Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 5(4(5(2(0(4(5(x1))))))) -> 5(0(0(1(1(1(3(4(1(5(x1))))))))))
, 5(0(0(4(5(4(2(x1))))))) -> 5(1(3(5(3(3(2(0(4(2(x1))))))))))
, 4(5(2(4(4(1(1(x1))))))) -> 4(5(2(5(0(3(2(0(5(0(x1))))))))))
, 4(4(4(2(3(2(5(x1))))))) -> 0(1(3(4(0(4(1(5(0(5(x1))))))))))
, 4(4(1(2(4(2(2(x1))))))) -> 0(3(3(3(0(3(1(5(4(0(x1))))))))))
, 4(2(4(5(2(5(4(x1))))))) -> 0(3(3(5(4(2(2(3(2(0(x1))))))))))
, 4(2(3(1(4(5(1(x1))))))) -> 0(4(1(0(5(1(2(1(4(1(x1))))))))))
, 4(2(2(2(2(5(2(x1))))))) -> 4(3(3(0(2(4(1(0(5(1(x1))))))))))
, 4(1(0(1(2(4(5(x1))))))) -> 5(5(4(2(3(4(3(5(4(5(x1))))))))))
, 2(5(5(3(1(4(5(x1))))))) -> 2(3(0(4(0(0(0(1(0(2(x1))))))))))
, 2(5(4(1(5(1(5(x1))))))) -> 2(2(0(4(4(0(4(0(2(5(x1))))))))))
, 2(4(2(0(0(4(5(x1))))))) -> 3(5(5(1(3(4(5(3(2(0(x1))))))))))
, 2(1(5(2(3(2(2(x1))))))) -> 2(1(5(3(3(1(2(5(5(5(x1))))))))))
, 1(4(0(1(2(4(1(x1))))))) -> 1(0(5(3(4(0(2(3(0(2(x1))))))))))
, 1(1(5(2(3(4(5(x1))))))) -> 4(3(1(0(2(1(1(1(4(0(x1))))))))))
, 0(2(4(1(4(1(5(x1))))))) -> 0(4(1(1(2(0(0(5(5(2(x1))))))))))
, 0(2(3(4(4(1(3(x1))))))) -> 0(3(1(1(3(0(4(1(3(3(x1))))))))))
, 5(4(5(0(3(2(x1)))))) -> 5(5(1(1(3(5(1(1(5(2(x1))))))))))
, 5(2(5(1(5(1(x1)))))) -> 5(0(4(3(1(0(4(5(0(5(x1))))))))))
, 4(5(4(5(2(5(x1)))))) -> 0(5(0(0(3(3(1(5(4(3(x1))))))))))
, 4(4(1(4(1(0(x1)))))) -> 0(2(0(0(2(5(4(3(1(0(x1))))))))))
, 4(2(0(1(5(4(x1)))))) -> 0(1(5(1(1(0(3(4(1(1(x1))))))))))
, 3(4(1(4(5(2(x1)))))) -> 5(3(5(5(5(5(0(3(1(3(x1))))))))))
, 2(4(5(2(3(2(x1)))))) -> 2(0(4(3(5(2(0(2(3(3(x1))))))))))
, 2(1(2(4(5(2(x1)))))) -> 0(5(5(1(4(3(1(2(2(2(x1))))))))))
, 1(3(2(4(5(4(x1)))))) -> 1(2(0(5(4(2(1(1(0(4(x1))))))))))
, 0(4(5(4(4(1(x1)))))) -> 3(2(0(4(5(5(2(0(5(3(x1))))))))))
, 0(2(2(1(5(2(x1)))))) -> 0(5(0(0(2(1(2(5(3(3(x1))))))))))
, 0(2(1(5(0(2(x1)))))) -> 3(3(5(5(5(0(1(3(3(2(x1))))))))))
, 0(1(5(1(4(1(x1)))))) -> 4(5(5(5(4(5(4(0(0(0(x1))))))))))
, 0(1(4(1(2(2(x1)))))) -> 0(0(4(2(0(5(5(5(5(4(x1))))))))))
, 5(4(5(2(2(x1))))) -> 5(1(2(5(5(3(4(0(0(1(x1))))))))))
, 4(5(1(2(2(x1))))) -> 3(1(5(4(0(0(0(2(3(4(x1))))))))))
, 4(1(4(1(5(x1))))) -> 5(5(5(3(1(4(0(4(1(5(x1))))))))))
, 3(4(5(1(4(x1))))) -> 3(5(0(1(0(4(5(5(1(1(x1))))))))))
, 3(2(2(0(2(x1))))) -> 4(2(1(3(5(3(5(5(4(3(x1))))))))))
, 2(2(5(2(5(x1))))) -> 5(5(4(1(3(1(4(0(5(5(x1))))))))))
, 2(2(2(5(0(x1))))) -> 2(3(3(3(0(2(3(5(0(5(x1))))))))))
, 0(2(2(2(2(x1))))) -> 0(0(3(1(0(5(2(5(4(2(x1))))))))))
, 4(5(1(x1))) -> 0(3(0(3(5(0(5(0(5(4(x1))))))))))
, 4(2(0(x1))) -> 3(1(3(0(1(0(3(0(3(0(x1))))))))))
, 3(4(5(x1))) -> 3(5(0(3(1(0(3(0(4(0(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ 5_0(1) -> 1
, 5_1(1) -> 10
, 5_1(2) -> 1
, 5_1(2) -> 7
, 5_1(2) -> 10
, 5_1(2) -> 18
, 5_1(2) -> 26
, 5_1(2) -> 54
, 5_1(2) -> 68
, 5_1(2) -> 114
, 5_1(2) -> 121
, 5_1(2) -> 186
, 5_1(2) -> 194
, 5_1(2) -> 224
, 5_1(2) -> 246
, 5_1(3) -> 10
, 5_1(10) -> 97
, 5_1(11) -> 10
, 5_1(13) -> 12
, 5_1(17) -> 291
, 5_1(18) -> 114
, 5_1(20) -> 19
, 5_1(22) -> 21
, 5_1(27) -> 26
, 5_1(28) -> 10
, 5_1(35) -> 34
, 5_1(42) -> 41
, 5_1(43) -> 37
, 5_1(46) -> 90
, 5_1(51) -> 50
, 5_1(55) -> 62
, 5_1(63) -> 2
, 5_1(69) -> 68
, 5_1(70) -> 10
, 5_1(78) -> 10
, 5_1(85) -> 114
, 5_1(86) -> 85
, 5_1(87) -> 86
, 5_1(92) -> 91
, 5_1(97) -> 96
, 5_1(98) -> 10
, 5_1(100) -> 99
, 5_1(114) -> 113
, 5_1(120) -> 204
, 5_1(121) -> 201
, 5_1(125) -> 124
, 5_1(131) -> 28
, 5_1(136) -> 260
, 5_1(137) -> 136
, 5_1(151) -> 150
, 5_1(154) -> 29
, 5_1(159) -> 255
, 5_1(161) -> 160
, 5_1(162) -> 161
, 5_1(163) -> 162
, 5_1(164) -> 163
, 5_1(178) -> 177
, 5_1(181) -> 131
, 5_1(189) -> 188
, 5_1(194) -> 224
, 5_1(198) -> 197
, 5_1(199) -> 198
, 5_1(206) -> 205
, 5_1(207) -> 206
, 5_1(208) -> 207
, 5_1(212) -> 20
, 5_1(213) -> 212
, 5_1(215) -> 214
, 5_1(222) -> 221
, 5_1(223) -> 222
, 5_1(224) -> 223
, 5_1(226) -> 225
, 5_1(227) -> 226
, 5_1(241) -> 240
, 5_1(247) -> 63
, 5_1(255) -> 254
, 5_1(259) -> 258
, 5_1(290) -> 289
, 5_1(294) -> 293
, 5_1(296) -> 295
, 5_2(3) -> 277
, 5_2(23) -> 286
, 5_2(139) -> 138
, 5_2(145) -> 144
, 5_2(166) -> 7
, 5_2(166) -> 157
, 5_2(168) -> 167
, 5_2(169) -> 168
, 5_2(170) -> 169
, 5_2(171) -> 170
, 5_2(231) -> 68
, 5_2(234) -> 233
, 5_2(235) -> 234
, 5_2(276) -> 275
, 5_2(285) -> 284
, 5_2(301) -> 300
, 5_2(303) -> 302
, 5_2(305) -> 304
, 5_2(334) -> 333
, 5_2(336) -> 335
, 5_2(338) -> 337
, 5_2(386) -> 385
, 5_2(395) -> 394
, 5_2(404) -> 403
, 5_2(416) -> 415
, 5_2(418) -> 417
, 5_2(420) -> 419
, 5_2(422) -> 421
, 4_0(1) -> 1
, 4_1(1) -> 194
, 4_1(2) -> 54
, 4_1(9) -> 8
, 4_1(10) -> 69
, 4_1(11) -> 2
, 4_1(18) -> 17
, 4_1(19) -> 1
, 4_1(19) -> 17
, 4_1(19) -> 27
, 4_1(19) -> 55
, 4_1(19) -> 69
, 4_1(19) -> 121
, 4_1(19) -> 125
, 4_1(19) -> 159
, 4_1(19) -> 194
, 4_1(19) -> 211
, 4_1(19) -> 230
, 4_1(27) -> 42
, 4_1(31) -> 30
, 4_1(33) -> 32
, 4_1(34) -> 130
, 4_1(44) -> 43
, 4_1(48) -> 28
, 4_1(55) -> 54
, 4_1(60) -> 59
, 4_1(64) -> 63
, 4_1(67) -> 66
, 4_1(70) -> 194
, 4_1(73) -> 72
, 4_1(78) -> 194
, 4_1(80) -> 79
, 4_1(81) -> 80
, 4_1(83) -> 82
, 4_1(90) -> 89
, 4_1(98) -> 2
, 4_1(102) -> 101
, 4_1(119) -> 118
, 4_1(120) -> 137
, 4_1(121) -> 137
, 4_1(127) -> 3
, 4_1(152) -> 151
, 4_1(159) -> 158
, 4_1(176) -> 175
, 4_1(183) -> 182
, 4_1(190) -> 189
, 4_1(197) -> 196
, 4_1(214) -> 213
, 4_1(216) -> 215
, 4_1(219) -> 218
, 4_1(229) -> 228
, 4_1(242) -> 241
, 4_1(250) -> 249
, 4_1(254) -> 253
, 4_1(264) -> 263
, 4_2(11) -> 305
, 4_2(29) -> 305
, 4_2(91) -> 305
, 4_2(98) -> 305
, 4_2(122) -> 338
, 4_2(146) -> 145
, 4_2(155) -> 420
, 4_2(237) -> 236
, 4_2(393) -> 392
, 4_2(402) -> 401
, 4_2(411) -> 410
, 4_2(429) -> 428
, 3_0(1) -> 1
, 3_1(1) -> 121
, 3_1(2) -> 121
, 3_1(8) -> 7
, 3_1(10) -> 67
, 3_1(12) -> 11
, 3_1(14) -> 13
, 3_1(15) -> 14
, 3_1(18) -> 211
, 3_1(21) -> 120
, 3_1(22) -> 121
, 3_1(24) -> 23
, 3_1(27) -> 344
, 3_1(28) -> 211
, 3_1(30) -> 29
, 3_1(34) -> 268
, 3_1(36) -> 28
, 3_1(37) -> 36
, 3_1(38) -> 37
, 3_1(40) -> 39
, 3_1(46) -> 13
, 3_1(47) -> 46
, 3_1(54) -> 7
, 3_1(56) -> 19
, 3_1(57) -> 56
, 3_1(66) -> 65
, 3_1(68) -> 67
, 3_1(70) -> 120
, 3_1(71) -> 70
, 3_1(77) -> 104
, 3_1(85) -> 1
, 3_1(85) -> 17
, 3_1(85) -> 18
, 3_1(85) -> 27
, 3_1(85) -> 69
, 3_1(85) -> 77
, 3_1(85) -> 121
, 3_1(85) -> 193
, 3_1(85) -> 194
, 3_1(85) -> 246
, 3_1(89) -> 88
, 3_1(93) -> 92
, 3_1(94) -> 93
, 3_1(98) -> 121
, 3_1(101) -> 100
, 3_1(117) -> 116
, 3_1(119) -> 165
, 3_1(120) -> 120
, 3_1(121) -> 120
, 3_1(124) -> 123
, 3_1(128) -> 127
, 3_1(134) -> 133
, 3_1(135) -> 134
, 3_1(147) -> 120
, 3_1(153) -> 152
, 3_1(158) -> 157
, 3_1(160) -> 2
, 3_1(177) -> 176
, 3_1(184) -> 183
, 3_1(194) -> 246
, 3_1(195) -> 21
, 3_1(205) -> 85
, 3_1(211) -> 210
, 3_1(228) -> 227
, 3_1(248) -> 247
, 3_1(258) -> 257
, 3_1(260) -> 259
, 3_1(262) -> 261
, 3_1(265) -> 71
, 3_1(266) -> 265
, 3_1(287) -> 218
, 3_1(293) -> 292
, 3_1(339) -> 240
, 3_1(343) -> 342
, 3_1(381) -> 251
, 3_1(384) -> 383
, 3_2(21) -> 174
, 3_2(22) -> 146
, 3_2(142) -> 141
, 3_2(143) -> 142
, 3_2(167) -> 166
, 3_2(173) -> 172
, 3_2(236) -> 235
, 3_2(270) -> 269
, 3_2(271) -> 270
, 3_2(272) -> 271
, 3_2(275) -> 274
, 3_2(279) -> 278
, 3_2(280) -> 279
, 3_2(281) -> 280
, 3_2(284) -> 283
, 3_2(298) -> 297
, 3_2(300) -> 299
, 3_2(331) -> 330
, 3_2(333) -> 332
, 3_2(345) -> 17
, 3_2(345) -> 194
, 3_2(347) -> 346
, 3_2(351) -> 350
, 3_2(353) -> 352
, 3_2(354) -> 194
, 3_2(356) -> 355
, 3_2(360) -> 359
, 3_2(362) -> 361
, 3_2(363) -> 2
, 3_2(363) -> 305
, 3_2(365) -> 364
, 3_2(369) -> 368
, 3_2(371) -> 370
, 3_2(372) -> 218
, 3_2(374) -> 373
, 3_2(378) -> 377
, 3_2(380) -> 379
, 3_2(385) -> 246
, 3_2(388) -> 387
, 3_2(391) -> 390
, 3_2(394) -> 120
, 3_2(394) -> 121
, 3_2(394) -> 210
, 3_2(394) -> 246
, 3_2(394) -> 344
, 3_2(397) -> 396
, 3_2(400) -> 399
, 3_2(403) -> 88
, 3_2(406) -> 405
, 3_2(409) -> 408
, 3_2(413) -> 412
, 3_2(415) -> 414
, 3_2(421) -> 7
, 3_2(424) -> 423
, 3_2(427) -> 426
, 0_0(1) -> 1
, 0_1(1) -> 27
, 0_1(2) -> 27
, 0_1(3) -> 2
, 0_1(4) -> 3
, 0_1(8) -> 250
, 0_1(10) -> 35
, 0_1(11) -> 27
, 0_1(17) -> 16
, 0_1(18) -> 77
, 0_1(19) -> 27
, 0_1(20) -> 27
, 0_1(23) -> 22
, 0_1(26) -> 25
, 0_1(27) -> 217
, 0_1(28) -> 1
, 0_1(28) -> 17
, 0_1(28) -> 18
, 0_1(28) -> 27
, 0_1(28) -> 69
, 0_1(28) -> 77
, 0_1(28) -> 194
, 0_1(28) -> 230
, 0_1(28) -> 244
, 0_1(32) -> 31
, 0_1(39) -> 38
, 0_1(42) -> 384
, 0_1(50) -> 49
, 0_1(55) -> 230
, 0_1(58) -> 57
, 0_1(62) -> 61
, 0_1(70) -> 27
, 0_1(72) -> 71
, 0_1(74) -> 73
, 0_1(75) -> 74
, 0_1(76) -> 75
, 0_1(78) -> 27
, 0_1(79) -> 78
, 0_1(82) -> 81
, 0_1(84) -> 83
, 0_1(97) -> 264
, 0_1(98) -> 27
, 0_1(99) -> 98
, 0_1(103) -> 102
, 0_1(106) -> 105
, 0_1(112) -> 111
, 0_1(113) -> 112
, 0_1(118) -> 117
, 0_1(120) -> 343
, 0_1(130) -> 129
, 0_1(132) -> 131
, 0_1(133) -> 132
, 0_1(148) -> 147
, 0_1(149) -> 148
, 0_1(157) -> 156
, 0_1(165) -> 164
, 0_1(175) -> 70
, 0_1(180) -> 179
, 0_1(188) -> 187
, 0_1(194) -> 193
, 0_1(196) -> 195
, 0_1(201) -> 200
, 0_1(209) -> 208
, 0_1(217) -> 216
, 0_1(218) -> 28
, 0_1(221) -> 220
, 0_1(224) -> 296
, 0_1(230) -> 229
, 0_1(243) -> 242
, 0_1(244) -> 243
, 0_1(245) -> 244
, 0_1(251) -> 86
, 0_1(253) -> 252
, 0_1(267) -> 266
, 0_1(289) -> 288
, 0_1(292) -> 36
, 0_1(295) -> 294
, 0_1(340) -> 339
, 0_1(342) -> 341
, 0_1(344) -> 343
, 0_1(383) -> 382
, 0_2(2) -> 393
, 0_2(3) -> 353
, 0_2(20) -> 402
, 0_2(28) -> 353
, 0_2(46) -> 411
, 0_2(63) -> 429
, 0_2(79) -> 362
, 0_2(99) -> 353
, 0_2(138) -> 69
, 0_2(140) -> 139
, 0_2(141) -> 140
, 0_2(172) -> 171
, 0_2(175) -> 353
, 0_2(188) -> 371
, 0_2(221) -> 380
, 0_2(238) -> 237
, 0_2(239) -> 238
, 0_2(273) -> 272
, 0_2(277) -> 276
, 0_2(282) -> 281
, 0_2(286) -> 285
, 0_2(297) -> 17
, 0_2(297) -> 69
, 0_2(297) -> 137
, 0_2(297) -> 194
, 0_2(299) -> 298
, 0_2(302) -> 301
, 0_2(304) -> 303
, 0_2(330) -> 54
, 0_2(332) -> 331
, 0_2(335) -> 334
, 0_2(337) -> 336
, 0_2(348) -> 347
, 0_2(350) -> 349
, 0_2(352) -> 351
, 0_2(357) -> 356
, 0_2(359) -> 358
, 0_2(361) -> 360
, 0_2(366) -> 365
, 0_2(368) -> 367
, 0_2(370) -> 369
, 0_2(375) -> 374
, 0_2(377) -> 376
, 0_2(379) -> 378
, 0_2(387) -> 386
, 0_2(390) -> 389
, 0_2(392) -> 391
, 0_2(396) -> 395
, 0_2(399) -> 398
, 0_2(401) -> 400
, 0_2(405) -> 404
, 0_2(408) -> 407
, 0_2(410) -> 409
, 0_2(412) -> 305
, 0_2(414) -> 413
, 0_2(417) -> 416
, 0_2(419) -> 418
, 0_2(423) -> 422
, 0_2(426) -> 425
, 0_2(428) -> 427
, 1_0(1) -> 1
, 1_1(1) -> 55
, 1_1(2) -> 159
, 1_1(5) -> 4
, 1_1(6) -> 5
, 1_1(7) -> 6
, 1_1(10) -> 9
, 1_1(11) -> 2
, 1_1(19) -> 55
, 1_1(27) -> 153
, 1_1(29) -> 28
, 1_1(34) -> 33
, 1_1(41) -> 40
, 1_1(42) -> 109
, 1_1(49) -> 48
, 1_1(52) -> 51
, 1_1(54) -> 53
, 1_1(55) -> 159
, 1_1(61) -> 60
, 1_1(70) -> 55
, 1_1(77) -> 76
, 1_1(78) -> 55
, 1_1(88) -> 87
, 1_1(91) -> 70
, 1_1(95) -> 94
, 1_1(98) -> 1
, 1_1(98) -> 55
, 1_1(98) -> 109
, 1_1(98) -> 119
, 1_1(105) -> 56
, 1_1(108) -> 107
, 1_1(109) -> 108
, 1_1(110) -> 49
, 1_1(114) -> 126
, 1_1(115) -> 36
, 1_1(116) -> 115
, 1_1(120) -> 119
, 1_1(121) -> 119
, 1_1(122) -> 63
, 1_1(123) -> 122
, 1_1(126) -> 125
, 1_1(129) -> 128
, 1_1(136) -> 135
, 1_1(153) -> 191
, 1_1(155) -> 154
, 1_1(156) -> 155
, 1_1(182) -> 181
, 1_1(185) -> 184
, 1_1(186) -> 184
, 1_1(192) -> 191
, 1_1(193) -> 192
, 1_1(203) -> 202
, 1_1(210) -> 209
, 1_1(240) -> 85
, 1_1(249) -> 248
, 1_1(252) -> 251
, 1_1(257) -> 256
, 1_1(261) -> 64
, 1_1(263) -> 262
, 1_1(288) -> 287
, 1_1(341) -> 340
, 1_1(382) -> 381
, 1_2(78) -> 239
, 1_2(144) -> 143
, 1_2(174) -> 173
, 1_2(232) -> 231
, 1_2(346) -> 345
, 1_2(349) -> 348
, 1_2(355) -> 354
, 1_2(358) -> 357
, 1_2(364) -> 363
, 1_2(367) -> 366
, 1_2(373) -> 372
, 1_2(376) -> 375
, 1_2(389) -> 388
, 1_2(398) -> 397
, 1_2(407) -> 406
, 1_2(425) -> 424
, 2_0(1) -> 1
, 2_1(1) -> 18
, 2_1(2) -> 18
, 2_1(10) -> 84
, 2_1(16) -> 15
, 2_1(18) -> 186
, 2_1(20) -> 18
, 2_1(21) -> 20
, 2_1(25) -> 24
, 2_1(27) -> 47
, 2_1(45) -> 44
, 2_1(46) -> 45
, 2_1(53) -> 52
, 2_1(59) -> 58
, 2_1(65) -> 64
, 2_1(70) -> 1
, 2_1(70) -> 18
, 2_1(70) -> 84
, 2_1(70) -> 185
, 2_1(70) -> 186
, 2_1(70) -> 290
, 2_1(78) -> 70
, 2_1(96) -> 95
, 2_1(98) -> 18
, 2_1(104) -> 103
, 2_1(107) -> 106
, 2_1(111) -> 110
, 2_1(120) -> 180
, 2_1(136) -> 149
, 2_1(147) -> 28
, 2_1(150) -> 149
, 2_1(179) -> 178
, 2_1(186) -> 185
, 2_1(187) -> 98
, 2_1(191) -> 190
, 2_1(195) -> 85
, 2_1(200) -> 199
, 2_1(202) -> 133
, 2_1(204) -> 203
, 2_1(220) -> 219
, 2_1(224) -> 290
, 2_1(225) -> 11
, 2_1(246) -> 245
, 2_1(256) -> 19
, 2_1(268) -> 267
, 2_1(291) -> 290
, 2_2(233) -> 232
, 2_2(269) -> 185
, 2_2(274) -> 273
, 2_2(278) -> 186
, 2_2(283) -> 282}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(4(5(2(0(4(5(x1))))))) -> 5(0(0(1(1(1(3(4(1(5(x1))))))))))
, 5(0(0(4(5(4(2(x1))))))) -> 5(1(3(5(3(3(2(0(4(2(x1))))))))))
, 4(5(2(4(4(1(1(x1))))))) -> 4(5(2(5(0(3(2(0(5(0(x1))))))))))
, 4(4(4(2(3(2(5(x1))))))) -> 0(1(3(4(0(4(1(5(0(5(x1))))))))))
, 4(4(1(2(4(2(2(x1))))))) -> 0(3(3(3(0(3(1(5(4(0(x1))))))))))
, 4(2(4(5(2(5(4(x1))))))) -> 0(3(3(5(4(2(2(3(2(0(x1))))))))))
, 4(2(3(1(4(5(1(x1))))))) -> 0(4(1(0(5(1(2(1(4(1(x1))))))))))
, 4(2(2(2(2(5(2(x1))))))) -> 4(3(3(0(2(4(1(0(5(1(x1))))))))))
, 4(1(0(1(2(4(5(x1))))))) -> 5(5(4(2(3(4(3(5(4(5(x1))))))))))
, 2(5(5(3(1(4(5(x1))))))) -> 2(3(0(4(0(0(0(1(0(2(x1))))))))))
, 2(5(4(1(5(1(5(x1))))))) -> 2(2(0(4(4(0(4(0(2(5(x1))))))))))
, 2(4(2(0(0(4(5(x1))))))) -> 3(5(5(1(3(4(5(3(2(0(x1))))))))))
, 2(1(5(2(3(2(2(x1))))))) -> 2(1(5(3(3(1(2(5(5(5(x1))))))))))
, 1(4(0(1(2(4(1(x1))))))) -> 1(0(5(3(4(0(2(3(0(2(x1))))))))))
, 1(1(5(2(3(4(5(x1))))))) -> 4(3(1(0(2(1(1(1(4(0(x1))))))))))
, 0(2(4(1(4(1(5(x1))))))) -> 0(4(1(1(2(0(0(5(5(2(x1))))))))))
, 0(2(3(4(4(1(3(x1))))))) -> 0(3(1(1(3(0(4(1(3(3(x1))))))))))
, 5(4(5(0(3(2(x1)))))) -> 5(5(1(1(3(5(1(1(5(2(x1))))))))))
, 5(2(5(1(5(1(x1)))))) -> 5(0(4(3(1(0(4(5(0(5(x1))))))))))
, 4(5(4(5(2(5(x1)))))) -> 0(5(0(0(3(3(1(5(4(3(x1))))))))))
, 4(4(1(4(1(0(x1)))))) -> 0(2(0(0(2(5(4(3(1(0(x1))))))))))
, 4(2(0(1(5(4(x1)))))) -> 0(1(5(1(1(0(3(4(1(1(x1))))))))))
, 3(4(1(4(5(2(x1)))))) -> 5(3(5(5(5(5(0(3(1(3(x1))))))))))
, 2(4(5(2(3(2(x1)))))) -> 2(0(4(3(5(2(0(2(3(3(x1))))))))))
, 2(1(2(4(5(2(x1)))))) -> 0(5(5(1(4(3(1(2(2(2(x1))))))))))
, 1(3(2(4(5(4(x1)))))) -> 1(2(0(5(4(2(1(1(0(4(x1))))))))))
, 0(4(5(4(4(1(x1)))))) -> 3(2(0(4(5(5(2(0(5(3(x1))))))))))
, 0(2(2(1(5(2(x1)))))) -> 0(5(0(0(2(1(2(5(3(3(x1))))))))))
, 0(2(1(5(0(2(x1)))))) -> 3(3(5(5(5(0(1(3(3(2(x1))))))))))
, 0(1(5(1(4(1(x1)))))) -> 4(5(5(5(4(5(4(0(0(0(x1))))))))))
, 0(1(4(1(2(2(x1)))))) -> 0(0(4(2(0(5(5(5(5(4(x1))))))))))
, 5(4(5(2(2(x1))))) -> 5(1(2(5(5(3(4(0(0(1(x1))))))))))
, 4(5(1(2(2(x1))))) -> 3(1(5(4(0(0(0(2(3(4(x1))))))))))
, 4(1(4(1(5(x1))))) -> 5(5(5(3(1(4(0(4(1(5(x1))))))))))
, 3(4(5(1(4(x1))))) -> 3(5(0(1(0(4(5(5(1(1(x1))))))))))
, 3(2(2(0(2(x1))))) -> 4(2(1(3(5(3(5(5(4(3(x1))))))))))
, 2(2(5(2(5(x1))))) -> 5(5(4(1(3(1(4(0(5(5(x1))))))))))
, 2(2(2(5(0(x1))))) -> 2(3(3(3(0(2(3(5(0(5(x1))))))))))
, 0(2(2(2(2(x1))))) -> 0(0(3(1(0(5(2(5(4(2(x1))))))))))
, 4(5(1(x1))) -> 0(3(0(3(5(0(5(0(5(4(x1))))))))))
, 4(2(0(x1))) -> 3(1(3(0(1(0(3(0(3(0(x1))))))))))
, 3(4(5(x1))) -> 3(5(0(3(1(0(3(0(4(0(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(4(5(2(0(4(5(x1))))))) -> 5(0(0(1(1(1(3(4(1(5(x1))))))))))
, 5(0(0(4(5(4(2(x1))))))) -> 5(1(3(5(3(3(2(0(4(2(x1))))))))))
, 4(5(2(4(4(1(1(x1))))))) -> 4(5(2(5(0(3(2(0(5(0(x1))))))))))
, 4(4(4(2(3(2(5(x1))))))) -> 0(1(3(4(0(4(1(5(0(5(x1))))))))))
, 4(4(1(2(4(2(2(x1))))))) -> 0(3(3(3(0(3(1(5(4(0(x1))))))))))
, 4(2(4(5(2(5(4(x1))))))) -> 0(3(3(5(4(2(2(3(2(0(x1))))))))))
, 4(2(3(1(4(5(1(x1))))))) -> 0(4(1(0(5(1(2(1(4(1(x1))))))))))
, 4(2(2(2(2(5(2(x1))))))) -> 4(3(3(0(2(4(1(0(5(1(x1))))))))))
, 4(1(0(1(2(4(5(x1))))))) -> 5(5(4(2(3(4(3(5(4(5(x1))))))))))
, 2(5(5(3(1(4(5(x1))))))) -> 2(3(0(4(0(0(0(1(0(2(x1))))))))))
, 2(5(4(1(5(1(5(x1))))))) -> 2(2(0(4(4(0(4(0(2(5(x1))))))))))
, 2(4(2(0(0(4(5(x1))))))) -> 3(5(5(1(3(4(5(3(2(0(x1))))))))))
, 2(1(5(2(3(2(2(x1))))))) -> 2(1(5(3(3(1(2(5(5(5(x1))))))))))
, 1(4(0(1(2(4(1(x1))))))) -> 1(0(5(3(4(0(2(3(0(2(x1))))))))))
, 1(1(5(2(3(4(5(x1))))))) -> 4(3(1(0(2(1(1(1(4(0(x1))))))))))
, 0(2(4(1(4(1(5(x1))))))) -> 0(4(1(1(2(0(0(5(5(2(x1))))))))))
, 0(2(3(4(4(1(3(x1))))))) -> 0(3(1(1(3(0(4(1(3(3(x1))))))))))
, 5(4(5(0(3(2(x1)))))) -> 5(5(1(1(3(5(1(1(5(2(x1))))))))))
, 5(2(5(1(5(1(x1)))))) -> 5(0(4(3(1(0(4(5(0(5(x1))))))))))
, 4(5(4(5(2(5(x1)))))) -> 0(5(0(0(3(3(1(5(4(3(x1))))))))))
, 4(4(1(4(1(0(x1)))))) -> 0(2(0(0(2(5(4(3(1(0(x1))))))))))
, 4(2(0(1(5(4(x1)))))) -> 0(1(5(1(1(0(3(4(1(1(x1))))))))))
, 3(4(1(4(5(2(x1)))))) -> 5(3(5(5(5(5(0(3(1(3(x1))))))))))
, 2(4(5(2(3(2(x1)))))) -> 2(0(4(3(5(2(0(2(3(3(x1))))))))))
, 2(1(2(4(5(2(x1)))))) -> 0(5(5(1(4(3(1(2(2(2(x1))))))))))
, 1(3(2(4(5(4(x1)))))) -> 1(2(0(5(4(2(1(1(0(4(x1))))))))))
, 0(4(5(4(4(1(x1)))))) -> 3(2(0(4(5(5(2(0(5(3(x1))))))))))
, 0(2(2(1(5(2(x1)))))) -> 0(5(0(0(2(1(2(5(3(3(x1))))))))))
, 0(2(1(5(0(2(x1)))))) -> 3(3(5(5(5(0(1(3(3(2(x1))))))))))
, 0(1(5(1(4(1(x1)))))) -> 4(5(5(5(4(5(4(0(0(0(x1))))))))))
, 0(1(4(1(2(2(x1)))))) -> 0(0(4(2(0(5(5(5(5(4(x1))))))))))
, 5(4(5(2(2(x1))))) -> 5(1(2(5(5(3(4(0(0(1(x1))))))))))
, 4(5(1(2(2(x1))))) -> 3(1(5(4(0(0(0(2(3(4(x1))))))))))
, 4(1(4(1(5(x1))))) -> 5(5(5(3(1(4(0(4(1(5(x1))))))))))
, 3(4(5(1(4(x1))))) -> 3(5(0(1(0(4(5(5(1(1(x1))))))))))
, 3(2(2(0(2(x1))))) -> 4(2(1(3(5(3(5(5(4(3(x1))))))))))
, 2(2(5(2(5(x1))))) -> 5(5(4(1(3(1(4(0(5(5(x1))))))))))
, 2(2(2(5(0(x1))))) -> 2(3(3(3(0(2(3(5(0(5(x1))))))))))
, 0(2(2(2(2(x1))))) -> 0(0(3(1(0(5(2(5(4(2(x1))))))))))
, 4(5(1(x1))) -> 0(3(0(3(5(0(5(0(5(4(x1))))))))))
, 4(2(0(x1))) -> 3(1(3(0(1(0(3(0(3(0(x1))))))))))
, 3(4(5(x1))) -> 3(5(0(3(1(0(3(0(4(0(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(4(5(2(0(4(5(x1))))))) -> 5(0(0(1(1(1(3(4(1(5(x1))))))))))
, 5(0(0(4(5(4(2(x1))))))) -> 5(1(3(5(3(3(2(0(4(2(x1))))))))))
, 4(5(2(4(4(1(1(x1))))))) -> 4(5(2(5(0(3(2(0(5(0(x1))))))))))
, 4(4(4(2(3(2(5(x1))))))) -> 0(1(3(4(0(4(1(5(0(5(x1))))))))))
, 4(4(1(2(4(2(2(x1))))))) -> 0(3(3(3(0(3(1(5(4(0(x1))))))))))
, 4(2(4(5(2(5(4(x1))))))) -> 0(3(3(5(4(2(2(3(2(0(x1))))))))))
, 4(2(3(1(4(5(1(x1))))))) -> 0(4(1(0(5(1(2(1(4(1(x1))))))))))
, 4(2(2(2(2(5(2(x1))))))) -> 4(3(3(0(2(4(1(0(5(1(x1))))))))))
, 4(1(0(1(2(4(5(x1))))))) -> 5(5(4(2(3(4(3(5(4(5(x1))))))))))
, 2(5(5(3(1(4(5(x1))))))) -> 2(3(0(4(0(0(0(1(0(2(x1))))))))))
, 2(5(4(1(5(1(5(x1))))))) -> 2(2(0(4(4(0(4(0(2(5(x1))))))))))
, 2(4(2(0(0(4(5(x1))))))) -> 3(5(5(1(3(4(5(3(2(0(x1))))))))))
, 2(1(5(2(3(2(2(x1))))))) -> 2(1(5(3(3(1(2(5(5(5(x1))))))))))
, 1(4(0(1(2(4(1(x1))))))) -> 1(0(5(3(4(0(2(3(0(2(x1))))))))))
, 1(1(5(2(3(4(5(x1))))))) -> 4(3(1(0(2(1(1(1(4(0(x1))))))))))
, 0(2(4(1(4(1(5(x1))))))) -> 0(4(1(1(2(0(0(5(5(2(x1))))))))))
, 0(2(3(4(4(1(3(x1))))))) -> 0(3(1(1(3(0(4(1(3(3(x1))))))))))
, 5(4(5(0(3(2(x1)))))) -> 5(5(1(1(3(5(1(1(5(2(x1))))))))))
, 5(2(5(1(5(1(x1)))))) -> 5(0(4(3(1(0(4(5(0(5(x1))))))))))
, 4(5(4(5(2(5(x1)))))) -> 0(5(0(0(3(3(1(5(4(3(x1))))))))))
, 4(4(1(4(1(0(x1)))))) -> 0(2(0(0(2(5(4(3(1(0(x1))))))))))
, 4(2(0(1(5(4(x1)))))) -> 0(1(5(1(1(0(3(4(1(1(x1))))))))))
, 3(4(1(4(5(2(x1)))))) -> 5(3(5(5(5(5(0(3(1(3(x1))))))))))
, 2(4(5(2(3(2(x1)))))) -> 2(0(4(3(5(2(0(2(3(3(x1))))))))))
, 2(1(2(4(5(2(x1)))))) -> 0(5(5(1(4(3(1(2(2(2(x1))))))))))
, 1(3(2(4(5(4(x1)))))) -> 1(2(0(5(4(2(1(1(0(4(x1))))))))))
, 0(4(5(4(4(1(x1)))))) -> 3(2(0(4(5(5(2(0(5(3(x1))))))))))
, 0(2(2(1(5(2(x1)))))) -> 0(5(0(0(2(1(2(5(3(3(x1))))))))))
, 0(2(1(5(0(2(x1)))))) -> 3(3(5(5(5(0(1(3(3(2(x1))))))))))
, 0(1(5(1(4(1(x1)))))) -> 4(5(5(5(4(5(4(0(0(0(x1))))))))))
, 0(1(4(1(2(2(x1)))))) -> 0(0(4(2(0(5(5(5(5(4(x1))))))))))
, 5(4(5(2(2(x1))))) -> 5(1(2(5(5(3(4(0(0(1(x1))))))))))
, 4(5(1(2(2(x1))))) -> 3(1(5(4(0(0(0(2(3(4(x1))))))))))
, 4(1(4(1(5(x1))))) -> 5(5(5(3(1(4(0(4(1(5(x1))))))))))
, 3(4(5(1(4(x1))))) -> 3(5(0(1(0(4(5(5(1(1(x1))))))))))
, 3(2(2(0(2(x1))))) -> 4(2(1(3(5(3(5(5(4(3(x1))))))))))
, 2(2(5(2(5(x1))))) -> 5(5(4(1(3(1(4(0(5(5(x1))))))))))
, 2(2(2(5(0(x1))))) -> 2(3(3(3(0(2(3(5(0(5(x1))))))))))
, 0(2(2(2(2(x1))))) -> 0(0(3(1(0(5(2(5(4(2(x1))))))))))
, 4(5(1(x1))) -> 0(3(0(3(5(0(5(0(5(4(x1))))))))))
, 4(2(0(x1))) -> 3(1(3(0(1(0(3(0(3(0(x1))))))))))
, 3(4(5(x1))) -> 3(5(0(3(1(0(3(0(4(0(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..