Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 5(5(4(5(2(1(5(x1))))))) -> 0(0(2(1(3(2(0(2(2(5(x1))))))))))
, 5(4(5(5(3(1(2(x1))))))) -> 5(0(3(0(2(2(4(5(0(2(x1))))))))))
, 5(4(5(2(2(3(0(x1))))))) -> 2(1(2(5(0(3(3(0(4(4(x1))))))))))
, 5(4(2(4(1(2(0(x1))))))) -> 2(5(5(5(1(5(3(5(1(0(x1))))))))))
, 5(4(2(3(2(0(5(x1))))))) -> 3(0(4(0(1(0(3(3(1(5(x1))))))))))
, 5(2(5(2(4(1(3(x1))))))) -> 0(0(1(2(1(2(2(4(1(3(x1))))))))))
, 5(2(4(1(4(1(2(x1))))))) -> 2(3(0(3(1(1(4(2(2(2(x1))))))))))
, 5(2(2(3(4(4(0(x1))))))) -> 2(5(5(0(4(0(4(0(1(0(x1))))))))))
, 5(2(2(0(5(5(3(x1))))))) -> 2(0(0(2(3(5(1(1(5(3(x1))))))))))
, 4(5(3(5(2(1(1(x1))))))) -> 4(5(3(5(5(1(1(0(5(3(x1))))))))))
, 4(4(2(1(1(1(1(x1))))))) -> 4(3(5(0(0(5(0(1(3(4(x1))))))))))
, 4(2(4(1(1(1(2(x1))))))) -> 0(3(0(2(5(1(4(2(2(2(x1))))))))))
, 4(1(3(4(2(5(4(x1))))))) -> 4(1(3(0(4(0(0(2(5(4(x1))))))))))
, 4(1(0(4(0(1(1(x1))))))) -> 2(4(2(2(3(5(3(2(3(1(x1))))))))))
, 3(5(5(4(1(1(4(x1))))))) -> 3(4(2(2(5(0(0(3(1(4(x1))))))))))
, 3(5(2(0(4(1(1(x1))))))) -> 5(4(5(5(5(5(5(1(4(4(x1))))))))))
, 3(4(0(2(0(4(4(x1))))))) -> 0(5(0(3(0(0(1(4(4(0(x1))))))))))
, 3(2(4(5(4(5(3(x1))))))) -> 0(2(5(3(3(0(5(0(0(5(x1))))))))))
, 3(0(1(1(4(0(5(x1))))))) -> 4(0(2(3(5(3(0(0(2(3(x1))))))))))
, 2(5(5(4(5(3(4(x1))))))) -> 2(4(5(0(0(3(5(1(1(1(x1))))))))))
, 2(5(5(4(2(0(4(x1))))))) -> 2(1(2(2(4(5(5(2(3(0(x1))))))))))
, 2(5(3(4(1(3(4(x1))))))) -> 0(0(0(4(3(1(0(0(3(4(x1))))))))))
, 2(2(0(4(4(2(1(x1))))))) -> 3(1(0(3(3(0(1(4(0(0(x1))))))))))
, 2(0(1(5(0(2(1(x1))))))) -> 2(3(0(0(3(4(0(0(4(0(x1))))))))))
, 2(0(1(1(1(5(2(x1))))))) -> 2(5(0(0(1(0(4(3(5(1(x1))))))))))
, 1(3(0(4(3(4(4(x1))))))) -> 1(3(0(0(2(5(5(5(1(1(x1))))))))))
, 1(2(2(3(1(0(1(x1))))))) -> 1(4(0(0(2(2(2(5(0(4(x1))))))))))
, 1(1(5(0(1(5(2(x1))))))) -> 5(5(1(0(5(5(5(5(5(2(x1))))))))))
, 0(4(3(5(4(2(0(x1))))))) -> 0(0(3(0(0(1(5(0(0(0(x1))))))))))
, 5(4(5(2(4(1(x1)))))) -> 3(0(0(0(2(5(2(4(1(2(x1))))))))))
, 5(2(4(4(4(1(x1)))))) -> 2(0(4(0(3(1(3(5(0(2(x1))))))))))
, 5(2(4(1(5(2(x1)))))) -> 3(0(2(4(2(0(0(3(5(1(x1))))))))))
, 4(2(4(5(2(3(x1)))))) -> 2(4(4(0(0(2(3(1(4(3(x1))))))))))
, 4(0(5(2(3(1(x1)))))) -> 0(2(1(5(0(0(0(2(5(3(x1))))))))))
, 3(1(5(4(2(0(x1)))))) -> 0(3(3(0(0(3(1(1(3(0(x1))))))))))
, 2(5(2(0(1(0(x1)))))) -> 2(1(0(0(3(0(4(0(0(0(x1))))))))))
, 2(4(1(2(1(1(x1)))))) -> 2(0(0(4(0(5(3(0(1(0(x1))))))))))
, 2(3(3(4(4(1(x1)))))) -> 2(0(0(3(1(2(2(5(5(2(x1))))))))))
, 2(0(4(0(1(4(x1)))))) -> 3(5(5(1(4(3(1(5(4(0(x1))))))))))
, 2(0(3(4(4(4(x1)))))) -> 3(5(3(0(0(3(1(2(0(4(x1))))))))))
, 0(4(4(4(5(3(x1)))))) -> 0(1(0(3(0(0(2(5(0(0(x1))))))))))
, 5(4(2(0(5(x1))))) -> 5(5(5(1(0(0(2(1(4(5(x1))))))))))
, 5(4(1(2(2(x1))))) -> 3(3(0(0(0(4(1(0(5(1(x1))))))))))
, 5(4(1(2(2(x1))))) -> 3(1(3(3(5(5(1(3(0(2(x1))))))))))
, 5(2(4(2(0(x1))))) -> 4(0(0(0(1(0(0(2(2(0(x1))))))))))
, 4(1(2(1(1(x1))))) -> 4(5(5(5(1(5(2(3(1(0(x1))))))))))
, 0(1(4(1(3(x1))))) -> 0(2(5(0(5(0(0(2(4(5(x1))))))))))
, 4(1(3(0(x1)))) -> 4(3(0(5(0(0(5(0(0(4(x1))))))))))
, 4(1(2(5(x1)))) -> 4(0(0(2(2(4(3(1(3(5(x1))))))))))
, 2(4(1(3(x1)))) -> 4(3(5(5(1(3(1(2(4(5(x1))))))))))
, 1(0(4(2(x1)))) -> 0(0(3(5(3(0(0(2(0(2(x1))))))))))
, 0(1(2(x1))) -> 0(3(0(0(2(4(2(2(5(1(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ 2_0(1) -> 1
, 2_1(1) -> 19
, 2_1(4) -> 3
, 2_1(7) -> 6
, 2_1(9) -> 8
, 2_1(10) -> 9
, 2_1(15) -> 14
, 2_1(16) -> 15
, 2_1(18) -> 433
, 2_1(19) -> 58
, 2_1(20) -> 1
, 2_1(20) -> 9
, 2_1(20) -> 10
, 2_1(20) -> 19
, 2_1(20) -> 28
, 2_1(20) -> 93
, 2_1(20) -> 134
, 2_1(20) -> 186
, 2_1(20) -> 195
, 2_1(20) -> 311
, 2_1(20) -> 422
, 2_1(22) -> 21
, 2_1(34) -> 459
, 2_1(36) -> 311
, 2_1(37) -> 433
, 2_1(46) -> 45
, 2_1(48) -> 47
, 2_1(49) -> 48
, 2_1(51) -> 134
, 2_1(58) -> 57
, 2_1(65) -> 64
, 2_1(69) -> 216
, 2_1(86) -> 85
, 2_1(87) -> 19
, 2_1(93) -> 92
, 2_1(95) -> 94
, 2_1(96) -> 95
, 2_1(100) -> 99
, 2_1(102) -> 101
, 2_1(103) -> 102
, 2_1(107) -> 283
, 2_1(121) -> 2
, 2_1(129) -> 128
, 2_1(141) -> 22
, 2_1(145) -> 144
, 2_1(166) -> 19
, 2_1(170) -> 169
, 2_1(176) -> 175
, 2_1(177) -> 176
, 2_1(178) -> 177
, 2_1(179) -> 242
, 2_1(185) -> 231
, 2_1(194) -> 193
, 2_1(196) -> 195
, 2_1(202) -> 38
, 2_1(204) -> 203
, 2_1(209) -> 208
, 2_1(231) -> 230
, 2_1(250) -> 249
, 2_1(284) -> 283
, 2_1(285) -> 319
, 2_1(311) -> 310
, 2_1(373) -> 306
, 2_1(374) -> 373
, 2_1(459) -> 458
, 2_2(102) -> 453
, 2_2(202) -> 453
, 2_2(277) -> 276
, 2_2(292) -> 291
, 2_2(342) -> 341
, 2_2(348) -> 347
, 2_2(380) -> 379
, 2_2(381) -> 380
, 2_2(397) -> 396
, 2_2(398) -> 397
, 2_2(421) -> 420
, 2_2(452) -> 451
, 2_2(463) -> 462
, 2_2(465) -> 464
, 2_2(466) -> 465
, 2_2(472) -> 471
, 2_2(474) -> 473
, 2_2(475) -> 474
, 2_2(481) -> 480
, 2_2(483) -> 482
, 2_2(484) -> 483
, 2_2(528) -> 9
, 2_2(528) -> 92
, 2_2(528) -> 193
, 2_2(528) -> 231
, 1_0(1) -> 1
, 1_1(1) -> 35
, 1_1(2) -> 44
, 1_1(5) -> 4
, 1_1(10) -> 44
, 1_1(19) -> 197
, 1_1(20) -> 35
, 1_1(21) -> 20
, 1_1(27) -> 113
, 1_1(28) -> 107
, 1_1(32) -> 31
, 1_1(35) -> 140
, 1_1(36) -> 35
, 1_1(37) -> 44
, 1_1(41) -> 40
, 1_1(44) -> 67
, 1_1(45) -> 3
, 1_1(47) -> 46
, 1_1(51) -> 50
, 1_1(53) -> 2
, 1_1(55) -> 54
, 1_1(56) -> 55
, 1_1(68) -> 67
, 1_1(69) -> 68
, 1_1(70) -> 35
, 1_1(72) -> 44
, 1_1(75) -> 74
, 1_1(76) -> 75
, 1_1(83) -> 82
, 1_1(87) -> 70
, 1_1(101) -> 35
, 1_1(119) -> 118
, 1_1(126) -> 148
, 1_1(140) -> 139
, 1_1(145) -> 221
, 1_1(149) -> 148
, 1_1(151) -> 37
, 1_1(156) -> 155
, 1_1(164) -> 163
, 1_1(166) -> 1
, 1_1(166) -> 35
, 1_1(166) -> 50
, 1_1(166) -> 197
, 1_1(166) -> 221
, 1_1(181) -> 180
, 1_1(190) -> 189
, 1_1(201) -> 200
, 1_1(211) -> 210
, 1_1(212) -> 121
, 1_1(221) -> 220
, 1_1(230) -> 229
, 1_1(234) -> 233
, 1_1(237) -> 236
, 1_1(242) -> 241
, 1_1(243) -> 2
, 1_1(281) -> 280
, 1_1(285) -> 284
, 1_1(300) -> 299
, 1_1(305) -> 304
, 1_1(308) -> 307
, 1_1(311) -> 241
, 1_1(314) -> 313
, 1_1(319) -> 413
, 1_1(364) -> 2
, 1_1(377) -> 376
, 1_1(412) -> 411
, 1_2(20) -> 467
, 1_2(22) -> 476
, 1_2(46) -> 485
, 1_2(102) -> 467
, 1_2(272) -> 271
, 1_2(289) -> 288
, 1_2(293) -> 292
, 1_2(347) -> 428
, 1_2(389) -> 388
, 1_2(401) -> 400
, 1_2(418) -> 417
, 1_2(420) -> 419
, 1_2(427) -> 426
, 1_2(529) -> 528
, 0_0(1) -> 1
, 0_1(1) -> 36
, 0_1(2) -> 1
, 0_1(2) -> 9
, 0_1(2) -> 10
, 0_1(2) -> 19
, 0_1(2) -> 26
, 0_1(2) -> 28
, 0_1(2) -> 35
, 0_1(2) -> 36
, 0_1(2) -> 43
, 0_1(2) -> 51
, 0_1(2) -> 62
, 0_1(2) -> 83
, 0_1(2) -> 100
, 0_1(2) -> 120
, 0_1(2) -> 179
, 0_1(2) -> 186
, 0_1(2) -> 216
, 0_1(2) -> 422
, 0_1(3) -> 2
, 0_1(8) -> 7
, 0_1(9) -> 91
, 0_1(10) -> 127
, 0_1(12) -> 11
, 0_1(14) -> 13
, 0_1(18) -> 308
, 0_1(19) -> 18
, 0_1(20) -> 157
, 0_1(21) -> 36
, 0_1(24) -> 23
, 0_1(27) -> 26
, 0_1(28) -> 179
, 0_1(33) -> 205
, 0_1(34) -> 300
, 0_1(35) -> 62
, 0_1(36) -> 157
, 0_1(37) -> 20
, 0_1(38) -> 37
, 0_1(39) -> 36
, 0_1(40) -> 39
, 0_1(42) -> 41
, 0_1(51) -> 127
, 0_1(52) -> 191
, 0_1(53) -> 52
, 0_1(58) -> 18
, 0_1(59) -> 30
, 0_1(61) -> 60
, 0_1(63) -> 20
, 0_1(64) -> 63
, 0_1(65) -> 136
, 0_1(69) -> 76
, 0_1(70) -> 36
, 0_1(72) -> 20
, 0_1(79) -> 78
, 0_1(80) -> 79
, 0_1(82) -> 81
, 0_1(83) -> 150
, 0_1(85) -> 84
, 0_1(89) -> 88
, 0_1(91) -> 90
, 0_1(92) -> 91
, 0_1(100) -> 105
, 0_1(101) -> 20
, 0_1(105) -> 104
, 0_1(106) -> 105
, 0_1(115) -> 114
, 0_1(117) -> 116
, 0_1(118) -> 117
, 0_1(120) -> 161
, 0_1(125) -> 124
, 0_1(127) -> 126
, 0_1(128) -> 70
, 0_1(133) -> 132
, 0_1(134) -> 133
, 0_1(136) -> 135
, 0_1(137) -> 136
, 0_1(146) -> 3
, 0_1(150) -> 149
, 0_1(151) -> 157
, 0_1(152) -> 151
, 0_1(155) -> 154
, 0_1(157) -> 191
, 0_1(158) -> 53
, 0_1(161) -> 160
, 0_1(162) -> 29
, 0_1(163) -> 162
, 0_1(165) -> 164
, 0_1(166) -> 1
, 0_1(166) -> 36
, 0_1(166) -> 62
, 0_1(168) -> 167
, 0_1(169) -> 168
, 0_1(173) -> 36
, 0_1(174) -> 173
, 0_1(175) -> 174
, 0_1(179) -> 354
, 0_1(182) -> 181
, 0_1(188) -> 187
, 0_1(189) -> 188
, 0_1(192) -> 38
, 0_1(193) -> 192
, 0_1(198) -> 20
, 0_1(199) -> 198
, 0_1(205) -> 204
, 0_1(207) -> 206
, 0_1(208) -> 207
, 0_1(212) -> 36
, 0_1(214) -> 213
, 0_1(215) -> 214
, 0_1(216) -> 215
, 0_1(218) -> 217
, 0_1(219) -> 218
, 0_1(222) -> 21
, 0_1(223) -> 222
, 0_1(225) -> 224
, 0_1(227) -> 226
, 0_1(239) -> 238
, 0_1(240) -> 239
, 0_1(243) -> 52
, 0_1(245) -> 243
, 0_1(248) -> 247
, 0_1(249) -> 248
, 0_1(282) -> 281
, 0_1(283) -> 282
, 0_1(296) -> 295
, 0_1(297) -> 296
, 0_1(298) -> 297
, 0_1(306) -> 128
, 0_1(307) -> 306
, 0_1(309) -> 308
, 0_1(310) -> 309
, 0_1(316) -> 122
, 0_1(318) -> 317
, 0_1(319) -> 318
, 0_1(350) -> 77
, 0_1(352) -> 351
, 0_1(353) -> 352
, 0_1(364) -> 36
, 0_1(432) -> 431
, 0_1(433) -> 432
, 0_2(72) -> 279
, 0_2(152) -> 536
, 0_2(271) -> 26
, 0_2(273) -> 272
, 0_2(275) -> 274
, 0_2(276) -> 275
, 0_2(279) -> 278
, 0_2(290) -> 289
, 0_2(291) -> 290
, 0_2(341) -> 62
, 0_2(344) -> 343
, 0_2(346) -> 345
, 0_2(347) -> 346
, 0_2(357) -> 356
, 0_2(359) -> 358
, 0_2(360) -> 359
, 0_2(362) -> 361
, 0_2(363) -> 362
, 0_2(366) -> 365
, 0_2(368) -> 367
, 0_2(369) -> 368
, 0_2(371) -> 370
, 0_2(372) -> 371
, 0_2(378) -> 355
, 0_2(379) -> 378
, 0_2(395) -> 394
, 0_2(396) -> 395
, 0_2(445) -> 35
, 0_2(445) -> 44
, 0_2(445) -> 50
, 0_2(445) -> 82
, 0_2(445) -> 107
, 0_2(445) -> 140
, 0_2(445) -> 197
, 0_2(445) -> 467
, 0_2(446) -> 445
, 0_2(450) -> 449
, 0_2(451) -> 450
, 0_2(453) -> 452
, 0_2(461) -> 460
, 0_2(462) -> 461
, 0_2(468) -> 157
, 0_2(470) -> 469
, 0_2(471) -> 470
, 0_2(477) -> 2
, 0_2(479) -> 478
, 0_2(480) -> 479
, 0_2(530) -> 529
, 0_2(531) -> 530
, 0_2(533) -> 532
, 0_2(535) -> 534
, 0_2(536) -> 535
, 5_0(1) -> 1
, 5_1(1) -> 10
, 5_1(11) -> 1
, 5_1(11) -> 10
, 5_1(11) -> 35
, 5_1(11) -> 51
, 5_1(11) -> 67
, 5_1(11) -> 93
, 5_1(11) -> 140
, 5_1(11) -> 377
, 5_1(11) -> 422
, 5_1(18) -> 17
, 5_1(19) -> 186
, 5_1(23) -> 22
, 5_1(28) -> 93
, 5_1(29) -> 20
, 5_1(30) -> 29
, 5_1(31) -> 30
, 5_1(33) -> 32
, 5_1(35) -> 34
, 5_1(36) -> 178
, 5_1(37) -> 10
, 5_1(44) -> 172
, 5_1(51) -> 69
, 5_1(55) -> 86
, 5_1(67) -> 66
, 5_1(71) -> 70
, 5_1(72) -> 10
, 5_1(73) -> 72
, 5_1(74) -> 73
, 5_1(78) -> 77
, 5_1(81) -> 80
, 5_1(88) -> 10
, 5_1(98) -> 97
, 5_1(99) -> 314
, 5_1(104) -> 103
, 5_1(109) -> 108
, 5_1(110) -> 109
, 5_1(111) -> 110
, 5_1(112) -> 111
, 5_1(113) -> 112
, 5_1(114) -> 2
, 5_1(120) -> 237
, 5_1(122) -> 121
, 5_1(126) -> 125
, 5_1(131) -> 130
, 5_1(135) -> 94
, 5_1(139) -> 138
, 5_1(140) -> 172
, 5_1(143) -> 142
, 5_1(144) -> 143
, 5_1(157) -> 250
, 5_1(167) -> 10
, 5_1(171) -> 170
, 5_1(172) -> 171
, 5_1(179) -> 178
, 5_1(180) -> 11
, 5_1(183) -> 182
, 5_1(184) -> 183
, 5_1(185) -> 184
, 5_1(186) -> 185
, 5_1(191) -> 190
, 5_1(195) -> 194
, 5_1(213) -> 212
, 5_1(228) -> 227
, 5_1(232) -> 37
, 5_1(233) -> 232
, 5_1(280) -> 180
, 5_1(303) -> 302
, 5_1(304) -> 303
, 5_1(312) -> 71
, 5_1(313) -> 312
, 5_1(317) -> 316
, 5_1(351) -> 350
, 5_1(354) -> 353
, 5_1(411) -> 78
, 5_1(430) -> 187
, 5_2(1) -> 422
, 5_2(11) -> 392
, 5_2(23) -> 402
, 5_2(29) -> 392
, 5_2(37) -> 392
, 5_2(73) -> 294
, 5_2(84) -> 349
, 5_2(88) -> 349
, 5_2(114) -> 349
, 5_2(122) -> 392
, 5_2(151) -> 349
, 5_2(166) -> 349
, 5_2(167) -> 349
, 5_2(232) -> 294
, 5_2(278) -> 277
, 5_2(286) -> 93
, 5_2(287) -> 286
, 5_2(288) -> 287
, 5_2(295) -> 349
, 5_2(343) -> 342
, 5_2(345) -> 344
, 5_2(358) -> 357
, 5_2(361) -> 360
, 5_2(367) -> 366
, 5_2(370) -> 369
, 5_2(416) -> 415
, 5_2(417) -> 416
, 5_2(425) -> 424
, 5_2(426) -> 425
, 5_2(448) -> 447
, 5_2(467) -> 466
, 5_2(476) -> 475
, 5_2(485) -> 484
, 4_0(1) -> 1
, 4_1(1) -> 28
, 4_1(2) -> 28
, 4_1(10) -> 285
, 4_1(17) -> 16
, 4_1(20) -> 211
, 4_1(28) -> 27
, 4_1(33) -> 165
, 4_1(36) -> 120
, 4_1(37) -> 28
, 4_1(38) -> 2
, 4_1(39) -> 38
, 4_1(44) -> 49
, 4_1(50) -> 49
, 4_1(51) -> 211
, 4_1(52) -> 120
, 4_1(53) -> 1
, 4_1(57) -> 56
, 4_1(58) -> 56
, 4_1(60) -> 59
, 4_1(62) -> 61
, 4_1(70) -> 1
, 4_1(70) -> 10
, 4_1(70) -> 19
, 4_1(70) -> 27
, 4_1(70) -> 28
, 4_1(70) -> 49
, 4_1(70) -> 51
, 4_1(70) -> 145
, 4_1(70) -> 186
, 4_1(70) -> 196
, 4_1(70) -> 228
, 4_1(70) -> 285
, 4_1(70) -> 421
, 4_1(70) -> 422
, 4_1(72) -> 285
, 4_1(90) -> 89
, 4_1(94) -> 20
, 4_1(101) -> 37
, 4_1(108) -> 11
, 4_1(120) -> 119
, 4_1(142) -> 141
, 4_1(147) -> 146
, 4_1(157) -> 156
, 4_1(160) -> 159
, 4_1(166) -> 28
, 4_1(168) -> 2
, 4_1(173) -> 166
, 4_1(185) -> 141
, 4_1(191) -> 225
, 4_1(197) -> 196
, 4_1(198) -> 63
, 4_1(203) -> 202
, 4_1(206) -> 94
, 4_1(226) -> 64
, 4_1(235) -> 234
, 4_1(243) -> 1
, 4_1(299) -> 298
, 4_1(364) -> 1
, 4_1(375) -> 374
, 4_1(458) -> 170
, 4_2(2) -> 363
, 4_2(12) -> 363
, 4_2(38) -> 363
, 4_2(85) -> 363
, 4_2(89) -> 372
, 4_2(115) -> 363
, 4_2(152) -> 363
, 4_2(166) -> 363
, 4_2(168) -> 372
, 4_2(294) -> 293
, 4_2(296) -> 363
, 4_2(349) -> 348
, 4_2(355) -> 49
, 4_2(355) -> 196
, 4_2(364) -> 1
, 4_2(364) -> 10
, 4_2(364) -> 19
, 4_2(364) -> 27
, 4_2(364) -> 28
, 4_2(364) -> 49
, 4_2(364) -> 51
, 4_2(364) -> 145
, 4_2(364) -> 186
, 4_2(364) -> 196
, 4_2(364) -> 228
, 4_2(364) -> 285
, 4_2(364) -> 363
, 4_2(364) -> 421
, 4_2(364) -> 422
, 4_2(366) -> 372
, 4_2(386) -> 381
, 4_2(392) -> 421
, 4_2(394) -> 211
, 4_2(399) -> 398
, 4_2(414) -> 48
, 4_2(414) -> 195
, 4_2(422) -> 421
, 4_2(423) -> 9
, 4_2(423) -> 19
, 4_2(423) -> 48
, 4_2(423) -> 58
, 4_2(423) -> 134
, 4_2(423) -> 144
, 4_2(423) -> 195
, 4_2(423) -> 319
, 4_2(423) -> 420
, 4_2(464) -> 463
, 4_2(473) -> 472
, 4_2(482) -> 481
, 4_2(534) -> 533
, 3_0(1) -> 1
, 3_1(1) -> 51
, 3_1(6) -> 5
, 3_1(10) -> 377
, 3_1(11) -> 51
, 3_1(13) -> 12
, 3_1(17) -> 201
, 3_1(18) -> 305
, 3_1(20) -> 145
, 3_1(25) -> 24
, 3_1(26) -> 25
, 3_1(28) -> 83
, 3_1(34) -> 33
, 3_1(35) -> 100
, 3_1(36) -> 145
, 3_1(37) -> 1
, 3_1(37) -> 10
, 3_1(37) -> 19
, 3_1(37) -> 51
, 3_1(37) -> 58
, 3_1(37) -> 93
, 3_1(37) -> 186
, 3_1(37) -> 242
, 3_1(37) -> 310
, 3_1(37) -> 311
, 3_1(37) -> 377
, 3_1(37) -> 422
, 3_1(43) -> 42
, 3_1(44) -> 43
, 3_1(52) -> 20
, 3_1(54) -> 53
, 3_1(62) -> 228
, 3_1(66) -> 65
, 3_1(72) -> 71
, 3_1(77) -> 70
, 3_1(84) -> 2
, 3_1(88) -> 87
, 3_1(97) -> 96
, 3_1(99) -> 98
, 3_1(107) -> 106
, 3_1(114) -> 51
, 3_1(116) -> 115
, 3_1(123) -> 122
, 3_1(124) -> 123
, 3_1(130) -> 129
, 3_1(132) -> 131
, 3_1(138) -> 137
, 3_1(148) -> 147
, 3_1(151) -> 51
, 3_1(153) -> 152
, 3_1(154) -> 153
, 3_1(159) -> 158
, 3_1(166) -> 51
, 3_1(167) -> 166
, 3_1(179) -> 25
, 3_1(187) -> 3
, 3_1(200) -> 199
, 3_1(210) -> 209
, 3_1(217) -> 84
, 3_1(220) -> 219
, 3_1(221) -> 375
, 3_1(224) -> 223
, 3_1(229) -> 64
, 3_1(236) -> 235
, 3_1(238) -> 232
, 3_1(241) -> 240
, 3_1(247) -> 245
, 3_1(295) -> 37
, 3_1(301) -> 151
, 3_1(302) -> 301
, 3_1(376) -> 375
, 3_1(413) -> 412
, 3_1(431) -> 430
, 3_2(274) -> 273
, 3_2(356) -> 355
, 3_2(365) -> 364
, 3_2(388) -> 386
, 3_2(392) -> 389
, 3_2(400) -> 399
, 3_2(402) -> 401
, 3_2(415) -> 414
, 3_2(419) -> 418
, 3_2(424) -> 423
, 3_2(428) -> 427
, 3_2(447) -> 446
, 3_2(449) -> 448
, 3_2(460) -> 341
, 3_2(469) -> 468
, 3_2(478) -> 477
, 3_2(532) -> 531}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(4(5(2(1(5(x1))))))) -> 0(0(2(1(3(2(0(2(2(5(x1))))))))))
, 5(4(5(5(3(1(2(x1))))))) -> 5(0(3(0(2(2(4(5(0(2(x1))))))))))
, 5(4(5(2(2(3(0(x1))))))) -> 2(1(2(5(0(3(3(0(4(4(x1))))))))))
, 5(4(2(4(1(2(0(x1))))))) -> 2(5(5(5(1(5(3(5(1(0(x1))))))))))
, 5(4(2(3(2(0(5(x1))))))) -> 3(0(4(0(1(0(3(3(1(5(x1))))))))))
, 5(2(5(2(4(1(3(x1))))))) -> 0(0(1(2(1(2(2(4(1(3(x1))))))))))
, 5(2(4(1(4(1(2(x1))))))) -> 2(3(0(3(1(1(4(2(2(2(x1))))))))))
, 5(2(2(3(4(4(0(x1))))))) -> 2(5(5(0(4(0(4(0(1(0(x1))))))))))
, 5(2(2(0(5(5(3(x1))))))) -> 2(0(0(2(3(5(1(1(5(3(x1))))))))))
, 4(5(3(5(2(1(1(x1))))))) -> 4(5(3(5(5(1(1(0(5(3(x1))))))))))
, 4(4(2(1(1(1(1(x1))))))) -> 4(3(5(0(0(5(0(1(3(4(x1))))))))))
, 4(2(4(1(1(1(2(x1))))))) -> 0(3(0(2(5(1(4(2(2(2(x1))))))))))
, 4(1(3(4(2(5(4(x1))))))) -> 4(1(3(0(4(0(0(2(5(4(x1))))))))))
, 4(1(0(4(0(1(1(x1))))))) -> 2(4(2(2(3(5(3(2(3(1(x1))))))))))
, 3(5(5(4(1(1(4(x1))))))) -> 3(4(2(2(5(0(0(3(1(4(x1))))))))))
, 3(5(2(0(4(1(1(x1))))))) -> 5(4(5(5(5(5(5(1(4(4(x1))))))))))
, 3(4(0(2(0(4(4(x1))))))) -> 0(5(0(3(0(0(1(4(4(0(x1))))))))))
, 3(2(4(5(4(5(3(x1))))))) -> 0(2(5(3(3(0(5(0(0(5(x1))))))))))
, 3(0(1(1(4(0(5(x1))))))) -> 4(0(2(3(5(3(0(0(2(3(x1))))))))))
, 2(5(5(4(5(3(4(x1))))))) -> 2(4(5(0(0(3(5(1(1(1(x1))))))))))
, 2(5(5(4(2(0(4(x1))))))) -> 2(1(2(2(4(5(5(2(3(0(x1))))))))))
, 2(5(3(4(1(3(4(x1))))))) -> 0(0(0(4(3(1(0(0(3(4(x1))))))))))
, 2(2(0(4(4(2(1(x1))))))) -> 3(1(0(3(3(0(1(4(0(0(x1))))))))))
, 2(0(1(5(0(2(1(x1))))))) -> 2(3(0(0(3(4(0(0(4(0(x1))))))))))
, 2(0(1(1(1(5(2(x1))))))) -> 2(5(0(0(1(0(4(3(5(1(x1))))))))))
, 1(3(0(4(3(4(4(x1))))))) -> 1(3(0(0(2(5(5(5(1(1(x1))))))))))
, 1(2(2(3(1(0(1(x1))))))) -> 1(4(0(0(2(2(2(5(0(4(x1))))))))))
, 1(1(5(0(1(5(2(x1))))))) -> 5(5(1(0(5(5(5(5(5(2(x1))))))))))
, 0(4(3(5(4(2(0(x1))))))) -> 0(0(3(0(0(1(5(0(0(0(x1))))))))))
, 5(4(5(2(4(1(x1)))))) -> 3(0(0(0(2(5(2(4(1(2(x1))))))))))
, 5(2(4(4(4(1(x1)))))) -> 2(0(4(0(3(1(3(5(0(2(x1))))))))))
, 5(2(4(1(5(2(x1)))))) -> 3(0(2(4(2(0(0(3(5(1(x1))))))))))
, 4(2(4(5(2(3(x1)))))) -> 2(4(4(0(0(2(3(1(4(3(x1))))))))))
, 4(0(5(2(3(1(x1)))))) -> 0(2(1(5(0(0(0(2(5(3(x1))))))))))
, 3(1(5(4(2(0(x1)))))) -> 0(3(3(0(0(3(1(1(3(0(x1))))))))))
, 2(5(2(0(1(0(x1)))))) -> 2(1(0(0(3(0(4(0(0(0(x1))))))))))
, 2(4(1(2(1(1(x1)))))) -> 2(0(0(4(0(5(3(0(1(0(x1))))))))))
, 2(3(3(4(4(1(x1)))))) -> 2(0(0(3(1(2(2(5(5(2(x1))))))))))
, 2(0(4(0(1(4(x1)))))) -> 3(5(5(1(4(3(1(5(4(0(x1))))))))))
, 2(0(3(4(4(4(x1)))))) -> 3(5(3(0(0(3(1(2(0(4(x1))))))))))
, 0(4(4(4(5(3(x1)))))) -> 0(1(0(3(0(0(2(5(0(0(x1))))))))))
, 5(4(2(0(5(x1))))) -> 5(5(5(1(0(0(2(1(4(5(x1))))))))))
, 5(4(1(2(2(x1))))) -> 3(3(0(0(0(4(1(0(5(1(x1))))))))))
, 5(4(1(2(2(x1))))) -> 3(1(3(3(5(5(1(3(0(2(x1))))))))))
, 5(2(4(2(0(x1))))) -> 4(0(0(0(1(0(0(2(2(0(x1))))))))))
, 4(1(2(1(1(x1))))) -> 4(5(5(5(1(5(2(3(1(0(x1))))))))))
, 0(1(4(1(3(x1))))) -> 0(2(5(0(5(0(0(2(4(5(x1))))))))))
, 4(1(3(0(x1)))) -> 4(3(0(5(0(0(5(0(0(4(x1))))))))))
, 4(1(2(5(x1)))) -> 4(0(0(2(2(4(3(1(3(5(x1))))))))))
, 2(4(1(3(x1)))) -> 4(3(5(5(1(3(1(2(4(5(x1))))))))))
, 1(0(4(2(x1)))) -> 0(0(3(5(3(0(0(2(0(2(x1))))))))))
, 0(1(2(x1))) -> 0(3(0(0(2(4(2(2(5(1(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(4(5(2(1(5(x1))))))) -> 0(0(2(1(3(2(0(2(2(5(x1))))))))))
, 5(4(5(5(3(1(2(x1))))))) -> 5(0(3(0(2(2(4(5(0(2(x1))))))))))
, 5(4(5(2(2(3(0(x1))))))) -> 2(1(2(5(0(3(3(0(4(4(x1))))))))))
, 5(4(2(4(1(2(0(x1))))))) -> 2(5(5(5(1(5(3(5(1(0(x1))))))))))
, 5(4(2(3(2(0(5(x1))))))) -> 3(0(4(0(1(0(3(3(1(5(x1))))))))))
, 5(2(5(2(4(1(3(x1))))))) -> 0(0(1(2(1(2(2(4(1(3(x1))))))))))
, 5(2(4(1(4(1(2(x1))))))) -> 2(3(0(3(1(1(4(2(2(2(x1))))))))))
, 5(2(2(3(4(4(0(x1))))))) -> 2(5(5(0(4(0(4(0(1(0(x1))))))))))
, 5(2(2(0(5(5(3(x1))))))) -> 2(0(0(2(3(5(1(1(5(3(x1))))))))))
, 4(5(3(5(2(1(1(x1))))))) -> 4(5(3(5(5(1(1(0(5(3(x1))))))))))
, 4(4(2(1(1(1(1(x1))))))) -> 4(3(5(0(0(5(0(1(3(4(x1))))))))))
, 4(2(4(1(1(1(2(x1))))))) -> 0(3(0(2(5(1(4(2(2(2(x1))))))))))
, 4(1(3(4(2(5(4(x1))))))) -> 4(1(3(0(4(0(0(2(5(4(x1))))))))))
, 4(1(0(4(0(1(1(x1))))))) -> 2(4(2(2(3(5(3(2(3(1(x1))))))))))
, 3(5(5(4(1(1(4(x1))))))) -> 3(4(2(2(5(0(0(3(1(4(x1))))))))))
, 3(5(2(0(4(1(1(x1))))))) -> 5(4(5(5(5(5(5(1(4(4(x1))))))))))
, 3(4(0(2(0(4(4(x1))))))) -> 0(5(0(3(0(0(1(4(4(0(x1))))))))))
, 3(2(4(5(4(5(3(x1))))))) -> 0(2(5(3(3(0(5(0(0(5(x1))))))))))
, 3(0(1(1(4(0(5(x1))))))) -> 4(0(2(3(5(3(0(0(2(3(x1))))))))))
, 2(5(5(4(5(3(4(x1))))))) -> 2(4(5(0(0(3(5(1(1(1(x1))))))))))
, 2(5(5(4(2(0(4(x1))))))) -> 2(1(2(2(4(5(5(2(3(0(x1))))))))))
, 2(5(3(4(1(3(4(x1))))))) -> 0(0(0(4(3(1(0(0(3(4(x1))))))))))
, 2(2(0(4(4(2(1(x1))))))) -> 3(1(0(3(3(0(1(4(0(0(x1))))))))))
, 2(0(1(5(0(2(1(x1))))))) -> 2(3(0(0(3(4(0(0(4(0(x1))))))))))
, 2(0(1(1(1(5(2(x1))))))) -> 2(5(0(0(1(0(4(3(5(1(x1))))))))))
, 1(3(0(4(3(4(4(x1))))))) -> 1(3(0(0(2(5(5(5(1(1(x1))))))))))
, 1(2(2(3(1(0(1(x1))))))) -> 1(4(0(0(2(2(2(5(0(4(x1))))))))))
, 1(1(5(0(1(5(2(x1))))))) -> 5(5(1(0(5(5(5(5(5(2(x1))))))))))
, 0(4(3(5(4(2(0(x1))))))) -> 0(0(3(0(0(1(5(0(0(0(x1))))))))))
, 5(4(5(2(4(1(x1)))))) -> 3(0(0(0(2(5(2(4(1(2(x1))))))))))
, 5(2(4(4(4(1(x1)))))) -> 2(0(4(0(3(1(3(5(0(2(x1))))))))))
, 5(2(4(1(5(2(x1)))))) -> 3(0(2(4(2(0(0(3(5(1(x1))))))))))
, 4(2(4(5(2(3(x1)))))) -> 2(4(4(0(0(2(3(1(4(3(x1))))))))))
, 4(0(5(2(3(1(x1)))))) -> 0(2(1(5(0(0(0(2(5(3(x1))))))))))
, 3(1(5(4(2(0(x1)))))) -> 0(3(3(0(0(3(1(1(3(0(x1))))))))))
, 2(5(2(0(1(0(x1)))))) -> 2(1(0(0(3(0(4(0(0(0(x1))))))))))
, 2(4(1(2(1(1(x1)))))) -> 2(0(0(4(0(5(3(0(1(0(x1))))))))))
, 2(3(3(4(4(1(x1)))))) -> 2(0(0(3(1(2(2(5(5(2(x1))))))))))
, 2(0(4(0(1(4(x1)))))) -> 3(5(5(1(4(3(1(5(4(0(x1))))))))))
, 2(0(3(4(4(4(x1)))))) -> 3(5(3(0(0(3(1(2(0(4(x1))))))))))
, 0(4(4(4(5(3(x1)))))) -> 0(1(0(3(0(0(2(5(0(0(x1))))))))))
, 5(4(2(0(5(x1))))) -> 5(5(5(1(0(0(2(1(4(5(x1))))))))))
, 5(4(1(2(2(x1))))) -> 3(3(0(0(0(4(1(0(5(1(x1))))))))))
, 5(4(1(2(2(x1))))) -> 3(1(3(3(5(5(1(3(0(2(x1))))))))))
, 5(2(4(2(0(x1))))) -> 4(0(0(0(1(0(0(2(2(0(x1))))))))))
, 4(1(2(1(1(x1))))) -> 4(5(5(5(1(5(2(3(1(0(x1))))))))))
, 0(1(4(1(3(x1))))) -> 0(2(5(0(5(0(0(2(4(5(x1))))))))))
, 4(1(3(0(x1)))) -> 4(3(0(5(0(0(5(0(0(4(x1))))))))))
, 4(1(2(5(x1)))) -> 4(0(0(2(2(4(3(1(3(5(x1))))))))))
, 2(4(1(3(x1)))) -> 4(3(5(5(1(3(1(2(4(5(x1))))))))))
, 1(0(4(2(x1)))) -> 0(0(3(5(3(0(0(2(0(2(x1))))))))))
, 0(1(2(x1))) -> 0(3(0(0(2(4(2(2(5(1(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(4(5(2(1(5(x1))))))) -> 0(0(2(1(3(2(0(2(2(5(x1))))))))))
, 5(4(5(5(3(1(2(x1))))))) -> 5(0(3(0(2(2(4(5(0(2(x1))))))))))
, 5(4(5(2(2(3(0(x1))))))) -> 2(1(2(5(0(3(3(0(4(4(x1))))))))))
, 5(4(2(4(1(2(0(x1))))))) -> 2(5(5(5(1(5(3(5(1(0(x1))))))))))
, 5(4(2(3(2(0(5(x1))))))) -> 3(0(4(0(1(0(3(3(1(5(x1))))))))))
, 5(2(5(2(4(1(3(x1))))))) -> 0(0(1(2(1(2(2(4(1(3(x1))))))))))
, 5(2(4(1(4(1(2(x1))))))) -> 2(3(0(3(1(1(4(2(2(2(x1))))))))))
, 5(2(2(3(4(4(0(x1))))))) -> 2(5(5(0(4(0(4(0(1(0(x1))))))))))
, 5(2(2(0(5(5(3(x1))))))) -> 2(0(0(2(3(5(1(1(5(3(x1))))))))))
, 4(5(3(5(2(1(1(x1))))))) -> 4(5(3(5(5(1(1(0(5(3(x1))))))))))
, 4(4(2(1(1(1(1(x1))))))) -> 4(3(5(0(0(5(0(1(3(4(x1))))))))))
, 4(2(4(1(1(1(2(x1))))))) -> 0(3(0(2(5(1(4(2(2(2(x1))))))))))
, 4(1(3(4(2(5(4(x1))))))) -> 4(1(3(0(4(0(0(2(5(4(x1))))))))))
, 4(1(0(4(0(1(1(x1))))))) -> 2(4(2(2(3(5(3(2(3(1(x1))))))))))
, 3(5(5(4(1(1(4(x1))))))) -> 3(4(2(2(5(0(0(3(1(4(x1))))))))))
, 3(5(2(0(4(1(1(x1))))))) -> 5(4(5(5(5(5(5(1(4(4(x1))))))))))
, 3(4(0(2(0(4(4(x1))))))) -> 0(5(0(3(0(0(1(4(4(0(x1))))))))))
, 3(2(4(5(4(5(3(x1))))))) -> 0(2(5(3(3(0(5(0(0(5(x1))))))))))
, 3(0(1(1(4(0(5(x1))))))) -> 4(0(2(3(5(3(0(0(2(3(x1))))))))))
, 2(5(5(4(5(3(4(x1))))))) -> 2(4(5(0(0(3(5(1(1(1(x1))))))))))
, 2(5(5(4(2(0(4(x1))))))) -> 2(1(2(2(4(5(5(2(3(0(x1))))))))))
, 2(5(3(4(1(3(4(x1))))))) -> 0(0(0(4(3(1(0(0(3(4(x1))))))))))
, 2(2(0(4(4(2(1(x1))))))) -> 3(1(0(3(3(0(1(4(0(0(x1))))))))))
, 2(0(1(5(0(2(1(x1))))))) -> 2(3(0(0(3(4(0(0(4(0(x1))))))))))
, 2(0(1(1(1(5(2(x1))))))) -> 2(5(0(0(1(0(4(3(5(1(x1))))))))))
, 1(3(0(4(3(4(4(x1))))))) -> 1(3(0(0(2(5(5(5(1(1(x1))))))))))
, 1(2(2(3(1(0(1(x1))))))) -> 1(4(0(0(2(2(2(5(0(4(x1))))))))))
, 1(1(5(0(1(5(2(x1))))))) -> 5(5(1(0(5(5(5(5(5(2(x1))))))))))
, 0(4(3(5(4(2(0(x1))))))) -> 0(0(3(0(0(1(5(0(0(0(x1))))))))))
, 5(4(5(2(4(1(x1)))))) -> 3(0(0(0(2(5(2(4(1(2(x1))))))))))
, 5(2(4(4(4(1(x1)))))) -> 2(0(4(0(3(1(3(5(0(2(x1))))))))))
, 5(2(4(1(5(2(x1)))))) -> 3(0(2(4(2(0(0(3(5(1(x1))))))))))
, 4(2(4(5(2(3(x1)))))) -> 2(4(4(0(0(2(3(1(4(3(x1))))))))))
, 4(0(5(2(3(1(x1)))))) -> 0(2(1(5(0(0(0(2(5(3(x1))))))))))
, 3(1(5(4(2(0(x1)))))) -> 0(3(3(0(0(3(1(1(3(0(x1))))))))))
, 2(5(2(0(1(0(x1)))))) -> 2(1(0(0(3(0(4(0(0(0(x1))))))))))
, 2(4(1(2(1(1(x1)))))) -> 2(0(0(4(0(5(3(0(1(0(x1))))))))))
, 2(3(3(4(4(1(x1)))))) -> 2(0(0(3(1(2(2(5(5(2(x1))))))))))
, 2(0(4(0(1(4(x1)))))) -> 3(5(5(1(4(3(1(5(4(0(x1))))))))))
, 2(0(3(4(4(4(x1)))))) -> 3(5(3(0(0(3(1(2(0(4(x1))))))))))
, 0(4(4(4(5(3(x1)))))) -> 0(1(0(3(0(0(2(5(0(0(x1))))))))))
, 5(4(2(0(5(x1))))) -> 5(5(5(1(0(0(2(1(4(5(x1))))))))))
, 5(4(1(2(2(x1))))) -> 3(3(0(0(0(4(1(0(5(1(x1))))))))))
, 5(4(1(2(2(x1))))) -> 3(1(3(3(5(5(1(3(0(2(x1))))))))))
, 5(2(4(2(0(x1))))) -> 4(0(0(0(1(0(0(2(2(0(x1))))))))))
, 4(1(2(1(1(x1))))) -> 4(5(5(5(1(5(2(3(1(0(x1))))))))))
, 0(1(4(1(3(x1))))) -> 0(2(5(0(5(0(0(2(4(5(x1))))))))))
, 4(1(3(0(x1)))) -> 4(3(0(5(0(0(5(0(0(4(x1))))))))))
, 4(1(2(5(x1)))) -> 4(0(0(2(2(4(3(1(3(5(x1))))))))))
, 2(4(1(3(x1)))) -> 4(3(5(5(1(3(1(2(4(5(x1))))))))))
, 1(0(4(2(x1)))) -> 0(0(3(5(3(0(0(2(0(2(x1))))))))))
, 0(1(2(x1))) -> 0(3(0(0(2(4(2(2(5(1(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI2
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(4(5(2(1(5(x1))))))) -> 0(0(2(1(3(2(0(2(2(5(x1))))))))))
, 5(4(5(5(3(1(2(x1))))))) -> 5(0(3(0(2(2(4(5(0(2(x1))))))))))
, 5(4(5(2(2(3(0(x1))))))) -> 2(1(2(5(0(3(3(0(4(4(x1))))))))))
, 5(4(2(4(1(2(0(x1))))))) -> 2(5(5(5(1(5(3(5(1(0(x1))))))))))
, 5(4(2(3(2(0(5(x1))))))) -> 3(0(4(0(1(0(3(3(1(5(x1))))))))))
, 5(2(5(2(4(1(3(x1))))))) -> 0(0(1(2(1(2(2(4(1(3(x1))))))))))
, 5(2(4(1(4(1(2(x1))))))) -> 2(3(0(3(1(1(4(2(2(2(x1))))))))))
, 5(2(2(3(4(4(0(x1))))))) -> 2(5(5(0(4(0(4(0(1(0(x1))))))))))
, 5(2(2(0(5(5(3(x1))))))) -> 2(0(0(2(3(5(1(1(5(3(x1))))))))))
, 4(5(3(5(2(1(1(x1))))))) -> 4(5(3(5(5(1(1(0(5(3(x1))))))))))
, 4(4(2(1(1(1(1(x1))))))) -> 4(3(5(0(0(5(0(1(3(4(x1))))))))))
, 4(2(4(1(1(1(2(x1))))))) -> 0(3(0(2(5(1(4(2(2(2(x1))))))))))
, 4(1(3(4(2(5(4(x1))))))) -> 4(1(3(0(4(0(0(2(5(4(x1))))))))))
, 4(1(0(4(0(1(1(x1))))))) -> 2(4(2(2(3(5(3(2(3(1(x1))))))))))
, 3(5(5(4(1(1(4(x1))))))) -> 3(4(2(2(5(0(0(3(1(4(x1))))))))))
, 3(5(2(0(4(1(1(x1))))))) -> 5(4(5(5(5(5(5(1(4(4(x1))))))))))
, 3(4(0(2(0(4(4(x1))))))) -> 0(5(0(3(0(0(1(4(4(0(x1))))))))))
, 3(2(4(5(4(5(3(x1))))))) -> 0(2(5(3(3(0(5(0(0(5(x1))))))))))
, 3(0(1(1(4(0(5(x1))))))) -> 4(0(2(3(5(3(0(0(2(3(x1))))))))))
, 2(5(5(4(5(3(4(x1))))))) -> 2(4(5(0(0(3(5(1(1(1(x1))))))))))
, 2(5(5(4(2(0(4(x1))))))) -> 2(1(2(2(4(5(5(2(3(0(x1))))))))))
, 2(5(3(4(1(3(4(x1))))))) -> 0(0(0(4(3(1(0(0(3(4(x1))))))))))
, 2(2(0(4(4(2(1(x1))))))) -> 3(1(0(3(3(0(1(4(0(0(x1))))))))))
, 2(0(1(5(0(2(1(x1))))))) -> 2(3(0(0(3(4(0(0(4(0(x1))))))))))
, 2(0(1(1(1(5(2(x1))))))) -> 2(5(0(0(1(0(4(3(5(1(x1))))))))))
, 1(3(0(4(3(4(4(x1))))))) -> 1(3(0(0(2(5(5(5(1(1(x1))))))))))
, 1(2(2(3(1(0(1(x1))))))) -> 1(4(0(0(2(2(2(5(0(4(x1))))))))))
, 1(1(5(0(1(5(2(x1))))))) -> 5(5(1(0(5(5(5(5(5(2(x1))))))))))
, 0(4(3(5(4(2(0(x1))))))) -> 0(0(3(0(0(1(5(0(0(0(x1))))))))))
, 5(4(5(2(4(1(x1)))))) -> 3(0(0(0(2(5(2(4(1(2(x1))))))))))
, 5(2(4(4(4(1(x1)))))) -> 2(0(4(0(3(1(3(5(0(2(x1))))))))))
, 5(2(4(1(5(2(x1)))))) -> 3(0(2(4(2(0(0(3(5(1(x1))))))))))
, 4(2(4(5(2(3(x1)))))) -> 2(4(4(0(0(2(3(1(4(3(x1))))))))))
, 4(0(5(2(3(1(x1)))))) -> 0(2(1(5(0(0(0(2(5(3(x1))))))))))
, 3(1(5(4(2(0(x1)))))) -> 0(3(3(0(0(3(1(1(3(0(x1))))))))))
, 2(5(2(0(1(0(x1)))))) -> 2(1(0(0(3(0(4(0(0(0(x1))))))))))
, 2(4(1(2(1(1(x1)))))) -> 2(0(0(4(0(5(3(0(1(0(x1))))))))))
, 2(3(3(4(4(1(x1)))))) -> 2(0(0(3(1(2(2(5(5(2(x1))))))))))
, 2(0(4(0(1(4(x1)))))) -> 3(5(5(1(4(3(1(5(4(0(x1))))))))))
, 2(0(3(4(4(4(x1)))))) -> 3(5(3(0(0(3(1(2(0(4(x1))))))))))
, 0(4(4(4(5(3(x1)))))) -> 0(1(0(3(0(0(2(5(0(0(x1))))))))))
, 5(4(2(0(5(x1))))) -> 5(5(5(1(0(0(2(1(4(5(x1))))))))))
, 5(4(1(2(2(x1))))) -> 3(3(0(0(0(4(1(0(5(1(x1))))))))))
, 5(4(1(2(2(x1))))) -> 3(1(3(3(5(5(1(3(0(2(x1))))))))))
, 5(2(4(2(0(x1))))) -> 4(0(0(0(1(0(0(2(2(0(x1))))))))))
, 4(1(2(1(1(x1))))) -> 4(5(5(5(1(5(2(3(1(0(x1))))))))))
, 0(1(4(1(3(x1))))) -> 0(2(5(0(5(0(0(2(4(5(x1))))))))))
, 4(1(3(0(x1)))) -> 4(3(0(5(0(0(5(0(0(4(x1))))))))))
, 4(1(2(5(x1)))) -> 4(0(0(2(2(4(3(1(3(5(x1))))))))))
, 2(4(1(3(x1)))) -> 4(3(5(5(1(3(1(2(4(5(x1))))))))))
, 1(0(4(2(x1)))) -> 0(0(3(5(3(0(0(2(0(2(x1))))))))))
, 0(1(2(x1))) -> 0(3(0(0(2(4(2(2(5(1(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..