Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 5(5(1(4(4(2(5(x1))))))) -> 3(5(0(5(4(0(1(5(2(5(x1))))))))))
, 5(3(1(4(2(4(0(x1))))))) -> 5(5(3(1(1(3(0(1(5(2(x1))))))))))
, 5(2(2(0(5(4(0(x1))))))) -> 1(5(1(3(0(0(1(3(2(1(x1))))))))))
, 5(2(2(0(4(4(2(x1))))))) -> 2(0(1(1(2(4(5(5(0(2(x1))))))))))
, 4(2(5(0(1(4(2(x1))))))) -> 4(2(5(3(0(1(2(3(2(1(x1))))))))))
, 2(4(2(1(5(4(1(x1))))))) -> 0(1(0(4(0(3(0(5(4(1(x1))))))))))
, 1(5(5(4(0(2(5(x1))))))) -> 1(1(4(3(2(1(4(1(1(5(x1))))))))))
, 1(4(2(4(1(3(5(x1))))))) -> 4(4(3(3(5(0(0(0(2(5(x1))))))))))
, 1(3(0(5(4(1(4(x1))))))) -> 1(0(3(0(1(3(1(3(2(4(x1))))))))))
, 1(0(4(4(2(5(5(x1))))))) -> 1(0(4(1(0(5(3(5(2(5(x1))))))))))
, 0(1(4(0(0(4(2(x1))))))) -> 0(1(0(1(5(2(1(0(1(2(x1))))))))))
, 5(5(0(1(4(2(x1)))))) -> 5(2(0(1(2(4(1(3(3(3(x1))))))))))
, 4(1(1(4(0(4(x1)))))) -> 4(0(2(3(5(0(4(1(5(2(x1))))))))))
, 3(4(2(2(0(5(x1)))))) -> 0(1(3(1(2(0(2(0(4(3(x1))))))))))
, 3(1(2(4(2(4(x1)))))) -> 4(3(2(0(1(2(3(0(5(4(x1))))))))))
, 2(5(3(0(4(4(x1)))))) -> 2(2(5(0(4(4(5(0(4(4(x1))))))))))
, 1(5(5(3(2(2(x1)))))) -> 0(1(2(4(0(5(0(1(2(3(x1))))))))))
, 1(4(0(4(0(5(x1)))))) -> 5(1(1(2(4(0(2(1(3(5(x1))))))))))
, 5(3(2(1(5(x1))))) -> 0(4(0(4(3(4(3(2(2(5(x1))))))))))
, 3(2(4(4(2(x1))))) -> 3(3(3(0(2(3(1(4(0(4(x1))))))))))
, 2(1(4(4(1(x1))))) -> 2(5(0(2(2(1(2(0(0(0(x1))))))))))
, 1(5(4(2(1(x1))))) -> 3(4(1(3(3(3(3(3(0(1(x1))))))))))
, 1(4(4(1(4(x1))))) -> 3(3(2(1(0(5(0(5(2(4(x1))))))))))
, 1(4(2(4(0(x1))))) -> 5(1(4(3(5(0(0(0(3(0(x1))))))))))
, 1(4(1(2(0(x1))))) -> 5(2(0(4(0(5(0(5(1(2(x1))))))))))
, 2(4(2(1(x1)))) -> 0(1(0(3(5(3(2(3(2(1(x1))))))))))
, 2(2(4(1(x1)))) -> 0(2(2(0(3(0(2(5(0(0(x1))))))))))
, 1(5(4(0(x1)))) -> 3(3(1(1(1(4(0(1(0(0(x1))))))))))
, 1(5(3(1(x1)))) -> 1(1(5(4(3(0(2(1(1(1(x1))))))))))
, 1(4(4(2(x1)))) -> 3(4(0(3(0(2(5(5(1(2(x1))))))))))
, 1(4(2(1(x1)))) -> 2(4(1(5(4(3(2(3(1(2(x1))))))))))
, 2(4(2(x1))) -> 0(2(0(0(5(1(0(2(0(4(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ 2_0(1) -> 1
, 2_1(1) -> 19
, 2_1(2) -> 9
, 2_1(9) -> 133
, 2_1(10) -> 9
, 2_1(11) -> 9
, 2_1(20) -> 9
, 2_1(26) -> 42
, 2_1(28) -> 27
, 2_1(29) -> 1
, 2_1(29) -> 9
, 2_1(29) -> 10
, 2_1(29) -> 18
, 2_1(29) -> 19
, 2_1(29) -> 27
, 2_1(29) -> 28
, 2_1(30) -> 19
, 2_1(33) -> 32
, 2_1(37) -> 19
, 2_1(38) -> 37
, 2_1(43) -> 19
, 2_1(54) -> 53
, 2_1(71) -> 70
, 2_1(78) -> 77
, 2_1(81) -> 11
, 2_1(84) -> 83
, 2_1(88) -> 120
, 2_1(89) -> 19
, 2_1(90) -> 89
, 2_1(97) -> 96
, 2_1(99) -> 98
, 2_1(102) -> 101
, 2_1(105) -> 104
, 2_1(108) -> 29
, 2_1(115) -> 44
, 2_1(123) -> 122
, 2_1(126) -> 125
, 2_1(128) -> 19
, 2_1(137) -> 136
, 2_1(140) -> 231
, 2_1(152) -> 151
, 2_1(153) -> 152
, 2_1(155) -> 154
, 2_1(165) -> 134
, 2_1(182) -> 43
, 2_1(183) -> 182
, 2_1(187) -> 186
, 2_1(215) -> 214
, 2_1(220) -> 219
, 2_1(221) -> 27
, 2_1(222) -> 19
, 2_1(226) -> 225
, 2_2(30) -> 267
, 2_2(130) -> 258
, 2_2(145) -> 144
, 2_2(148) -> 247
, 2_2(189) -> 188
, 2_2(190) -> 189
, 2_2(194) -> 193
, 2_2(233) -> 232
, 2_2(239) -> 238
, 2_2(242) -> 241
, 2_2(252) -> 251
, 2_2(260) -> 259
, 2_2(269) -> 268
, 2_2(270) -> 269
, 2_2(274) -> 273
, 2_2(281) -> 280
, 2_2(284) -> 283
, 4_0(1) -> 1
, 4_1(1) -> 71
, 4_1(6) -> 5
, 4_1(17) -> 93
, 4_1(18) -> 50
, 4_1(28) -> 50
, 4_1(29) -> 71
, 4_1(34) -> 33
, 4_1(37) -> 1
, 4_1(37) -> 28
, 4_1(37) -> 50
, 4_1(37) -> 55
, 4_1(37) -> 71
, 4_1(37) -> 88
, 4_1(37) -> 226
, 4_1(38) -> 71
, 4_1(46) -> 45
, 4_1(52) -> 51
, 4_1(56) -> 55
, 4_1(58) -> 37
, 4_1(71) -> 114
, 4_1(72) -> 64
, 4_1(85) -> 84
, 4_1(88) -> 100
, 4_1(111) -> 110
, 4_1(112) -> 111
, 4_1(116) -> 115
, 4_1(124) -> 123
, 4_1(128) -> 43
, 4_1(130) -> 129
, 4_1(132) -> 131
, 4_1(140) -> 139
, 4_1(158) -> 2
, 4_1(170) -> 121
, 4_1(176) -> 82
, 4_1(200) -> 199
, 4_1(212) -> 211
, 4_1(216) -> 55
, 4_1(221) -> 29
, 4_1(224) -> 223
, 4_2(29) -> 240
, 4_2(38) -> 149
, 4_2(108) -> 149
, 4_2(148) -> 147
, 4_2(207) -> 206
, 4_2(250) -> 55
, 4_2(256) -> 255
, 4_2(262) -> 261
, 4_2(282) -> 281
, 0_0(1) -> 1
, 0_1(1) -> 157
, 0_1(4) -> 3
, 0_1(7) -> 6
, 0_1(9) -> 63
, 0_1(17) -> 16
, 0_1(19) -> 36
, 0_1(20) -> 157
, 0_1(24) -> 23
, 0_1(25) -> 24
, 0_1(28) -> 164
, 0_1(30) -> 29
, 0_1(37) -> 156
, 0_1(41) -> 40
, 0_1(43) -> 1
, 0_1(43) -> 10
, 0_1(43) -> 19
, 0_1(43) -> 28
, 0_1(43) -> 57
, 0_1(43) -> 70
, 0_1(43) -> 88
, 0_1(43) -> 157
, 0_1(43) -> 164
, 0_1(45) -> 44
, 0_1(47) -> 46
, 0_1(49) -> 48
, 0_1(62) -> 61
, 0_1(63) -> 62
, 0_1(64) -> 20
, 0_1(66) -> 65
, 0_1(71) -> 140
, 0_1(74) -> 73
, 0_1(80) -> 79
, 0_1(82) -> 81
, 0_1(88) -> 113
, 0_1(89) -> 37
, 0_1(93) -> 92
, 0_1(98) -> 97
, 0_1(100) -> 99
, 0_1(103) -> 102
, 0_1(107) -> 106
, 0_1(110) -> 109
, 0_1(113) -> 173
, 0_1(114) -> 113
, 0_1(117) -> 116
, 0_1(119) -> 118
, 0_1(125) -> 124
, 0_1(129) -> 128
, 0_1(136) -> 135
, 0_1(151) -> 150
, 0_1(156) -> 155
, 0_1(157) -> 156
, 0_1(167) -> 166
, 0_1(169) -> 168
, 0_1(173) -> 172
, 0_1(174) -> 173
, 0_1(175) -> 174
, 0_1(177) -> 176
, 0_1(179) -> 178
, 0_1(184) -> 183
, 0_1(186) -> 185
, 0_1(201) -> 200
, 0_1(214) -> 213
, 0_1(217) -> 158
, 0_1(219) -> 218
, 0_1(222) -> 37
, 0_1(227) -> 182
, 0_1(228) -> 227
, 0_1(231) -> 230
, 0_2(89) -> 210
, 0_2(144) -> 143
, 0_2(149) -> 148
, 0_2(159) -> 196
, 0_2(188) -> 133
, 0_2(191) -> 190
, 0_2(193) -> 192
, 0_2(196) -> 195
, 0_2(208) -> 207
, 0_2(210) -> 209
, 0_2(222) -> 276
, 0_2(232) -> 70
, 0_2(234) -> 233
, 0_2(235) -> 234
, 0_2(238) -> 237
, 0_2(240) -> 239
, 0_2(241) -> 19
, 0_2(241) -> 27
, 0_2(241) -> 70
, 0_2(241) -> 120
, 0_2(241) -> 225
, 0_2(243) -> 242
, 0_2(244) -> 243
, 0_2(247) -> 246
, 0_2(251) -> 250
, 0_2(255) -> 254
, 0_2(261) -> 260
, 0_2(263) -> 262
, 0_2(265) -> 264
, 0_2(268) -> 9
, 0_2(268) -> 19
, 0_2(268) -> 27
, 0_2(268) -> 133
, 0_2(271) -> 270
, 0_2(273) -> 272
, 0_2(276) -> 275
, 0_2(283) -> 282
, 1_0(1) -> 1
, 1_1(1) -> 28
, 1_1(8) -> 7
, 1_1(9) -> 80
, 1_1(10) -> 57
, 1_1(14) -> 13
, 1_1(15) -> 14
, 1_1(16) -> 78
, 1_1(18) -> 17
, 1_1(19) -> 80
, 1_1(20) -> 1
, 1_1(20) -> 10
, 1_1(20) -> 18
, 1_1(20) -> 28
, 1_1(20) -> 57
, 1_1(22) -> 21
, 1_1(26) -> 25
, 1_1(28) -> 216
, 1_1(29) -> 28
, 1_1(31) -> 30
, 1_1(32) -> 31
, 1_1(37) -> 17
, 1_1(38) -> 28
, 1_1(42) -> 41
, 1_1(43) -> 28
, 1_1(44) -> 43
, 1_1(51) -> 20
, 1_1(55) -> 54
, 1_1(57) -> 56
, 1_1(67) -> 66
, 1_1(69) -> 68
, 1_1(73) -> 72
, 1_1(76) -> 45
, 1_1(79) -> 78
, 1_1(83) -> 82
, 1_1(86) -> 85
, 1_1(89) -> 28
, 1_1(96) -> 95
, 1_1(104) -> 103
, 1_1(120) -> 119
, 1_1(121) -> 11
, 1_1(122) -> 121
, 1_1(127) -> 126
, 1_1(139) -> 138
, 1_1(154) -> 153
, 1_1(156) -> 201
, 1_1(159) -> 158
, 1_1(164) -> 201
, 1_1(166) -> 165
, 1_1(197) -> 134
, 1_1(198) -> 197
, 1_1(199) -> 198
, 1_1(216) -> 215
, 1_1(222) -> 221
, 1_1(230) -> 229
, 1_2(147) -> 146
, 1_2(204) -> 203
, 1_2(205) -> 204
, 1_2(206) -> 205
, 1_2(209) -> 208
, 1_2(237) -> 236
, 1_2(246) -> 245
, 1_2(257) -> 256
, 1_2(267) -> 266
, 1_2(275) -> 208
, 1_2(279) -> 278
, 1_2(280) -> 279
, 1_2(285) -> 284
, 5_0(1) -> 1
, 5_1(1) -> 10
, 5_1(3) -> 2
, 5_1(5) -> 4
, 5_1(9) -> 8
, 5_1(11) -> 1
, 5_1(11) -> 10
, 5_1(11) -> 28
, 5_1(11) -> 138
, 5_1(12) -> 11
, 5_1(17) -> 179
, 5_1(19) -> 18
, 5_1(21) -> 20
, 5_1(29) -> 107
, 5_1(35) -> 34
, 5_1(36) -> 35
, 5_1(37) -> 8
, 5_1(39) -> 38
, 5_1(50) -> 49
, 5_1(61) -> 60
, 5_1(70) -> 169
, 5_1(71) -> 107
, 5_1(75) -> 74
, 5_1(77) -> 76
, 5_1(80) -> 179
, 5_1(92) -> 91
, 5_1(109) -> 108
, 5_1(113) -> 112
, 5_1(118) -> 117
, 5_1(150) -> 29
, 5_1(156) -> 187
, 5_1(168) -> 167
, 5_1(172) -> 171
, 5_1(178) -> 177
, 5_1(179) -> 220
, 5_1(181) -> 180
, 5_1(187) -> 34
, 5_1(211) -> 51
, 5_1(223) -> 222
, 5_1(229) -> 228
, 5_2(195) -> 194
, 5_2(223) -> 286
, 5_2(236) -> 235
, 5_2(245) -> 244
, 5_2(254) -> 253
, 5_2(258) -> 257
, 5_2(259) -> 54
, 5_2(264) -> 263
, 5_2(266) -> 265
, 5_2(275) -> 274
, 5_2(278) -> 138
, 3_0(1) -> 1
, 3_1(1) -> 88
, 3_1(2) -> 1
, 3_1(2) -> 10
, 3_1(2) -> 28
, 3_1(2) -> 57
, 3_1(2) -> 69
, 3_1(2) -> 88
, 3_1(8) -> 75
, 3_1(10) -> 127
, 3_1(11) -> 88
, 3_1(13) -> 12
, 3_1(16) -> 15
, 3_1(23) -> 22
, 3_1(25) -> 67
, 3_1(27) -> 26
, 3_1(29) -> 88
, 3_1(37) -> 88
, 3_1(38) -> 88
, 3_1(40) -> 39
, 3_1(42) -> 181
, 3_1(48) -> 47
, 3_1(53) -> 52
, 3_1(59) -> 58
, 3_1(60) -> 59
, 3_1(65) -> 64
, 3_1(68) -> 67
, 3_1(70) -> 69
, 3_1(80) -> 226
, 3_1(87) -> 86
, 3_1(88) -> 87
, 3_1(91) -> 90
, 3_1(95) -> 44
, 3_1(101) -> 37
, 3_1(106) -> 105
, 3_1(108) -> 88
, 3_1(131) -> 130
, 3_1(133) -> 132
, 3_1(134) -> 2
, 3_1(135) -> 134
, 3_1(138) -> 137
, 3_1(157) -> 175
, 3_1(160) -> 159
, 3_1(161) -> 160
, 3_1(162) -> 161
, 3_1(163) -> 162
, 3_1(164) -> 163
, 3_1(171) -> 170
, 3_1(180) -> 45
, 3_1(185) -> 184
, 3_1(213) -> 212
, 3_1(218) -> 217
, 3_1(222) -> 127
, 3_1(225) -> 224
, 3_2(141) -> 69
, 3_2(142) -> 141
, 3_2(143) -> 142
, 3_2(146) -> 145
, 3_2(192) -> 191
, 3_2(202) -> 57
, 3_2(203) -> 202
, 3_2(253) -> 252
, 3_2(272) -> 271
, 3_2(286) -> 285}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(1(4(4(2(5(x1))))))) -> 3(5(0(5(4(0(1(5(2(5(x1))))))))))
, 5(3(1(4(2(4(0(x1))))))) -> 5(5(3(1(1(3(0(1(5(2(x1))))))))))
, 5(2(2(0(5(4(0(x1))))))) -> 1(5(1(3(0(0(1(3(2(1(x1))))))))))
, 5(2(2(0(4(4(2(x1))))))) -> 2(0(1(1(2(4(5(5(0(2(x1))))))))))
, 4(2(5(0(1(4(2(x1))))))) -> 4(2(5(3(0(1(2(3(2(1(x1))))))))))
, 2(4(2(1(5(4(1(x1))))))) -> 0(1(0(4(0(3(0(5(4(1(x1))))))))))
, 1(5(5(4(0(2(5(x1))))))) -> 1(1(4(3(2(1(4(1(1(5(x1))))))))))
, 1(4(2(4(1(3(5(x1))))))) -> 4(4(3(3(5(0(0(0(2(5(x1))))))))))
, 1(3(0(5(4(1(4(x1))))))) -> 1(0(3(0(1(3(1(3(2(4(x1))))))))))
, 1(0(4(4(2(5(5(x1))))))) -> 1(0(4(1(0(5(3(5(2(5(x1))))))))))
, 0(1(4(0(0(4(2(x1))))))) -> 0(1(0(1(5(2(1(0(1(2(x1))))))))))
, 5(5(0(1(4(2(x1)))))) -> 5(2(0(1(2(4(1(3(3(3(x1))))))))))
, 4(1(1(4(0(4(x1)))))) -> 4(0(2(3(5(0(4(1(5(2(x1))))))))))
, 3(4(2(2(0(5(x1)))))) -> 0(1(3(1(2(0(2(0(4(3(x1))))))))))
, 3(1(2(4(2(4(x1)))))) -> 4(3(2(0(1(2(3(0(5(4(x1))))))))))
, 2(5(3(0(4(4(x1)))))) -> 2(2(5(0(4(4(5(0(4(4(x1))))))))))
, 1(5(5(3(2(2(x1)))))) -> 0(1(2(4(0(5(0(1(2(3(x1))))))))))
, 1(4(0(4(0(5(x1)))))) -> 5(1(1(2(4(0(2(1(3(5(x1))))))))))
, 5(3(2(1(5(x1))))) -> 0(4(0(4(3(4(3(2(2(5(x1))))))))))
, 3(2(4(4(2(x1))))) -> 3(3(3(0(2(3(1(4(0(4(x1))))))))))
, 2(1(4(4(1(x1))))) -> 2(5(0(2(2(1(2(0(0(0(x1))))))))))
, 1(5(4(2(1(x1))))) -> 3(4(1(3(3(3(3(3(0(1(x1))))))))))
, 1(4(4(1(4(x1))))) -> 3(3(2(1(0(5(0(5(2(4(x1))))))))))
, 1(4(2(4(0(x1))))) -> 5(1(4(3(5(0(0(0(3(0(x1))))))))))
, 1(4(1(2(0(x1))))) -> 5(2(0(4(0(5(0(5(1(2(x1))))))))))
, 2(4(2(1(x1)))) -> 0(1(0(3(5(3(2(3(2(1(x1))))))))))
, 2(2(4(1(x1)))) -> 0(2(2(0(3(0(2(5(0(0(x1))))))))))
, 1(5(4(0(x1)))) -> 3(3(1(1(1(4(0(1(0(0(x1))))))))))
, 1(5(3(1(x1)))) -> 1(1(5(4(3(0(2(1(1(1(x1))))))))))
, 1(4(4(2(x1)))) -> 3(4(0(3(0(2(5(5(1(2(x1))))))))))
, 1(4(2(1(x1)))) -> 2(4(1(5(4(3(2(3(1(2(x1))))))))))
, 2(4(2(x1))) -> 0(2(0(0(5(1(0(2(0(4(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(1(4(4(2(5(x1))))))) -> 3(5(0(5(4(0(1(5(2(5(x1))))))))))
, 5(3(1(4(2(4(0(x1))))))) -> 5(5(3(1(1(3(0(1(5(2(x1))))))))))
, 5(2(2(0(5(4(0(x1))))))) -> 1(5(1(3(0(0(1(3(2(1(x1))))))))))
, 5(2(2(0(4(4(2(x1))))))) -> 2(0(1(1(2(4(5(5(0(2(x1))))))))))
, 4(2(5(0(1(4(2(x1))))))) -> 4(2(5(3(0(1(2(3(2(1(x1))))))))))
, 2(4(2(1(5(4(1(x1))))))) -> 0(1(0(4(0(3(0(5(4(1(x1))))))))))
, 1(5(5(4(0(2(5(x1))))))) -> 1(1(4(3(2(1(4(1(1(5(x1))))))))))
, 1(4(2(4(1(3(5(x1))))))) -> 4(4(3(3(5(0(0(0(2(5(x1))))))))))
, 1(3(0(5(4(1(4(x1))))))) -> 1(0(3(0(1(3(1(3(2(4(x1))))))))))
, 1(0(4(4(2(5(5(x1))))))) -> 1(0(4(1(0(5(3(5(2(5(x1))))))))))
, 0(1(4(0(0(4(2(x1))))))) -> 0(1(0(1(5(2(1(0(1(2(x1))))))))))
, 5(5(0(1(4(2(x1)))))) -> 5(2(0(1(2(4(1(3(3(3(x1))))))))))
, 4(1(1(4(0(4(x1)))))) -> 4(0(2(3(5(0(4(1(5(2(x1))))))))))
, 3(4(2(2(0(5(x1)))))) -> 0(1(3(1(2(0(2(0(4(3(x1))))))))))
, 3(1(2(4(2(4(x1)))))) -> 4(3(2(0(1(2(3(0(5(4(x1))))))))))
, 2(5(3(0(4(4(x1)))))) -> 2(2(5(0(4(4(5(0(4(4(x1))))))))))
, 1(5(5(3(2(2(x1)))))) -> 0(1(2(4(0(5(0(1(2(3(x1))))))))))
, 1(4(0(4(0(5(x1)))))) -> 5(1(1(2(4(0(2(1(3(5(x1))))))))))
, 5(3(2(1(5(x1))))) -> 0(4(0(4(3(4(3(2(2(5(x1))))))))))
, 3(2(4(4(2(x1))))) -> 3(3(3(0(2(3(1(4(0(4(x1))))))))))
, 2(1(4(4(1(x1))))) -> 2(5(0(2(2(1(2(0(0(0(x1))))))))))
, 1(5(4(2(1(x1))))) -> 3(4(1(3(3(3(3(3(0(1(x1))))))))))
, 1(4(4(1(4(x1))))) -> 3(3(2(1(0(5(0(5(2(4(x1))))))))))
, 1(4(2(4(0(x1))))) -> 5(1(4(3(5(0(0(0(3(0(x1))))))))))
, 1(4(1(2(0(x1))))) -> 5(2(0(4(0(5(0(5(1(2(x1))))))))))
, 2(4(2(1(x1)))) -> 0(1(0(3(5(3(2(3(2(1(x1))))))))))
, 2(2(4(1(x1)))) -> 0(2(2(0(3(0(2(5(0(0(x1))))))))))
, 1(5(4(0(x1)))) -> 3(3(1(1(1(4(0(1(0(0(x1))))))))))
, 1(5(3(1(x1)))) -> 1(1(5(4(3(0(2(1(1(1(x1))))))))))
, 1(4(4(2(x1)))) -> 3(4(0(3(0(2(5(5(1(2(x1))))))))))
, 1(4(2(1(x1)))) -> 2(4(1(5(4(3(2(3(1(2(x1))))))))))
, 2(4(2(x1))) -> 0(2(0(0(5(1(0(2(0(4(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(1(4(4(2(5(x1))))))) -> 3(5(0(5(4(0(1(5(2(5(x1))))))))))
, 5(3(1(4(2(4(0(x1))))))) -> 5(5(3(1(1(3(0(1(5(2(x1))))))))))
, 5(2(2(0(5(4(0(x1))))))) -> 1(5(1(3(0(0(1(3(2(1(x1))))))))))
, 5(2(2(0(4(4(2(x1))))))) -> 2(0(1(1(2(4(5(5(0(2(x1))))))))))
, 4(2(5(0(1(4(2(x1))))))) -> 4(2(5(3(0(1(2(3(2(1(x1))))))))))
, 2(4(2(1(5(4(1(x1))))))) -> 0(1(0(4(0(3(0(5(4(1(x1))))))))))
, 1(5(5(4(0(2(5(x1))))))) -> 1(1(4(3(2(1(4(1(1(5(x1))))))))))
, 1(4(2(4(1(3(5(x1))))))) -> 4(4(3(3(5(0(0(0(2(5(x1))))))))))
, 1(3(0(5(4(1(4(x1))))))) -> 1(0(3(0(1(3(1(3(2(4(x1))))))))))
, 1(0(4(4(2(5(5(x1))))))) -> 1(0(4(1(0(5(3(5(2(5(x1))))))))))
, 0(1(4(0(0(4(2(x1))))))) -> 0(1(0(1(5(2(1(0(1(2(x1))))))))))
, 5(5(0(1(4(2(x1)))))) -> 5(2(0(1(2(4(1(3(3(3(x1))))))))))
, 4(1(1(4(0(4(x1)))))) -> 4(0(2(3(5(0(4(1(5(2(x1))))))))))
, 3(4(2(2(0(5(x1)))))) -> 0(1(3(1(2(0(2(0(4(3(x1))))))))))
, 3(1(2(4(2(4(x1)))))) -> 4(3(2(0(1(2(3(0(5(4(x1))))))))))
, 2(5(3(0(4(4(x1)))))) -> 2(2(5(0(4(4(5(0(4(4(x1))))))))))
, 1(5(5(3(2(2(x1)))))) -> 0(1(2(4(0(5(0(1(2(3(x1))))))))))
, 1(4(0(4(0(5(x1)))))) -> 5(1(1(2(4(0(2(1(3(5(x1))))))))))
, 5(3(2(1(5(x1))))) -> 0(4(0(4(3(4(3(2(2(5(x1))))))))))
, 3(2(4(4(2(x1))))) -> 3(3(3(0(2(3(1(4(0(4(x1))))))))))
, 2(1(4(4(1(x1))))) -> 2(5(0(2(2(1(2(0(0(0(x1))))))))))
, 1(5(4(2(1(x1))))) -> 3(4(1(3(3(3(3(3(0(1(x1))))))))))
, 1(4(4(1(4(x1))))) -> 3(3(2(1(0(5(0(5(2(4(x1))))))))))
, 1(4(2(4(0(x1))))) -> 5(1(4(3(5(0(0(0(3(0(x1))))))))))
, 1(4(1(2(0(x1))))) -> 5(2(0(4(0(5(0(5(1(2(x1))))))))))
, 2(4(2(1(x1)))) -> 0(1(0(3(5(3(2(3(2(1(x1))))))))))
, 2(2(4(1(x1)))) -> 0(2(2(0(3(0(2(5(0(0(x1))))))))))
, 1(5(4(0(x1)))) -> 3(3(1(1(1(4(0(1(0(0(x1))))))))))
, 1(5(3(1(x1)))) -> 1(1(5(4(3(0(2(1(1(1(x1))))))))))
, 1(4(4(2(x1)))) -> 3(4(0(3(0(2(5(5(1(2(x1))))))))))
, 1(4(2(1(x1)))) -> 2(4(1(5(4(3(2(3(1(2(x1))))))))))
, 2(4(2(x1))) -> 0(2(0(0(5(1(0(2(0(4(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..