326
, 0_1(335) -> 334
, 0_1(360) -> 359
, 0_1(361) -> 360
, 0_1(364) -> 105
, 0_1(365) -> 364
, 0_1(369) -> 517
, 0_1(376) -> 1
, 0_1(380) -> 379
, 0_1(436) -> 435
, 0_1(445) -> 19
, 0_1(449) -> 448
, 0_1(458) -> 457
, 0_1(460) -> 459
, 0_1(462) -> 461
, 0_1(467) -> 466
, 0_1(468) -> 467
, 0_1(470) -> 469
, 0_1(484) -> 483
, 0_1(485) -> 484
, 0_1(517) -> 516
, 0_2(2) -> 526
, 0_2(11) -> 526
, 0_2(28) -> 526
, 0_2(48) -> 526
, 0_2(49) -> 526
, 0_2(64) -> 526
, 0_2(65) -> 535
, 0_2(66) -> 526
, 0_2(78) -> 526
, 0_2(107) -> 526
, 0_2(108) -> 526
, 0_2(191) -> 526
, 0_2(361) -> 929
, 0_2(364) -> 526
, 0_2(376) -> 526
, 0_2(470) -> 535
, 0_2(476) -> 475
, 0_2(491) -> 490
, 0_2(492) -> 491
, 0_2(496) -> 495
, 0_2(500) -> 499
, 0_2(501) -> 500
, 0_2(505) -> 504
, 0_2(509) -> 508
, 0_2(510) -> 509
, 0_2(514) -> 513
, 0_2(519) -> 518
, 0_2(522) -> 521
, 0_2(523) -> 522
, 0_2(528) -> 527
, 0_2(531) -> 530
, 0_2(532) -> 531
, 0_2(861) -> 860
, 0_2(916) -> 915
, 0_2(926) -> 925
, 0_2(927) -> 926
, 0_2(928) -> 927
, 0_2(929) -> 928
, 0_2(1214) -> 1213
, 0_2(1215) -> 1214
, 0_2(1219) -> 1218
, 3_0(1) -> 1
, 3_1(1) -> 10
, 3_1(10) -> 266
, 3_1(12) -> 11
, 3_1(19) -> 382
, 3_1(27) -> 382
, 3_1(33) -> 32
, 3_1(36) -> 10
, 3_1(42) -> 37
, 3_1(43) -> 42
, 3_1(46) -> 45
, 3_1(47) -> 124
, 3_1(50) -> 49
, 3_1(56) -> 108
, 3_1(57) -> 186
, 3_1(63) -> 62
, 3_1(64) -> 1
, 3_1(64) -> 10
, 3_1(64) -> 266
, 3_1(64) -> 382
, 3_1(68) -> 10
, 3_1(71) -> 19
, 3_1(77) -> 363
, 3_1(79) -> 78
, 3_1(84) -> 10
, 3_1(87) -> 86
, 3_1(92) -> 91
, 3_1(94) -> 93
, 3_1(95) -> 94
, 3_1(105) -> 10
, 3_1(106) -> 382
, 3_1(109) -> 108
, 3_1(111) -> 124
, 3_1(116) -> 115
, 3_1(119) -> 118
, 3_1(124) -> 123
, 3_1(186) -> 185
, 3_1(196) -> 195
, 3_1(230) -> 229
, 3_1(231) -> 230
, 3_1(241) -> 240
, 3_1(316) -> 315
, 3_1(320) -> 319
, 3_1(322) -> 321
, 3_1(333) -> 332
, 3_1(339) -> 10
, 3_1(340) -> 339
, 3_1(371) -> 370
, 3_1(376) -> 10
, 3_1(426) -> 425
, 3_1(461) -> 377
, 3_1(465) -> 464
, 3_1(469) -> 105
, 3_1(471) -> 470
, 3_1(486) -> 485
, 3_2(475) -> 474
, 3_2(477) -> 476
, 3_2(481) -> 480
, 3_2(493) -> 492
, 3_2(502) -> 501
, 3_2(511) -> 510
, 3_2(518) -> 266
, 3_2(527) -> 10
, 3_2(527) -> 266
, 3_2(915) -> 914
, 3_2(919) -> 918
, 3_2(921) -> 382
, 3_2(924) -> 923
, 3_2(1216) -> 1215
, 1_0(1) -> 1
, 1_1(1) -> 34
, 1_1(2) -> 1
, 1_1(9) -> 8
, 1_1(11) -> 1
, 1_1(11) -> 10
, 1_1(11) -> 34
, 1_1(11) -> 53
, 1_1(16) -> 15
, 1_1(19) -> 311
, 1_1(22) -> 21
, 1_1(27) -> 311
, 1_1(28) -> 1
, 1_1(28) -> 8
, 1_1(28) -> 10
, 1_1(28) -> 34
, 1_1(28) -> 35
, 1_1(28) -> 52
, 1_1(33) -> 41
, 1_1(35) -> 34
, 1_1(37) -> 36
, 1_1(48) -> 28
, 1_1(49) -> 48
, 1_1(53) -> 197
, 1_1(64) -> 34
, 1_1(65) -> 1
, 1_1(66) -> 65
, 1_1(67) -> 1
, 1_1(69) -> 68
, 1_1(73) -> 72
, 1_1(78) -> 64
, 1_1(81) -> 80
, 1_1(82) -> 81
, 1_1(83) -> 369
, 1_1(89) -> 88
, 1_1(90) -> 89
, 1_1(91) -> 1
, 1_1(105) -> 34
, 1_1(106) -> 311
, 1_1(107) -> 1
, 1_1(108) -> 107
, 1_1(114) -> 113
, 1_1(182) -> 181
, 1_1(191) -> 49
, 1_1(238) -> 105
, 1_1(264) -> 263
, 1_1(266) -> 265
, 1_1(308) -> 307
, 1_1(310) -> 453
, 1_1(311) -> 368
, 1_1(319) -> 19
, 1_1(325) -> 487
, 1_1(328) -> 327
, 1_1(332) -> 331
, 1_1(348) -> 347
, 1_1(359) -> 106
, 1_1(363) -> 463
, 1_1(364) -> 28
, 1_1(365) -> 1
, 1_1(369) -> 368
, 1_1(375) -> 436
, 1_1(376) -> 1
, 1_1(378) -> 377
, 1_1(379) -> 378
, 1_1(446) -> 445
, 1_1(447) -> 446
, 1_1(448) -> 447
, 1_1(454) -> 453
, 1_1(456) -> 455
, 1_1(459) -> 458
, 1_1(460) -> 68
, 1_1(483) -> 58
, 1_1(516) -> 515
, 1_2(2) -> 482
, 1_2(11) -> 482
, 1_2(28) -> 482
, 1_2(48) -> 482
, 1_2(49) -> 482
, 1_2(54) -> 482
, 1_2(64) -> 482
, 1_2(65) -> 482
, 1_2(66) -> 482
, 1_2(67) -> 482
, 1_2(78) -> 482
, 1_2(91) -> 482
, 1_2(107) -> 482
, 1_2(108) -> 482
, 1_2(191) -> 482
, 1_2(364) -> 482
, 1_2(365) -> 482
, 1_2(376) -> 482
, 1_2(490) -> 489
, 1_2(495) -> 494
, 1_2(499) -> 498
, 1_2(504) -> 503
, 1_2(508) -> 507
, 1_2(513) -> 512
, 1_2(521) -> 520
, 1_2(524) -> 523
, 1_2(526) -> 525
, 1_2(527) -> 525
, 1_2(530) -> 529
, 1_2(533) -> 532
, 1_2(535) -> 534
, 1_2(860) -> 859
, 1_2(864) -> 863
, 1_2(918) -> 917
, 1_2(1213) -> 1212
, 1_2(1218) -> 1217
, 2_0(1) -> 1
, 2_1(1) -> 27
, 2_1(2) -> 27
, 2_1(6) -> 5
, 2_1(10) -> 18
, 2_1(11) -> 27
, 2_1(15) -> 14
, 2_1(17) -> 16
, 2_1(26) -> 328
, 2_1(27) -> 244
, 2_1(28) -> 19
, 2_1(29) -> 28
, 2_1(30) -> 29
, 2_1(31) -> 30
, 2_1(34) -> 83
, 2_1(35) -> 456
, 2_1(36) -> 27
, 2_1(38) -> 37
, 2_1(46) -> 335
, 2_1(47) -> 96
, 2_1(48) -> 19
, 2_1(49) -> 19
, 2_1(53) -> 375
, 2_1(62) -> 61
, 2_1(64) -> 19
, 2_1(65) -> 19
, 2_1(66) -> 19
, 2_1(67) -> 19
, 2_1(68) -> 27
, 2_1(74) -> 73
, 2_1(75) -> 74
, 2_1(77) -> 76
, 2_1(78) -> 19
, 2_1(86) -> 85
, 2_1(91) -> 19
, 2_1(105) -> 1
, 2_1(105) -> 18
, 2_1(105) -> 27
, 2_1(105) -> 34
, 2_1(105) -> 35
, 2_1(105) -> 52
, 2_1(105) -> 96
, 2_1(105) -> 197
, 2_1(105) -> 244
, 2_1(105) -> 325
, 2_1(105) -> 456
, 2_1(105) -> 495
, 2_1(105) -> 496
, 2_1(107) -> 106
, 2_1(118) -> 48
, 2_1(124) -> 473
, 2_1(181) -> 105
, 2_1(186) -> 393
, 2_1(226) -> 49
, 2_1(239) -> 238
, 2_1(243) -> 242
, 2_1(244) -> 243
, 2_1(263) -> 262
, 2_1(265) -> 264
, 2_1(311) -> 310
, 2_1(313) -> 312
, 2_1(323) -> 322
, 2_1(325) -> 330
, 2_1(329) -> 328
, 2_1(349) -> 348
, 2_1(364) -> 19
, 2_1(365) -> 19
, 2_1(366) -> 365
, 2_1(376) -> 19
, 2_1(381) -> 380
, 2_1(385) -> 13
, 2_1(445) -> 36
, 2_1(450) -> 449
, 2_1(452) -> 451
, 2_1(455) -> 454
, 2_1(473) -> 472
, 2_1(515) -> 65
, 2_2(1) -> 496
, 2_2(3) -> 496
, 2_2(19) -> 496
, 2_2(35) -> 496
, 2_2(36) -> 505
, 2_2(68) -> 1219
, 2_2(70) -> 514
, 2_2(77) -> 514
, 2_2(84) -> 505
, 2_2(105) -> 496
, 2_2(367) -> 864
, 2_2(376) -> 505
, 2_2(377) -> 496
, 2_2(425) -> 864
, 2_2(474) -> 52
, 2_2(479) -> 478
, 2_2(480) -> 479
, 2_2(506) -> 496
, 2_2(520) -> 519
, 2_2(525) -> 524
, 2_2(529) -> 528
, 2_2(534) -> 533
, 2_2(863) -> 862
, 2_2(912) -> 495
, 5_0(1) -> 1
, 5_1(1) -> 53
, 5_1(3) -> 53
, 5_1(7) -> 6
, 5_1(13) -> 12
, 5_1(19) -> 53
, 5_1(21) -> 20
, 5_1(26) -> 70
, 5_1(32) -> 31
, 5_1(34) -> 33
, 5_1(35) -> 53
, 5_1(36) -> 1
, 5_1(36) -> 47
, 5_1(36) -> 53
, 5_1(36) -> 63
, 5_1(45) -> 44
, 5_1(47) -> 77
, 5_1(53) -> 90
, 5_1(57) -> 56
, 5_1(59) -> 58
, 5_1(68) -> 67
, 5_1(70) -> 69
, 5_1(77) -> 460
, 5_1(84) -> 64
, 5_1(105) -> 53
, 5_1(110) -> 109
, 5_1(115) -> 114
, 5_1(194) -> 191
, 5_1(195) -> 194
, 5_1(197) -> 196
, 5_1(242) -> 241
, 5_1(244) -> 241
, 5_1(307) -> 59
, 5_1(310) -> 309
, 5_1(318) -> 317
, 5_1(325) -> 450
, 5_1(339) -> 48
, 5_1(347) -> 340
, 5_1(367) -> 366
, 5_1(372) -> 371
, 5_1(374) -> 373
, 5_1(375) -> 374
, 5_1(376) -> 105
, 5_1(377) -> 53
, 5_1(382) -> 381
, 5_1(393) -> 392
, 5_1(425) -> 29
, 5_1(451) -> 71
, 5_1(457) -> 239
, 5_1(464) -> 84
, 5_1(466) -> 465
, 5_1(467) -> 465
, 5_1(468) -> 465
, 5_1(472) -> 471
, 5_1(506) -> 53
, 5_2(478) -> 477
, 5_2(858) -> 857
, 5_2(859) -> 858
, 5_2(862) -> 861
, 5_2(913) -> 912
, 5_2(920) -> 919
, 5_2(922) -> 921
, 5_2(923) -> 922
, 5_2(925) -> 924
, 4_0(1) -> 1
, 4_1(1) -> 47
, 4_1(2) -> 47
, 4_1(3) -> 2
, 4_1(4) -> 3
, 4_1(8) -> 7
, 4_1(10) -> 362
, 4_1(11) -> 47
, 4_1(19) -> 1
, 4_1(19) -> 10
, 4_1(19) -> 26
, 4_1(19) -> 33
, 4_1(19) -> 47
, 4_1(19) -> 53
, 4_1(19) -> 63
, 4_1(19) -> 82
, 4_1(19) -> 111
, 4_1(19) -> 317
, 4_1(19) -> 374
, 4_1(19) -> 382
, 4_1(24) -> 23
, 4_1(25) -> 24
, 4_1(27) -> 26
, 4_1(28) -> 47
, 4_1(34) -> 47
, 4_1(35) -> 111
, 4_1(36) -> 47
, 4_1(39) -> 38
, 4_1(44) -> 43
, 4_1(46) -> 24
, 4_1(47) -> 57
, 4_1(48) -> 47
, 4_1(49) -> 47
, 4_1(51) -> 50
, 4_1(52) -> 51
, 4_1(53) -> 63
, 4_1(55) -> 54
, 4_1(58) -> 19
, 4_1(60) -> 59
, 4_1(64) -> 47
, 4_1(65) -> 47
, 4_1(66) -> 47
, 4_1(72) -> 71
, 4_1(75) -> 3
, 4_1(77) -> 231
, 4_1(78) -> 47
, 4_1(80) -> 47
, 4_1(83) -> 82
, 4_1(85) -> 84
, 4_1(90) -> 372
, 4_1(93) -> 92
, 4_1(96) -> 95
, 4_1(105) -> 47
, 4_1(106) -> 105
, 4_1(107) -> 47
, 4_1(108) -> 47
, 4_1(110) -> 116
, 4_1(111) -> 110
, 4_1(112) -> 111
, 4_1(113) -> 106
, 4_1(122) -> 119
, 4_1(123) -> 122
, 4_1(191) -> 47
, 4_1(197) -> 349
, 4_1(229) -> 226
, 4_1(240) -> 239
, 4_1(262) -> 249
, 4_1(312) -> 36
, 4_1(314) -> 313
, 4_1(315) -> 314
, 4_1(317) -> 316
, 4_1(321) -> 320
, 4_1(324) -> 323
, 4_1(325) -> 324
, 4_1(326) -> 58
, 4_1(330) -> 329
, 4_1(331) -> 64
, 4_1(334) -> 333
, 4_1(362) -> 361
, 4_1(363) -> 362
, 4_1(364) -> 47
, 4_1(368) -> 367
, 4_1(370) -> 181
, 4_1(373) -> 372
, 4_1(376) -> 47
, 4_1(377) -> 376
, 4_1(392) -> 385
, 4_1(435) -> 426
, 4_1(445) -> 47
, 4_1(453) -> 452
, 4_1(462) -> 47
, 4_1(463) -> 462
, 4_1(487) -> 486
, 4_2(464) -> 920
, 4_2(482) -> 481
, 4_2(488) -> 196
, 4_2(489) -> 488
, 4_2(494) -> 493
, 4_2(497) -> 33
, 4_2(497) -> 196
, 4_2(498) -> 497
, 4_2(503) -> 502
, 4_2(506) -> 67
, 4_2(507) -> 506
, 4_2(512) -> 511
, 4_2(856) -> 374
, 4_2(857) -> 856
, 4_2(914) -> 913
, 4_2(917) -> 916
, 4_2(1211) -> 53
, 4_2(1212) -> 1211
, 4_2(1217) -> 1216}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(0(3(2(0(3(x1))))))) -> 0(4(4(0(2(5(4(1(0(3(x1))))))))))
, 5(3(3(2(1(5(5(x1))))))) -> 1(3(5(0(2(1(2(0(2(3(x1))))))))))
, 5(1(4(2(0(5(2(x1))))))) -> 4(0(5(1(0(4(4(0(4(2(x1))))))))))
, 5(0(3(3(2(2(0(x1))))))) -> 4(2(2(2(2(5(3(5(1(0(x1))))))))))
, 5(0(3(2(0(5(0(x1))))))) -> 5(1(2(4(0(0(1(5(1(0(x1))))))))))
, 5(0(3(0(5(0(1(x1))))))) -> 5(1(3(3(4(5(3(0(4(1(x1))))))))))
, 5(0(0(4(4(5(0(x1))))))) -> 4(2(1(1(3(4(4(0(5(0(x1))))))))))
, 5(0(0(3(1(5(0(x1))))))) -> 4(0(0(4(0(5(4(4(1(0(x1))))))))))
, 4(2(1(5(1(5(0(x1))))))) -> 4(4(5(4(0(2(3(4(5(0(x1))))))))))
, 3(3(5(2(2(5(2(x1))))))) -> 3(0(1(0(5(1(5(5(4(2(x1))))))))))
, 3(2(5(0(0(3(0(x1))))))) -> 4(3(4(1(2(2(0(2(5(4(x1))))))))))
, 3(2(2(2(2(4(2(x1))))))) -> 3(1(3(0(1(1(4(2(1(0(x1))))))))))
, 3(2(1(4(2(1(4(x1))))))) -> 3(5(4(2(3(0(1(1(5(5(x1))))))))))
, 3(1(4(2(3(0(0(x1))))))) -> 1(0(3(4(3(3(4(2(4(1(x1))))))))))
, 2(4(4(3(1(0(0(x1))))))) -> 2(4(2(1(3(5(4(4(0(1(x1))))))))))
, 2(4(1(3(0(5(2(x1))))))) -> 2(4(4(1(5(3(4(4(4(0(x1))))))))))
, 2(1(5(5(0(1(1(x1))))))) -> 0(1(2(3(4(4(3(3(4(0(x1))))))))))
, 2(0(1(4(5(2(0(x1))))))) -> 2(2(1(0(0(0(3(3(4(4(x1))))))))))
, 1(0(3(2(1(3(2(x1))))))) -> 1(1(1(1(5(5(3(5(1(5(x1))))))))))
, 0(5(2(0(4(3(0(x1))))))) -> 1(1(1(2(4(3(3(4(5(4(x1))))))))))
, 0(5(2(0(3(2(2(x1))))))) -> 2(1(2(4(3(5(2(2(2(2(x1))))))))))
, 0(0(5(2(4(2(5(x1))))))) -> 0(2(0(4(2(1(2(1(3(3(x1))))))))))
, 5(2(5(2(2(5(x1)))))) -> 4(4(5(5(1(0(5(2(1(2(x1))))))))))
, 5(0(5(2(5(2(x1)))))) -> 5(4(2(4(4(3(4(5(0(0(x1))))))))))
, 4(5(2(5(3(2(x1)))))) -> 4(1(3(4(3(2(4(4(0(2(x1))))))))))
, 4(5(2(3(1(2(x1)))))) -> 4(4(4(0(1(2(4(2(0(2(x1))))))))))
, 3(2(0(3(0(0(x1)))))) -> 3(4(1(3(4(0(2(0(4(1(x1))))))))))
, 3(1(5(1(3(2(x1)))))) -> 1(1(5(3(5(1(2(4(1(5(x1))))))))))
, 2(4(5(2(5(4(x1)))))) -> 2(4(1(0(0(4(4(3(5(4(x1))))))))))
, 2(4(0(2(0(0(x1)))))) -> 2(0(0(2(5(4(1(1(2(1(x1))))))))))
, 2(2(4(5(2(5(x1)))))) -> 2(2(4(3(5(4(5(5(2(5(x1))))))))))
, 1(5(2(5(3(1(x1)))))) -> 2(5(4(1(1(0(2(5(3(2(x1))))))))))
, 1(3(2(2(5(2(x1)))))) -> 1(3(5(2(4(5(2(3(4(4(x1))))))))))
, 0(0(2(2(5(0(x1)))))) -> 0(2(5(3(4(0(1(2(5(0(x1))))))))))
, 4(5(2(5(2(x1))))) -> 5(2(1(1(1(0(2(5(0(2(x1))))))))))
, 4(0(3(0(0(x1))))) -> 4(3(5(2(4(1(2(1(2(0(x1))))))))))
, 2(3(3(2(4(x1))))) -> 2(1(2(5(0(1(0(5(5(4(x1))))))))))
, 0(2(2(5(5(x1))))) -> 2(5(4(3(0(4(1(3(5(4(x1))))))))))
, 3(1(0(0(x1)))) -> 3(5(5(3(5(0(0(0(0(0(x1))))))))))
, 0(5(0(0(x1)))) -> 2(3(0(3(5(2(2(3(4(1(x1))))))))))
, 5(1(5(x1))) -> 4(4(1(0(0(3(4(1(0(2(x1))))))))))
, 3(3(0(x1))) -> 3(0(2(1(0(0(1(2(1(0(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(0(3(2(0(3(x1))))))) -> 0(4(4(0(2(5(4(1(0(3(x1))))))))))
, 5(3(3(2(1(5(5(x1))))))) -> 1(3(5(0(2(1(2(0(2(3(x1))))))))))
, 5(1(4(2(0(5(2(x1))))))) -> 4(0(5(1(0(4(4(0(4(2(x1))))))))))
, 5(0(3(3(2(2(0(x1))))))) -> 4(2(2(2(2(5(3(5(1(0(x1))))))))))
, 5(0(3(2(0(5(0(x1))))))) -> 5(1(2(4(0(0(1(5(1(0(x1))))))))))
, 5(0(3(0(5(0(1(x1))))))) -> 5(1(3(3(4(5(3(0(4(1(x1))))))))))
, 5(0(0(4(4(5(0(x1))))))) -> 4(2(1(1(3(4(4(0(5(0(x1))))))))))
, 5(0(0(3(1(5(0(x1))))))) -> 4(0(0(4(0(5(4(4(1(0(x1))))))))))
, 4(2(1(5(1(5(0(x1))))))) -> 4(4(5(4(0(2(3(4(5(0(x1))))))))))
, 3(3(5(2(2(5(2(x1))))))) -> 3(0(1(0(5(1(5(5(4(2(x1))))))))))
, 3(2(5(0(0(3(0(x1))))))) -> 4(3(4(1(2(2(0(2(5(4(x1))))))))))
, 3(2(2(2(2(4(2(x1))))))) -> 3(1(3(0(1(1(4(2(1(0(x1))))))))))
, 3(2(1(4(2(1(4(x1))))))) -> 3(5(4(2(3(0(1(1(5(5(x1))))))))))
, 3(1(4(2(3(0(0(x1))))))) -> 1(0(3(4(3(3(4(2(4(1(x1))))))))))
, 2(4(4(3(1(0(0(x1))))))) -> 2(4(2(1(3(5(4(4(0(1(x1))))))))))
, 2(4(1(3(0(5(2(x1))))))) -> 2(4(4(1(5(3(4(4(4(0(x1))))))))))
, 2(1(5(5(0(1(1(x1))))))) -> 0(1(2(3(4(4(3(3(4(0(x1))))))))))
, 2(0(1(4(5(2(0(x1))))))) -> 2(2(1(0(0(0(3(3(4(4(x1))))))))))
, 1(0(3(2(1(3(2(x1))))))) -> 1(1(1(1(5(5(3(5(1(5(x1))))))))))
, 0(5(2(0(4(3(0(x1))))))) -> 1(1(1(2(4(3(3(4(5(4(x1))))))))))
, 0(5(2(0(3(2(2(x1))))))) -> 2(1(2(4(3(5(2(2(2(2(x1))))))))))
, 0(0(5(2(4(2(5(x1))))))) -> 0(2(0(4(2(1(2(1(3(3(x1))))))))))
, 5(2(5(2(2(5(x1)))))) -> 4(4(5(5(1(0(5(2(1(2(x1))))))))))
, 5(0(5(2(5(2(x1)))))) -> 5(4(2(4(4(3(4(5(0(0(x1))))))))))
, 4(5(2(5(3(2(x1)))))) -> 4(1(3(4(3(2(4(4(0(2(x1))))))))))
, 4(5(2(3(1(2(x1)))))) -> 4(4(4(0(1(2(4(2(0(2(x1))))))))))
, 3(2(0(3(0(0(x1)))))) -> 3(4(1(3(4(0(2(0(4(1(x1))))))))))
, 3(1(5(1(3(2(x1)))))) -> 1(1(5(3(5(1(2(4(1(5(x1))))))))))
, 2(4(5(2(5(4(x1)))))) -> 2(4(1(0(0(4(4(3(5(4(x1))))))))))
, 2(4(0(2(0(0(x1)))))) -> 2(0(0(2(5(4(1(1(2(1(x1))))))))))
, 2(2(4(5(2(5(x1)))))) -> 2(2(4(3(5(4(5(5(2(5(x1))))))))))
, 1(5(2(5(3(1(x1)))))) -> 2(5(4(1(1(0(2(5(3(2(x1))))))))))
, 1(3(2(2(5(2(x1)))))) -> 1(3(5(2(4(5(2(3(4(4(x1))))))))))
, 0(0(2(2(5(0(x1)))))) -> 0(2(5(3(4(0(1(2(5(0(x1))))))))))
, 4(5(2(5(2(x1))))) -> 5(2(1(1(1(0(2(5(0(2(x1))))))))))
, 4(0(3(0(0(x1))))) -> 4(3(5(2(4(1(2(1(2(0(x1))))))))))
, 2(3(3(2(4(x1))))) -> 2(1(2(5(0(1(0(5(5(4(x1))))))))))
, 0(2(2(5(5(x1))))) -> 2(5(4(3(0(4(1(3(5(4(x1))))))))))
, 3(1(0(0(x1)))) -> 3(5(5(3(5(0(0(0(0(0(x1))))))))))
, 0(5(0(0(x1)))) -> 2(3(0(3(5(2(2(3(4(1(x1))))))))))
, 5(1(5(x1))) -> 4(4(1(0(0(3(4(1(0(2(x1))))))))))
, 3(3(0(x1))) -> 3(0(2(1(0(0(1(2(1(0(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(0(3(2(0(3(x1))))))) -> 0(4(4(0(2(5(4(1(0(3(x1))))))))))
, 5(3(3(2(1(5(5(x1))))))) -> 1(3(5(0(2(1(2(0(2(3(x1))))))))))
, 5(1(4(2(0(5(2(x1))))))) -> 4(0(5(1(0(4(4(0(4(2(x1))))))))))
, 5(0(3(3(2(2(0(x1))))))) -> 4(2(2(2(2(5(3(5(1(0(x1))))))))))
, 5(0(3(2(0(5(0(x1))))))) -> 5(1(2(4(0(0(1(5(1(0(x1))))))))))
, 5(0(3(0(5(0(1(x1))))))) -> 5(1(3(3(4(5(3(0(4(1(x1))))))))))
, 5(0(0(4(4(5(0(x1))))))) -> 4(2(1(1(3(4(4(0(5(0(x1))))))))))
, 5(0(0(3(1(5(0(x1))))))) -> 4(0(0(4(0(5(4(4(1(0(x1))))))))))
, 4(2(1(5(1(5(0(x1))))))) -> 4(4(5(4(0(2(3(4(5(0(x1))))))))))
, 3(3(5(2(2(5(2(x1))))))) -> 3(0(1(0(5(1(5(5(4(2(x1))))))))))
, 3(2(5(0(0(3(0(x1))))))) -> 4(3(4(1(2(2(0(2(5(4(x1))))))))))
, 3(2(2(2(2(4(2(x1))))))) -> 3(1(3(0(1(1(4(2(1(0(x1))))))))))
, 3(2(1(4(2(1(4(x1))))))) -> 3(5(4(2(3(0(1(1(5(5(x1))))))))))
, 3(1(4(2(3(0(0(x1))))))) -> 1(0(3(4(3(3(4(2(4(1(x1))))))))))
, 2(4(4(3(1(0(0(x1))))))) -> 2(4(2(1(3(5(4(4(0(1(x1))))))))))
, 2(4(1(3(0(5(2(x1))))))) -> 2(4(4(1(5(3(4(4(4(0(x1))))))))))
, 2(1(5(5(0(1(1(x1))))))) -> 0(1(2(3(4(4(3(3(4(0(x1))))))))))
, 2(0(1(4(5(2(0(x1))))))) -> 2(2(1(0(0(0(3(3(4(4(x1))))))))))
, 1(0(3(2(1(3(2(x1))))))) -> 1(1(1(1(5(5(3(5(1(5(x1))))))))))
, 0(5(2(0(4(3(0(x1))))))) -> 1(1(1(2(4(3(3(4(5(4(x1))))))))))
, 0(5(2(0(3(2(2(x1))))))) -> 2(1(2(4(3(5(2(2(2(2(x1))))))))))
, 0(0(5(2(4(2(5(x1))))))) -> 0(2(0(4(2(1(2(1(3(3(x1))))))))))
, 5(2(5(2(2(5(x1)))))) -> 4(4(5(5(1(0(5(2(1(2(x1))))))))))
, 5(0(5(2(5(2(x1)))))) -> 5(4(2(4(4(3(4(5(0(0(x1))))))))))
, 4(5(2(5(3(2(x1)))))) -> 4(1(3(4(3(2(4(4(0(2(x1))))))))))
, 4(5(2(3(1(2(x1)))))) -> 4(4(4(0(1(2(4(2(0(2(x1))))))))))
, 3(2(0(3(0(0(x1)))))) -> 3(4(1(3(4(0(2(0(4(1(x1))))))))))
, 3(1(5(1(3(2(x1)))))) -> 1(1(5(3(5(1(2(4(1(5(x1))))))))))
, 2(4(5(2(5(4(x1)))))) -> 2(4(1(0(0(4(4(3(5(4(x1))))))))))
, 2(4(0(2(0(0(x1)))))) -> 2(0(0(2(5(4(1(1(2(1(x1))))))))))
, 2(2(4(5(2(5(x1)))))) -> 2(2(4(3(5(4(5(5(2(5(x1))))))))))
, 1(5(2(5(3(1(x1)))))) -> 2(5(4(1(1(0(2(5(3(2(x1))))))))))
, 1(3(2(2(5(2(x1)))))) -> 1(3(5(2(4(5(2(3(4(4(x1))))))))))
, 0(0(2(2(5(0(x1)))))) -> 0(2(5(3(4(0(1(2(5(0(x1))))))))))
, 4(5(2(5(2(x1))))) -> 5(2(1(1(1(0(2(5(0(2(x1))))))))))
, 4(0(3(0(0(x1))))) -> 4(3(5(2(4(1(2(1(2(0(x1))))))))))
, 2(3(3(2(4(x1))))) -> 2(1(2(5(0(1(0(5(5(4(x1))))))))))
, 0(2(2(5(5(x1))))) -> 2(5(4(3(0(4(1(3(5(4(x1))))))))))
, 3(1(0(0(x1)))) -> 3(5(5(3(5(0(0(0(0(0(x1))))))))))
, 0(5(0(0(x1)))) -> 2(3(0(3(5(2(2(3(4(1(x1))))))))))
, 5(1(5(x1))) -> 4(4(1(0(0(3(4(1(0(2(x1))))))))))
, 3(3(0(x1))) -> 3(0(2(1(0(0(1(2(1(0(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..