Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 5(5(5(3(0(4(2(x1))))))) -> 5(5(2(1(5(4(3(4(4(2(x1))))))))))
, 5(5(2(5(3(5(0(x1))))))) -> 5(2(0(4(0(3(2(3(3(0(x1))))))))))
, 5(5(0(5(5(5(3(x1))))))) -> 5(0(4(4(0(1(2(3(3(3(x1))))))))))
, 5(5(0(5(5(0(1(x1))))))) -> 2(3(4(5(4(2(1(2(5(1(x1))))))))))
, 5(4(5(3(2(5(3(x1))))))) -> 5(4(3(1(1(4(2(0(3(5(x1))))))))))
, 5(3(5(5(5(3(0(x1))))))) -> 5(4(3(4(5(2(5(5(5(0(x1))))))))))
, 5(2(5(5(0(0(3(x1))))))) -> 1(4(4(3(1(0(1(3(0(3(x1))))))))))
, 5(0(5(5(3(5(4(x1))))))) -> 5(3(5(5(0(1(1(2(3(4(x1))))))))))
, 4(5(5(5(0(4(3(x1))))))) -> 0(3(3(3(2(0(2(3(2(3(x1))))))))))
, 4(5(5(3(5(5(3(x1))))))) -> 0(1(4(0(1(3(2(4(1(4(x1))))))))))
, 4(2(5(5(0(2(2(x1))))))) -> 4(2(1(0(0(1(4(5(1(2(x1))))))))))
, 4(2(3(5(0(5(0(x1))))))) -> 4(4(4(0(0(1(5(2(3(4(x1))))))))))
, 4(1(5(0(0(1(5(x1))))))) -> 4(3(0(5(3(5(2(1(4(5(x1))))))))))
, 4(1(5(0(0(1(3(x1))))))) -> 0(2(1(1(1(1(4(5(1(3(x1))))))))))
, 4(0(5(5(5(5(4(x1))))))) -> 2(1(4(3(5(4(0(1(5(4(x1))))))))))
, 3(5(5(5(1(4(1(x1))))))) -> 1(4(4(0(0(1(0(1(3(1(x1))))))))))
, 3(2(4(1(5(5(1(x1))))))) -> 0(5(0(3(4(1(0(3(5(1(x1))))))))))
, 3(0(1(5(1(3(0(x1))))))) -> 3(0(0(3(1(2(1(5(4(2(x1))))))))))
, 1(5(1(3(5(5(5(x1))))))) -> 5(1(2(3(0(2(2(0(5(5(x1))))))))))
, 1(0(4(5(3(5(0(x1))))))) -> 1(0(2(1(2(5(2(0(5(2(x1))))))))))
, 5(5(5(1(3(1(x1)))))) -> 5(1(2(4(4(4(1(3(3(4(x1))))))))))
, 5(5(3(2(3(5(x1)))))) -> 1(4(2(4(1(2(2(4(1(5(x1))))))))))
, 5(5(1(5(3(0(x1)))))) -> 2(2(0(1(4(3(0(3(3(4(x1))))))))))
, 5(0(5(0(4(2(x1)))))) -> 5(4(4(4(4(0(4(4(3(0(x1))))))))))
, 4(3(5(0(4(2(x1)))))) -> 4(3(4(3(4(1(3(1(4(2(x1))))))))))
, 4(1(3(1(5(0(x1)))))) -> 0(2(2(2(1(1(2(3(1(4(x1))))))))))
, 3(5(3(1(5(5(x1)))))) -> 3(2(4(4(1(1(4(0(2(4(x1))))))))))
, 2(5(4(5(5(5(x1)))))) -> 2(4(2(1(2(4(4(4(0(5(x1))))))))))
, 2(4(0(1(3(5(x1)))))) -> 2(3(2(0(2(0(3(1(4(3(x1))))))))))
, 2(0(5(3(4(1(x1)))))) -> 2(3(4(0(3(3(0(1(2(1(x1))))))))))
, 1(5(5(5(5(3(x1)))))) -> 1(2(5(1(4(0(0(2(5(4(x1))))))))))
, 0(3(1(3(0(5(x1)))))) -> 4(4(3(3(4(4(0(5(2(3(x1))))))))))
, 0(1(5(3(0(1(x1)))))) -> 4(4(5(1(1(1(4(0(3(1(x1))))))))))
, 0(1(5(1(5(0(x1)))))) -> 4(4(4(2(5(5(0(1(4(0(x1))))))))))
, 0(1(5(1(0(4(x1)))))) -> 3(2(0(4(0(1(4(3(0(4(x1))))))))))
, 5(5(5(5(4(x1))))) -> 3(4(5(4(0(0(4(0(3(4(x1))))))))))
, 5(5(3(0(2(x1))))) -> 3(2(3(4(5(2(1(2(0(0(x1))))))))))
, 5(3(1(5(1(x1))))) -> 3(2(1(1(0(3(0(1(5(1(x1))))))))))
, 5(0(2(4(2(x1))))) -> 5(2(1(2(3(0(0(3(4(2(x1))))))))))
, 4(3(1(5(5(x1))))) -> 4(0(3(1(2(3(2(1(1(5(x1))))))))))
, 4(1(5(5(3(x1))))) -> 2(1(2(3(0(3(2(5(1(2(x1))))))))))
, 4(1(0(0(0(x1))))) -> 4(1(4(1(0(5(1(2(4(2(x1))))))))))
, 2(5(5(5(5(x1))))) -> 2(0(5(1(2(0(3(2(1(5(x1))))))))))
, 2(3(5(5(0(x1))))) -> 4(0(1(4(2(1(2(0(1(0(x1))))))))))
, 1(5(3(1(3(x1))))) -> 1(3(4(4(2(0(2(3(1(2(x1))))))))))
, 5(5(5(5(x1)))) -> 5(4(0(0(1(1(1(4(3(5(x1))))))))))
, 5(5(5(5(x1)))) -> 5(2(0(0(3(2(1(4(4(3(x1))))))))))
, 4(5(0(4(x1)))) -> 4(0(4(0(4(0(3(4(4(4(x1))))))))))
, 0(1(0(4(x1)))) -> 4(2(1(2(3(4(4(3(0(4(x1))))))))))
, 5(0(0(x1))) -> 5(0(3(2(1(2(3(4(0(0(x1))))))))))
, 3(5(3(x1))) -> 1(0(3(4(4(3(1(4(5(4(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ 3_0(1) -> 1
, 3_1(1) -> 26
, 3_1(2) -> 63
, 3_1(3) -> 26
, 3_1(8) -> 7
, 3_1(9) -> 317
, 3_1(15) -> 14
, 3_1(17) -> 16
, 3_1(18) -> 17
, 3_1(25) -> 24
, 3_1(26) -> 25
, 3_1(27) -> 317
, 3_1(28) -> 27
, 3_1(34) -> 124
, 3_1(35) -> 118
, 3_1(37) -> 36
, 3_1(43) -> 42
, 3_1(52) -> 51
, 3_1(56) -> 55
, 3_1(57) -> 2
, 3_1(63) -> 149
, 3_1(64) -> 63
, 3_1(65) -> 118
, 3_1(66) -> 65
, 3_1(67) -> 66
, 3_1(68) -> 67
, 3_1(72) -> 71
, 3_1(77) -> 76
, 3_1(79) -> 243
, 3_1(80) -> 26
, 3_1(87) -> 378
, 3_1(93) -> 80
, 3_1(96) -> 95
, 3_1(98) -> 237
, 3_1(109) -> 108
, 3_1(111) -> 310
, 3_1(115) -> 51
, 3_1(119) -> 26
, 3_1(121) -> 120
, 3_1(125) -> 1
, 3_1(125) -> 17
, 3_1(125) -> 18
, 3_1(125) -> 26
, 3_1(125) -> 42
, 3_1(125) -> 43
, 3_1(125) -> 46
, 3_1(125) -> 111
, 3_1(125) -> 138
, 3_1(125) -> 310
, 3_1(125) -> 311
, 3_1(128) -> 127
, 3_1(134) -> 133
, 3_1(160) -> 159
, 3_1(235) -> 234
, 3_1(238) -> 237
, 3_1(262) -> 261
, 3_1(265) -> 264
, 3_1(266) -> 265
, 3_1(275) -> 88
, 3_1(276) -> 275
, 3_1(289) -> 470
, 3_1(295) -> 294
, 3_1(302) -> 244
, 3_1(311) -> 310
, 3_1(315) -> 314
, 3_1(328) -> 327
, 3_1(331) -> 330
, 3_1(334) -> 333
, 3_1(336) -> 335
, 3_1(357) -> 356
, 3_1(373) -> 49
, 3_1(422) -> 421
, 3_1(437) -> 436
, 3_1(449) -> 448
, 3_1(467) -> 19
, 3_1(471) -> 470
, 3_1(480) -> 139
, 3_1(483) -> 482
, 3_2(2) -> 432
, 3_2(3) -> 432
, 3_2(58) -> 432
, 3_2(59) -> 432
, 3_2(322) -> 321
, 3_2(325) -> 324
, 3_2(340) -> 339
, 3_2(342) -> 341
, 3_2(364) -> 363
, 3_2(366) -> 420
, 3_2(428) -> 427
, 3_2(445) -> 444
, 3_2(454) -> 453
, 3_2(457) -> 456
, 3_2(462) -> 461
, 3_2(465) -> 464
, 3_2(473) -> 472
, 3_2(477) -> 476
, 3_2(487) -> 486
, 3_2(490) -> 489
, 3_2(556) -> 310
, 3_2(559) -> 558
, 3_2(574) -> 46
, 3_2(582) -> 581
, 3_2(585) -> 584
, 3_2(589) -> 588
, 3_2(594) -> 593
, 3_2(597) -> 596
, 5_0(1) -> 1
, 5_1(1) -> 43
, 5_1(2) -> 1
, 5_1(2) -> 35
, 5_1(2) -> 43
, 5_1(2) -> 46
, 5_1(2) -> 47
, 5_1(2) -> 48
, 5_1(2) -> 113
, 5_1(2) -> 138
, 5_1(2) -> 155
, 5_1(2) -> 312
, 5_1(3) -> 2
, 5_1(6) -> 5
, 5_1(9) -> 131
, 5_1(10) -> 145
, 5_1(18) -> 48
, 5_1(30) -> 29
, 5_1(35) -> 34
, 5_1(43) -> 138
, 5_1(45) -> 44
, 5_1(47) -> 46
, 5_1(48) -> 47
, 5_1(57) -> 43
, 5_1(58) -> 57
, 5_1(59) -> 58
, 5_1(62) -> 92
, 5_1(64) -> 113
, 5_1(65) -> 34
, 5_1(72) -> 279
, 5_1(87) -> 86
, 5_1(95) -> 94
, 5_1(97) -> 96
, 5_1(106) -> 105
, 5_1(110) -> 109
, 5_1(119) -> 65
, 5_1(125) -> 43
, 5_1(138) -> 46
, 5_1(143) -> 142
, 5_1(270) -> 269
, 5_1(280) -> 88
, 5_1(286) -> 285
, 5_1(287) -> 286
, 5_1(297) -> 296
, 5_1(304) -> 303
, 5_1(350) -> 349
, 5_1(353) -> 352
, 5_2(2) -> 366
, 5_2(3) -> 366
, 5_2(58) -> 366
, 5_2(59) -> 366
, 5_2(318) -> 48
, 5_2(344) -> 343
, 5_2(360) -> 359
, 5_2(413) -> 46
, 5_2(413) -> 138
, 5_2(493) -> 492
, 5_2(563) -> 562
, 5_2(569) -> 568
, 5_2(570) -> 569
, 5_2(576) -> 575
, 5_2(583) -> 43
, 5_2(600) -> 599
, 4_0(1) -> 1
, 4_1(1) -> 64
, 4_1(2) -> 64
, 4_1(3) -> 64
, 4_1(7) -> 6
, 4_1(9) -> 8
, 4_1(10) -> 9
, 4_1(13) -> 12
, 4_1(17) -> 173
, 4_1(18) -> 289
, 4_1(19) -> 2
, 4_1(20) -> 19
, 4_1(21) -> 20
, 4_1(26) -> 263
, 4_1(29) -> 28
, 4_1(31) -> 30
, 4_1(34) -> 85
, 4_1(36) -> 2
, 4_1(40) -> 39
, 4_1(42) -> 392
, 4_1(43) -> 99
, 4_1(44) -> 37
, 4_1(49) -> 2
, 4_1(50) -> 49
, 4_1(51) -> 50
, 4_1(57) -> 64
, 4_1(63) -> 263
, 4_1(64) -> 438
, 4_1(65) -> 2
, 4_1(74) -> 73
, 4_1(79) -> 78
, 4_1(80) -> 1
, 4_1(80) -> 9
, 4_1(80) -> 10
, 4_1(80) -> 18
, 4_1(80) -> 56
, 4_1(80) -> 64
, 4_1(80) -> 72
, 4_1(80) -> 99
, 4_1(80) -> 111
, 4_1(80) -> 154
, 4_1(80) -> 263
, 4_1(80) -> 284
, 4_1(80) -> 311
, 4_1(80) -> 371
, 4_1(80) -> 392
, 4_1(86) -> 85
, 4_1(88) -> 80
, 4_1(89) -> 88
, 4_1(105) -> 104
, 4_1(108) -> 107
, 4_1(111) -> 110
, 4_1(113) -> 484
, 4_1(120) -> 2
, 4_1(122) -> 121
, 4_1(125) -> 64
, 4_1(126) -> 2
, 4_1(146) -> 133
, 4_1(147) -> 146
, 4_1(148) -> 147
, 4_1(151) -> 150
, 4_1(155) -> 154
, 4_1(159) -> 158
, 4_1(167) -> 21
, 4_1(173) -> 172
, 4_1(234) -> 93
, 4_1(236) -> 235
, 4_1(245) -> 244
, 4_1(246) -> 245
, 4_1(249) -> 248
, 4_1(251) -> 27
, 4_1(255) -> 254
, 4_1(256) -> 255
, 4_1(257) -> 256
, 4_1(263) -> 424
, 4_1(272) -> 271
, 4_1(277) -> 276
, 4_1(278) -> 277
, 4_1(284) -> 283
, 4_1(291) -> 290
, 4_1(293) -> 449
, 4_1(294) -> 293
, 4_1(296) -> 125
, 4_1(298) -> 297
, 4_1(299) -> 327
, 4_1(301) -> 300
, 4_1(303) -> 302
, 4_1(307) -> 471
, 4_1(347) -> 346
, 4_1(368) -> 367
, 4_1(374) -> 373
, 4_1(375) -> 374
, 4_1(433) -> 327
, 4_1(435) -> 434
, 4_1(438) -> 437
, 4_1(481) -> 480
, 4_1(482) -> 481
, 4_2(19) -> 582
, 4_2(20) -> 447
, 4_2(36) -> 582
, 4_2(49) -> 582
, 4_2(57) -> 493
, 4_2(65) -> 582
, 4_2(66) -> 600
, 4_2(80) -> 466
, 4_2(120) -> 582
, 4_2(125) -> 493
, 4_2(126) -> 582
, 4_2(251) -> 466
, 4_2(326) -> 325
, 4_2(414) -> 413
, 4_2(420) -> 419
, 4_2(431) -> 430
, 4_2(432) -> 431
, 4_2(439) -> 64
, 4_2(439) -> 99
, 4_2(439) -> 154
, 4_2(439) -> 484
, 4_2(441) -> 440
, 4_2(443) -> 442
, 4_2(446) -> 445
, 4_2(447) -> 446
, 4_2(450) -> 287
, 4_2(455) -> 454
, 4_2(456) -> 455
, 4_2(458) -> 371
, 4_2(463) -> 462
, 4_2(464) -> 463
, 4_2(478) -> 477
, 4_2(488) -> 487
, 4_2(489) -> 488
, 4_2(492) -> 491
, 4_2(564) -> 563
, 4_2(565) -> 311
, 4_2(566) -> 565
, 4_2(567) -> 566
, 4_2(573) -> 572
, 4_2(575) -> 574
, 4_2(577) -> 576
, 4_2(580) -> 579
, 4_2(590) -> 589
, 4_2(595) -> 594
, 4_2(596) -> 595
, 4_2(599) -> 598
, 1_0(1) -> 1
, 1_1(1) -> 35
, 1_1(2) -> 79
, 1_1(5) -> 4
, 1_1(9) -> 238
, 1_1(10) -> 87
, 1_1(15) -> 22
, 1_1(18) -> 372
, 1_1(23) -> 22
, 1_1(26) -> 106
, 1_1(27) -> 35
, 1_1(33) -> 32
, 1_1(34) -> 312
, 1_1(38) -> 37
, 1_1(39) -> 38
, 1_1(41) -> 122
, 1_1(43) -> 155
, 1_1(49) -> 1
, 1_1(49) -> 26
, 1_1(49) -> 35
, 1_1(49) -> 42
, 1_1(49) -> 43
, 1_1(49) -> 138
, 1_1(49) -> 145
, 1_1(49) -> 155
, 1_1(49) -> 372
, 1_1(53) -> 52
, 1_1(55) -> 54
, 1_1(61) -> 60
, 1_1(62) -> 61
, 1_1(64) -> 79
, 1_1(72) -> 267
, 1_1(73) -> 65
, 1_1(76) -> 75
, 1_1(79) -> 332
, 1_1(82) -> 81
, 1_1(85) -> 84
, 1_1(92) -> 91
, 1_1(98) -> 102
, 1_1(99) -> 98
, 1_1(100) -> 35
, 1_1(101) -> 100
, 1_1(102) -> 101
, 1_1(103) -> 102
, 1_1(104) -> 103
, 1_1(107) -> 27
, 1_1(113) -> 112
, 1_1(116) -> 115
, 1_1(118) -> 117
, 1_1(123) -> 122
, 1_1(129) -> 128
, 1_1(131) -> 130
, 1_1(132) -> 2
, 1_1(141) -> 140
, 1_1(149) -> 148
, 1_1(152) -> 151
, 1_1(155) -> 332
, 1_1(158) -> 157
, 1_1(237) -> 236
, 1_1(241) -> 240
, 1_1(242) -> 241
, 1_1(247) -> 246
, 1_1(248) -> 247
, 1_1(253) -> 252
, 1_1(262) -> 390
, 1_1(263) -> 262
, 1_1(268) -> 267
, 1_1(271) -> 270
, 1_1(281) -> 280
, 1_1(282) -> 281
, 1_1(283) -> 282
, 1_1(289) -> 288
, 1_1(293) -> 292
, 1_1(306) -> 305
, 1_1(308) -> 244
, 1_1(309) -> 308
, 1_1(313) -> 11
, 1_1(329) -> 328
, 1_1(346) -> 80
, 1_1(348) -> 347
, 1_1(351) -> 350
, 1_1(354) -> 353
, 1_1(367) -> 327
, 1_1(370) -> 369
, 1_1(390) -> 389
, 1_1(391) -> 390
, 1_1(392) -> 391
, 1_1(424) -> 423
, 1_1(469) -> 468
, 1_1(484) -> 483
, 1_2(320) -> 319
, 1_2(338) -> 337
, 1_2(345) -> 344
, 1_2(361) -> 360
, 1_2(366) -> 365
, 1_2(417) -> 416
, 1_2(418) -> 417
, 1_2(419) -> 418
, 1_2(430) -> 429
, 1_2(452) -> 451
, 1_2(460) -> 459
, 1_2(475) -> 474
, 1_2(485) -> 26
, 1_2(485) -> 42
, 1_2(485) -> 118
, 1_2(485) -> 420
, 1_2(491) -> 490
, 1_2(560) -> 559
, 1_2(562) -> 561
, 1_2(572) -> 571
, 1_2(587) -> 586
, 1_2(592) -> 124
, 1_2(598) -> 597
, 0_0(1) -> 1
, 0_1(1) -> 18
, 0_1(2) -> 257
, 0_1(12) -> 11
, 0_1(14) -> 13
, 0_1(18) -> 307
, 0_1(19) -> 2
, 0_1(22) -> 21
, 0_1(26) -> 56
, 0_1(27) -> 18
, 0_1(35) -> 111
, 0_1(42) -> 41
, 0_1(43) -> 257
, 0_1(54) -> 53
, 0_1(60) -> 59
, 0_1(63) -> 301
, 0_1(64) -> 295
, 0_1(65) -> 1
, 0_1(65) -> 26
, 0_1(65) -> 64
, 0_1(65) -> 99
, 0_1(65) -> 154
, 0_1(70) -> 69
, 0_1(75) -> 74
, 0_1(79) -> 287
, 0_1(81) -> 18
, 0_1(83) -> 82
, 0_1(84) -> 83
, 0_1(90) -> 89
, 0_1(91) -> 90
, 0_1(92) -> 278
, 0_1(94) -> 93
, 0_1(100) -> 18
, 0_1(106) -> 116
, 0_1(112) -> 111
, 0_1(114) -> 51
, 0_1(115) -> 114
, 0_1(117) -> 116
, 0_1(118) -> 284
, 0_1(120) -> 119
, 0_1(124) -> 123
, 0_1(126) -> 125
, 0_1(127) -> 126
, 0_1(135) -> 134
, 0_1(138) -> 137
, 0_1(139) -> 49
, 0_1(145) -> 144
, 0_1(149) -> 160
, 0_1(157) -> 156
, 0_1(172) -> 167
, 0_1(250) -> 249
, 0_1(259) -> 258
, 0_1(261) -> 260
, 0_1(264) -> 29
, 0_1(267) -> 266
, 0_1(273) -> 272
, 0_1(274) -> 273
, 0_1(279) -> 278
, 0_1(288) -> 287
, 0_1(290) -> 244
, 0_1(292) -> 291
, 0_1(299) -> 298
, 0_1(300) -> 299
, 0_1(310) -> 309
, 0_1(312) -> 311
, 0_1(316) -> 315
, 0_1(317) -> 316
, 0_1(327) -> 80
, 0_1(335) -> 334
, 0_1(349) -> 348
, 0_1(352) -> 27
, 0_1(356) -> 355
, 0_1(372) -> 371
, 0_1(377) -> 376
, 0_1(389) -> 139
, 0_1(421) -> 12
, 0_1(434) -> 433
, 0_1(436) -> 435
, 0_2(19) -> 573
, 0_2(65) -> 479
, 0_2(127) -> 591
, 0_2(323) -> 322
, 0_2(324) -> 323
, 0_2(341) -> 340
, 0_2(352) -> 479
, 0_2(359) -> 358
, 0_2(363) -> 362
, 0_2(415) -> 414
, 0_2(416) -> 415
, 0_2(426) -> 425
, 0_2(427) -> 426
, 0_2(440) -> 439
, 0_2(442) -> 441
, 0_2(444) -> 443
, 0_2(447) -> 457
, 0_2(466) -> 465
, 0_2(472) -> 318
, 0_2(479) -> 478
, 0_2(486) -> 485
, 0_2(557) -> 556
, 0_2(558) -> 557
, 0_2(571) -> 570
, 0_2(578) -> 577
, 0_2(579) -> 578
, 0_2(581) -> 580
, 0_2(584) -> 583
, 0_2(591) -> 590
, 0_2(593) -> 592
, 2_0(1) -> 1
, 2_1(1) -> 10
, 2_1(4) -> 3
, 2_1(9) -> 351
, 2_1(11) -> 2
, 2_1(16) -> 15
, 2_1(19) -> 10
, 2_1(24) -> 23
, 2_1(26) -> 72
, 2_1(27) -> 1
, 2_1(27) -> 10
, 2_1(27) -> 43
, 2_1(27) -> 45
, 2_1(27) -> 47
, 2_1(27) -> 64
, 2_1(27) -> 138
, 2_1(27) -> 154
, 2_1(27) -> 250
, 2_1(27) -> 256
, 2_1(27) -> 274
, 2_1(27) -> 289
, 2_1(32) -> 31
, 2_1(34) -> 33
, 2_1(35) -> 268
, 2_1(41) -> 40
, 2_1(46) -> 45
, 2_1(57) -> 10
, 2_1(63) -> 62
, 2_1(64) -> 250
, 2_1(65) -> 10
, 2_1(69) -> 68
, 2_1(71) -> 70
, 2_1(78) -> 77
, 2_1(79) -> 357
, 2_1(80) -> 72
, 2_1(81) -> 80
, 2_1(86) -> 336
, 2_1(98) -> 97
, 2_1(100) -> 65
, 2_1(111) -> 136
, 2_1(113) -> 274
, 2_1(125) -> 10
, 2_1(126) -> 10
, 2_1(130) -> 129
, 2_1(133) -> 132
, 2_1(136) -> 135
, 2_1(137) -> 136
, 2_1(140) -> 139
, 2_1(142) -> 141
, 2_1(144) -> 143
, 2_1(149) -> 15
, 2_1(150) -> 50
, 2_1(153) -> 152
, 2_1(154) -> 153
, 2_1(155) -> 357
, 2_1(156) -> 27
, 2_1(239) -> 100
, 2_1(240) -> 239
, 2_1(243) -> 242
, 2_1(244) -> 125
, 2_1(252) -> 251
, 2_1(254) -> 253
, 2_1(258) -> 28
, 2_1(260) -> 259
, 2_1(269) -> 49
, 2_1(285) -> 89
, 2_1(287) -> 370
, 2_1(305) -> 304
, 2_1(307) -> 306
, 2_1(314) -> 313
, 2_1(330) -> 329
, 2_1(332) -> 331
, 2_1(333) -> 107
, 2_1(355) -> 354
, 2_1(369) -> 368
, 2_1(371) -> 370
, 2_1(373) -> 10
, 2_1(376) -> 375
, 2_1(378) -> 377
, 2_1(423) -> 422
, 2_1(448) -> 82
, 2_1(468) -> 467
, 2_1(470) -> 469
, 2_2(57) -> 345
, 2_2(126) -> 564
, 2_2(252) -> 326
, 2_2(319) -> 318
, 2_2(321) -> 320
, 2_2(337) -> 154
, 2_2(339) -> 338
, 2_2(343) -> 342
, 2_2(358) -> 45
, 2_2(362) -> 361
, 2_2(365) -> 364
, 2_2(425) -> 413
, 2_2(429) -> 428
, 2_2(451) -> 450
, 2_2(453) -> 452
, 2_2(459) -> 458
, 2_2(461) -> 460
, 2_2(474) -> 473
, 2_2(476) -> 475
, 2_2(561) -> 560
, 2_2(568) -> 567
, 2_2(586) -> 585
, 2_2(588) -> 587}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(5(3(0(4(2(x1))))))) -> 5(5(2(1(5(4(3(4(4(2(x1))))))))))
, 5(5(2(5(3(5(0(x1))))))) -> 5(2(0(4(0(3(2(3(3(0(x1))))))))))
, 5(5(0(5(5(5(3(x1))))))) -> 5(0(4(4(0(1(2(3(3(3(x1))))))))))
, 5(5(0(5(5(0(1(x1))))))) -> 2(3(4(5(4(2(1(2(5(1(x1))))))))))
, 5(4(5(3(2(5(3(x1))))))) -> 5(4(3(1(1(4(2(0(3(5(x1))))))))))
, 5(3(5(5(5(3(0(x1))))))) -> 5(4(3(4(5(2(5(5(5(0(x1))))))))))
, 5(2(5(5(0(0(3(x1))))))) -> 1(4(4(3(1(0(1(3(0(3(x1))))))))))
, 5(0(5(5(3(5(4(x1))))))) -> 5(3(5(5(0(1(1(2(3(4(x1))))))))))
, 4(5(5(5(0(4(3(x1))))))) -> 0(3(3(3(2(0(2(3(2(3(x1))))))))))
, 4(5(5(3(5(5(3(x1))))))) -> 0(1(4(0(1(3(2(4(1(4(x1))))))))))
, 4(2(5(5(0(2(2(x1))))))) -> 4(2(1(0(0(1(4(5(1(2(x1))))))))))
, 4(2(3(5(0(5(0(x1))))))) -> 4(4(4(0(0(1(5(2(3(4(x1))))))))))
, 4(1(5(0(0(1(5(x1))))))) -> 4(3(0(5(3(5(2(1(4(5(x1))))))))))
, 4(1(5(0(0(1(3(x1))))))) -> 0(2(1(1(1(1(4(5(1(3(x1))))))))))
, 4(0(5(5(5(5(4(x1))))))) -> 2(1(4(3(5(4(0(1(5(4(x1))))))))))
, 3(5(5(5(1(4(1(x1))))))) -> 1(4(4(0(0(1(0(1(3(1(x1))))))))))
, 3(2(4(1(5(5(1(x1))))))) -> 0(5(0(3(4(1(0(3(5(1(x1))))))))))
, 3(0(1(5(1(3(0(x1))))))) -> 3(0(0(3(1(2(1(5(4(2(x1))))))))))
, 1(5(1(3(5(5(5(x1))))))) -> 5(1(2(3(0(2(2(0(5(5(x1))))))))))
, 1(0(4(5(3(5(0(x1))))))) -> 1(0(2(1(2(5(2(0(5(2(x1))))))))))
, 5(5(5(1(3(1(x1)))))) -> 5(1(2(4(4(4(1(3(3(4(x1))))))))))
, 5(5(3(2(3(5(x1)))))) -> 1(4(2(4(1(2(2(4(1(5(x1))))))))))
, 5(5(1(5(3(0(x1)))))) -> 2(2(0(1(4(3(0(3(3(4(x1))))))))))
, 5(0(5(0(4(2(x1)))))) -> 5(4(4(4(4(0(4(4(3(0(x1))))))))))
, 4(3(5(0(4(2(x1)))))) -> 4(3(4(3(4(1(3(1(4(2(x1))))))))))
, 4(1(3(1(5(0(x1)))))) -> 0(2(2(2(1(1(2(3(1(4(x1))))))))))
, 3(5(3(1(5(5(x1)))))) -> 3(2(4(4(1(1(4(0(2(4(x1))))))))))
, 2(5(4(5(5(5(x1)))))) -> 2(4(2(1(2(4(4(4(0(5(x1))))))))))
, 2(4(0(1(3(5(x1)))))) -> 2(3(2(0(2(0(3(1(4(3(x1))))))))))
, 2(0(5(3(4(1(x1)))))) -> 2(3(4(0(3(3(0(1(2(1(x1))))))))))
, 1(5(5(5(5(3(x1)))))) -> 1(2(5(1(4(0(0(2(5(4(x1))))))))))
, 0(3(1(3(0(5(x1)))))) -> 4(4(3(3(4(4(0(5(2(3(x1))))))))))
, 0(1(5(3(0(1(x1)))))) -> 4(4(5(1(1(1(4(0(3(1(x1))))))))))
, 0(1(5(1(5(0(x1)))))) -> 4(4(4(2(5(5(0(1(4(0(x1))))))))))
, 0(1(5(1(0(4(x1)))))) -> 3(2(0(4(0(1(4(3(0(4(x1))))))))))
, 5(5(5(5(4(x1))))) -> 3(4(5(4(0(0(4(0(3(4(x1))))))))))
, 5(5(3(0(2(x1))))) -> 3(2(3(4(5(2(1(2(0(0(x1))))))))))
, 5(3(1(5(1(x1))))) -> 3(2(1(1(0(3(0(1(5(1(x1))))))))))
, 5(0(2(4(2(x1))))) -> 5(2(1(2(3(0(0(3(4(2(x1))))))))))
, 4(3(1(5(5(x1))))) -> 4(0(3(1(2(3(2(1(1(5(x1))))))))))
, 4(1(5(5(3(x1))))) -> 2(1(2(3(0(3(2(5(1(2(x1))))))))))
, 4(1(0(0(0(x1))))) -> 4(1(4(1(0(5(1(2(4(2(x1))))))))))
, 2(5(5(5(5(x1))))) -> 2(0(5(1(2(0(3(2(1(5(x1))))))))))
, 2(3(5(5(0(x1))))) -> 4(0(1(4(2(1(2(0(1(0(x1))))))))))
, 1(5(3(1(3(x1))))) -> 1(3(4(4(2(0(2(3(1(2(x1))))))))))
, 5(5(5(5(x1)))) -> 5(4(0(0(1(1(1(4(3(5(x1))))))))))
, 5(5(5(5(x1)))) -> 5(2(0(0(3(2(1(4(4(3(x1))))))))))
, 4(5(0(4(x1)))) -> 4(0(4(0(4(0(3(4(4(4(x1))))))))))
, 0(1(0(4(x1)))) -> 4(2(1(2(3(4(4(3(0(4(x1))))))))))
, 5(0(0(x1))) -> 5(0(3(2(1(2(3(4(0(0(x1))))))))))
, 3(5(3(x1))) -> 1(0(3(4(4(3(1(4(5(4(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(5(3(0(4(2(x1))))))) -> 5(5(2(1(5(4(3(4(4(2(x1))))))))))
, 5(5(2(5(3(5(0(x1))))))) -> 5(2(0(4(0(3(2(3(3(0(x1))))))))))
, 5(5(0(5(5(5(3(x1))))))) -> 5(0(4(4(0(1(2(3(3(3(x1))))))))))
, 5(5(0(5(5(0(1(x1))))))) -> 2(3(4(5(4(2(1(2(5(1(x1))))))))))
, 5(4(5(3(2(5(3(x1))))))) -> 5(4(3(1(1(4(2(0(3(5(x1))))))))))
, 5(3(5(5(5(3(0(x1))))))) -> 5(4(3(4(5(2(5(5(5(0(x1))))))))))
, 5(2(5(5(0(0(3(x1))))))) -> 1(4(4(3(1(0(1(3(0(3(x1))))))))))
, 5(0(5(5(3(5(4(x1))))))) -> 5(3(5(5(0(1(1(2(3(4(x1))))))))))
, 4(5(5(5(0(4(3(x1))))))) -> 0(3(3(3(2(0(2(3(2(3(x1))))))))))
, 4(5(5(3(5(5(3(x1))))))) -> 0(1(4(0(1(3(2(4(1(4(x1))))))))))
, 4(2(5(5(0(2(2(x1))))))) -> 4(2(1(0(0(1(4(5(1(2(x1))))))))))
, 4(2(3(5(0(5(0(x1))))))) -> 4(4(4(0(0(1(5(2(3(4(x1))))))))))
, 4(1(5(0(0(1(5(x1))))))) -> 4(3(0(5(3(5(2(1(4(5(x1))))))))))
, 4(1(5(0(0(1(3(x1))))))) -> 0(2(1(1(1(1(4(5(1(3(x1))))))))))
, 4(0(5(5(5(5(4(x1))))))) -> 2(1(4(3(5(4(0(1(5(4(x1))))))))))
, 3(5(5(5(1(4(1(x1))))))) -> 1(4(4(0(0(1(0(1(3(1(x1))))))))))
, 3(2(4(1(5(5(1(x1))))))) -> 0(5(0(3(4(1(0(3(5(1(x1))))))))))
, 3(0(1(5(1(3(0(x1))))))) -> 3(0(0(3(1(2(1(5(4(2(x1))))))))))
, 1(5(1(3(5(5(5(x1))))))) -> 5(1(2(3(0(2(2(0(5(5(x1))))))))))
, 1(0(4(5(3(5(0(x1))))))) -> 1(0(2(1(2(5(2(0(5(2(x1))))))))))
, 5(5(5(1(3(1(x1)))))) -> 5(1(2(4(4(4(1(3(3(4(x1))))))))))
, 5(5(3(2(3(5(x1)))))) -> 1(4(2(4(1(2(2(4(1(5(x1))))))))))
, 5(5(1(5(3(0(x1)))))) -> 2(2(0(1(4(3(0(3(3(4(x1))))))))))
, 5(0(5(0(4(2(x1)))))) -> 5(4(4(4(4(0(4(4(3(0(x1))))))))))
, 4(3(5(0(4(2(x1)))))) -> 4(3(4(3(4(1(3(1(4(2(x1))))))))))
, 4(1(3(1(5(0(x1)))))) -> 0(2(2(2(1(1(2(3(1(4(x1))))))))))
, 3(5(3(1(5(5(x1)))))) -> 3(2(4(4(1(1(4(0(2(4(x1))))))))))
, 2(5(4(5(5(5(x1)))))) -> 2(4(2(1(2(4(4(4(0(5(x1))))))))))
, 2(4(0(1(3(5(x1)))))) -> 2(3(2(0(2(0(3(1(4(3(x1))))))))))
, 2(0(5(3(4(1(x1)))))) -> 2(3(4(0(3(3(0(1(2(1(x1))))))))))
, 1(5(5(5(5(3(x1)))))) -> 1(2(5(1(4(0(0(2(5(4(x1))))))))))
, 0(3(1(3(0(5(x1)))))) -> 4(4(3(3(4(4(0(5(2(3(x1))))))))))
, 0(1(5(3(0(1(x1)))))) -> 4(4(5(1(1(1(4(0(3(1(x1))))))))))
, 0(1(5(1(5(0(x1)))))) -> 4(4(4(2(5(5(0(1(4(0(x1))))))))))
, 0(1(5(1(0(4(x1)))))) -> 3(2(0(4(0(1(4(3(0(4(x1))))))))))
, 5(5(5(5(4(x1))))) -> 3(4(5(4(0(0(4(0(3(4(x1))))))))))
, 5(5(3(0(2(x1))))) -> 3(2(3(4(5(2(1(2(0(0(x1))))))))))
, 5(3(1(5(1(x1))))) -> 3(2(1(1(0(3(0(1(5(1(x1))))))))))
, 5(0(2(4(2(x1))))) -> 5(2(1(2(3(0(0(3(4(2(x1))))))))))
, 4(3(1(5(5(x1))))) -> 4(0(3(1(2(3(2(1(1(5(x1))))))))))
, 4(1(5(5(3(x1))))) -> 2(1(2(3(0(3(2(5(1(2(x1))))))))))
, 4(1(0(0(0(x1))))) -> 4(1(4(1(0(5(1(2(4(2(x1))))))))))
, 2(5(5(5(5(x1))))) -> 2(0(5(1(2(0(3(2(1(5(x1))))))))))
, 2(3(5(5(0(x1))))) -> 4(0(1(4(2(1(2(0(1(0(x1))))))))))
, 1(5(3(1(3(x1))))) -> 1(3(4(4(2(0(2(3(1(2(x1))))))))))
, 5(5(5(5(x1)))) -> 5(4(0(0(1(1(1(4(3(5(x1))))))))))
, 5(5(5(5(x1)))) -> 5(2(0(0(3(2(1(4(4(3(x1))))))))))
, 4(5(0(4(x1)))) -> 4(0(4(0(4(0(3(4(4(4(x1))))))))))
, 0(1(0(4(x1)))) -> 4(2(1(2(3(4(4(3(0(4(x1))))))))))
, 5(0(0(x1))) -> 5(0(3(2(1(2(3(4(0(0(x1))))))))))
, 3(5(3(x1))) -> 1(0(3(4(4(3(1(4(5(4(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(5(3(0(4(2(x1))))))) -> 5(5(2(1(5(4(3(4(4(2(x1))))))))))
, 5(5(2(5(3(5(0(x1))))))) -> 5(2(0(4(0(3(2(3(3(0(x1))))))))))
, 5(5(0(5(5(5(3(x1))))))) -> 5(0(4(4(0(1(2(3(3(3(x1))))))))))
, 5(5(0(5(5(0(1(x1))))))) -> 2(3(4(5(4(2(1(2(5(1(x1))))))))))
, 5(4(5(3(2(5(3(x1))))))) -> 5(4(3(1(1(4(2(0(3(5(x1))))))))))
, 5(3(5(5(5(3(0(x1))))))) -> 5(4(3(4(5(2(5(5(5(0(x1))))))))))
, 5(2(5(5(0(0(3(x1))))))) -> 1(4(4(3(1(0(1(3(0(3(x1))))))))))
, 5(0(5(5(3(5(4(x1))))))) -> 5(3(5(5(0(1(1(2(3(4(x1))))))))))
, 4(5(5(5(0(4(3(x1))))))) -> 0(3(3(3(2(0(2(3(2(3(x1))))))))))
, 4(5(5(3(5(5(3(x1))))))) -> 0(1(4(0(1(3(2(4(1(4(x1))))))))))
, 4(2(5(5(0(2(2(x1))))))) -> 4(2(1(0(0(1(4(5(1(2(x1))))))))))
, 4(2(3(5(0(5(0(x1))))))) -> 4(4(4(0(0(1(5(2(3(4(x1))))))))))
, 4(1(5(0(0(1(5(x1))))))) -> 4(3(0(5(3(5(2(1(4(5(x1))))))))))
, 4(1(5(0(0(1(3(x1))))))) -> 0(2(1(1(1(1(4(5(1(3(x1))))))))))
, 4(0(5(5(5(5(4(x1))))))) -> 2(1(4(3(5(4(0(1(5(4(x1))))))))))
, 3(5(5(5(1(4(1(x1))))))) -> 1(4(4(0(0(1(0(1(3(1(x1))))))))))
, 3(2(4(1(5(5(1(x1))))))) -> 0(5(0(3(4(1(0(3(5(1(x1))))))))))
, 3(0(1(5(1(3(0(x1))))))) -> 3(0(0(3(1(2(1(5(4(2(x1))))))))))
, 1(5(1(3(5(5(5(x1))))))) -> 5(1(2(3(0(2(2(0(5(5(x1))))))))))
, 1(0(4(5(3(5(0(x1))))))) -> 1(0(2(1(2(5(2(0(5(2(x1))))))))))
, 5(5(5(1(3(1(x1)))))) -> 5(1(2(4(4(4(1(3(3(4(x1))))))))))
, 5(5(3(2(3(5(x1)))))) -> 1(4(2(4(1(2(2(4(1(5(x1))))))))))
, 5(5(1(5(3(0(x1)))))) -> 2(2(0(1(4(3(0(3(3(4(x1))))))))))
, 5(0(5(0(4(2(x1)))))) -> 5(4(4(4(4(0(4(4(3(0(x1))))))))))
, 4(3(5(0(4(2(x1)))))) -> 4(3(4(3(4(1(3(1(4(2(x1))))))))))
, 4(1(3(1(5(0(x1)))))) -> 0(2(2(2(1(1(2(3(1(4(x1))))))))))
, 3(5(3(1(5(5(x1)))))) -> 3(2(4(4(1(1(4(0(2(4(x1))))))))))
, 2(5(4(5(5(5(x1)))))) -> 2(4(2(1(2(4(4(4(0(5(x1))))))))))
, 2(4(0(1(3(5(x1)))))) -> 2(3(2(0(2(0(3(1(4(3(x1))))))))))
, 2(0(5(3(4(1(x1)))))) -> 2(3(4(0(3(3(0(1(2(1(x1))))))))))
, 1(5(5(5(5(3(x1)))))) -> 1(2(5(1(4(0(0(2(5(4(x1))))))))))
, 0(3(1(3(0(5(x1)))))) -> 4(4(3(3(4(4(0(5(2(3(x1))))))))))
, 0(1(5(3(0(1(x1)))))) -> 4(4(5(1(1(1(4(0(3(1(x1))))))))))
, 0(1(5(1(5(0(x1)))))) -> 4(4(4(2(5(5(0(1(4(0(x1))))))))))
, 0(1(5(1(0(4(x1)))))) -> 3(2(0(4(0(1(4(3(0(4(x1))))))))))
, 5(5(5(5(4(x1))))) -> 3(4(5(4(0(0(4(0(3(4(x1))))))))))
, 5(5(3(0(2(x1))))) -> 3(2(3(4(5(2(1(2(0(0(x1))))))))))
, 5(3(1(5(1(x1))))) -> 3(2(1(1(0(3(0(1(5(1(x1))))))))))
, 5(0(2(4(2(x1))))) -> 5(2(1(2(3(0(0(3(4(2(x1))))))))))
, 4(3(1(5(5(x1))))) -> 4(0(3(1(2(3(2(1(1(5(x1))))))))))
, 4(1(5(5(3(x1))))) -> 2(1(2(3(0(3(2(5(1(2(x1))))))))))
, 4(1(0(0(0(x1))))) -> 4(1(4(1(0(5(1(2(4(2(x1))))))))))
, 2(5(5(5(5(x1))))) -> 2(0(5(1(2(0(3(2(1(5(x1))))))))))
, 2(3(5(5(0(x1))))) -> 4(0(1(4(2(1(2(0(1(0(x1))))))))))
, 1(5(3(1(3(x1))))) -> 1(3(4(4(2(0(2(3(1(2(x1))))))))))
, 5(5(5(5(x1)))) -> 5(4(0(0(1(1(1(4(3(5(x1))))))))))
, 5(5(5(5(x1)))) -> 5(2(0(0(3(2(1(4(4(3(x1))))))))))
, 4(5(0(4(x1)))) -> 4(0(4(0(4(0(3(4(4(4(x1))))))))))
, 0(1(0(4(x1)))) -> 4(2(1(2(3(4(4(3(0(4(x1))))))))))
, 5(0(0(x1))) -> 5(0(3(2(1(2(3(4(0(0(x1))))))))))
, 3(5(3(x1))) -> 1(0(3(4(4(3(1(4(5(4(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI2
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(5(3(0(4(2(x1))))))) -> 5(5(2(1(5(4(3(4(4(2(x1))))))))))
, 5(5(2(5(3(5(0(x1))))))) -> 5(2(0(4(0(3(2(3(3(0(x1))))))))))
, 5(5(0(5(5(5(3(x1))))))) -> 5(0(4(4(0(1(2(3(3(3(x1))))))))))
, 5(5(0(5(5(0(1(x1))))))) -> 2(3(4(5(4(2(1(2(5(1(x1))))))))))
, 5(4(5(3(2(5(3(x1))))))) -> 5(4(3(1(1(4(2(0(3(5(x1))))))))))
, 5(3(5(5(5(3(0(x1))))))) -> 5(4(3(4(5(2(5(5(5(0(x1))))))))))
, 5(2(5(5(0(0(3(x1))))))) -> 1(4(4(3(1(0(1(3(0(3(x1))))))))))
, 5(0(5(5(3(5(4(x1))))))) -> 5(3(5(5(0(1(1(2(3(4(x1))))))))))
, 4(5(5(5(0(4(3(x1))))))) -> 0(3(3(3(2(0(2(3(2(3(x1))))))))))
, 4(5(5(3(5(5(3(x1))))))) -> 0(1(4(0(1(3(2(4(1(4(x1))))))))))
, 4(2(5(5(0(2(2(x1))))))) -> 4(2(1(0(0(1(4(5(1(2(x1))))))))))
, 4(2(3(5(0(5(0(x1))))))) -> 4(4(4(0(0(1(5(2(3(4(x1))))))))))
, 4(1(5(0(0(1(5(x1))))))) -> 4(3(0(5(3(5(2(1(4(5(x1))))))))))
, 4(1(5(0(0(1(3(x1))))))) -> 0(2(1(1(1(1(4(5(1(3(x1))))))))))
, 4(0(5(5(5(5(4(x1))))))) -> 2(1(4(3(5(4(0(1(5(4(x1))))))))))
, 3(5(5(5(1(4(1(x1))))))) -> 1(4(4(0(0(1(0(1(3(1(x1))))))))))
, 3(2(4(1(5(5(1(x1))))))) -> 0(5(0(3(4(1(0(3(5(1(x1))))))))))
, 3(0(1(5(1(3(0(x1))))))) -> 3(0(0(3(1(2(1(5(4(2(x1))))))))))
, 1(5(1(3(5(5(5(x1))))))) -> 5(1(2(3(0(2(2(0(5(5(x1))))))))))
, 1(0(4(5(3(5(0(x1))))))) -> 1(0(2(1(2(5(2(0(5(2(x1))))))))))
, 5(5(5(1(3(1(x1)))))) -> 5(1(2(4(4(4(1(3(3(4(x1))))))))))
, 5(5(3(2(3(5(x1)))))) -> 1(4(2(4(1(2(2(4(1(5(x1))))))))))
, 5(5(1(5(3(0(x1)))))) -> 2(2(0(1(4(3(0(3(3(4(x1))))))))))
, 5(0(5(0(4(2(x1)))))) -> 5(4(4(4(4(0(4(4(3(0(x1))))))))))
, 4(3(5(0(4(2(x1)))))) -> 4(3(4(3(4(1(3(1(4(2(x1))))))))))
, 4(1(3(1(5(0(x1)))))) -> 0(2(2(2(1(1(2(3(1(4(x1))))))))))
, 3(5(3(1(5(5(x1)))))) -> 3(2(4(4(1(1(4(0(2(4(x1))))))))))
, 2(5(4(5(5(5(x1)))))) -> 2(4(2(1(2(4(4(4(0(5(x1))))))))))
, 2(4(0(1(3(5(x1)))))) -> 2(3(2(0(2(0(3(1(4(3(x1))))))))))
, 2(0(5(3(4(1(x1)))))) -> 2(3(4(0(3(3(0(1(2(1(x1))))))))))
, 1(5(5(5(5(3(x1)))))) -> 1(2(5(1(4(0(0(2(5(4(x1))))))))))
, 0(3(1(3(0(5(x1)))))) -> 4(4(3(3(4(4(0(5(2(3(x1))))))))))
, 0(1(5(3(0(1(x1)))))) -> 4(4(5(1(1(1(4(0(3(1(x1))))))))))
, 0(1(5(1(5(0(x1)))))) -> 4(4(4(2(5(5(0(1(4(0(x1))))))))))
, 0(1(5(1(0(4(x1)))))) -> 3(2(0(4(0(1(4(3(0(4(x1))))))))))
, 5(5(5(5(4(x1))))) -> 3(4(5(4(0(0(4(0(3(4(x1))))))))))
, 5(5(3(0(2(x1))))) -> 3(2(3(4(5(2(1(2(0(0(x1))))))))))
, 5(3(1(5(1(x1))))) -> 3(2(1(1(0(3(0(1(5(1(x1))))))))))
, 5(0(2(4(2(x1))))) -> 5(2(1(2(3(0(0(3(4(2(x1))))))))))
, 4(3(1(5(5(x1))))) -> 4(0(3(1(2(3(2(1(1(5(x1))))))))))
, 4(1(5(5(3(x1))))) -> 2(1(2(3(0(3(2(5(1(2(x1))))))))))
, 4(1(0(0(0(x1))))) -> 4(1(4(1(0(5(1(2(4(2(x1))))))))))
, 2(5(5(5(5(x1))))) -> 2(0(5(1(2(0(3(2(1(5(x1))))))))))
, 2(3(5(5(0(x1))))) -> 4(0(1(4(2(1(2(0(1(0(x1))))))))))
, 1(5(3(1(3(x1))))) -> 1(3(4(4(2(0(2(3(1(2(x1))))))))))
, 5(5(5(5(x1)))) -> 5(4(0(0(1(1(1(4(3(5(x1))))))))))
, 5(5(5(5(x1)))) -> 5(2(0(0(3(2(1(4(4(3(x1))))))))))
, 4(5(0(4(x1)))) -> 4(0(4(0(4(0(3(4(4(4(x1))))))))))
, 0(1(0(4(x1)))) -> 4(2(1(2(3(4(4(3(0(4(x1))))))))))
, 5(0(0(x1))) -> 5(0(3(2(1(2(3(4(0(0(x1))))))))))
, 3(5(3(x1))) -> 1(0(3(4(4(3(1(4(5(4(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..