Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 5(5(3(0(3(2(5(x1))))))) -> 0(2(0(4(4(1(4(3(2(5(x1))))))))))
, 5(5(1(1(1(1(1(x1))))))) -> 3(5(0(0(0(4(1(4(0(1(x1))))))))))
, 5(5(0(3(0(1(1(x1))))))) -> 2(0(0(2(4(4(4(4(2(5(x1))))))))))
, 5(1(4(1(2(5(5(x1))))))) -> 0(2(4(1(4(0(1(0(0(3(x1))))))))))
, 5(0(5(2(3(2(3(x1))))))) -> 5(3(0(3(0(1(4(3(0(0(x1))))))))))
, 5(0(3(5(3(5(2(x1))))))) -> 5(0(1(5(3(2(4(4(5(2(x1))))))))))
, 5(0(3(2(5(0(4(x1))))))) -> 1(2(4(1(1(1(4(0(2(4(x1))))))))))
, 4(2(5(5(0(2(3(x1))))))) -> 4(2(3(0(1(3(4(3(3(2(x1))))))))))
, 4(1(0(5(5(5(1(x1))))))) -> 2(0(2(3(5(4(3(5(0(1(x1))))))))))
, 4(0(1(0(5(1(1(x1))))))) -> 2(0(0(0(1(4(0(1(1(3(x1))))))))))
, 3(5(1(3(1(5(0(x1))))))) -> 5(3(1(0(2(0(4(3(0(2(x1))))))))))
, 3(3(2(5(5(5(0(x1))))))) -> 1(3(4(4(1(4(0(1(1(0(x1))))))))))
, 3(2(5(0(5(2(5(x1))))))) -> 3(3(3(1(3(5(1(3(4(5(x1))))))))))
, 2(5(5(5(2(4(5(x1))))))) -> 1(3(0(0(0(5(1(4(1(5(x1))))))))))
, 2(5(5(3(4(4(1(x1))))))) -> 1(0(2(2(1(4(2(2(4(1(x1))))))))))
, 2(5(2(1(2(5(5(x1))))))) -> 4(0(4(3(3(1(1(1(1(5(x1))))))))))
, 2(3(5(3(1(0(3(x1))))))) -> 4(5(2(0(2(1(4(1(2(0(x1))))))))))
, 2(3(3(2(2(3(3(x1))))))) -> 2(1(4(2(4(2(5(2(0(3(x1))))))))))
, 2(3(0(3(2(5(5(x1))))))) -> 1(4(3(0(2(4(5(4(4(4(x1))))))))))
, 2(1(0(3(3(1(1(x1))))))) -> 1(1(4(0(0(0(1(4(3(1(x1))))))))))
, 1(3(2(5(5(4(2(x1))))))) -> 1(1(4(4(1(2(5(2(0(0(x1))))))))))
, 1(2(3(5(5(1(5(x1))))))) -> 1(4(3(0(3(0(4(2(5(4(x1))))))))))
, 1(1(5(0(4(2(1(x1))))))) -> 2(5(2(0(1(4(3(0(0(4(x1))))))))))
, 0(5(0(0(1(0(5(x1))))))) -> 2(0(2(3(1(5(2(4(2(4(x1))))))))))
, 0(3(5(2(5(5(2(x1))))))) -> 4(3(2(4(0(4(4(3(1(2(x1))))))))))
, 5(4(0(3(5(5(x1)))))) -> 3(1(0(0(2(0(0(3(1(5(x1))))))))))
, 5(4(0(1(1(5(x1)))))) -> 5(0(2(2(0(1(3(3(3(5(x1))))))))))
, 5(0(1(2(1(2(x1)))))) -> 0(2(4(2(1(4(4(0(2(0(x1))))))))))
, 4(1(1(3(5(0(x1)))))) -> 4(2(2(0(5(2(0(4(3(0(x1))))))))))
, 4(1(0(5(0(3(x1)))))) -> 2(4(1(4(4(0(1(3(4(3(x1))))))))))
, 3(5(0(5(5(4(x1)))))) -> 5(1(4(3(0(0(4(4(4(3(x1))))))))))
, 3(2(3(5(2(1(x1)))))) -> 3(3(2(4(3(3(2(1(3(3(x1))))))))))
, 2(5(5(2(2(3(x1)))))) -> 2(1(2(2(1(4(0(0(3(0(x1))))))))))
, 2(3(2(2(2(3(x1)))))) -> 1(0(4(1(3(2(0(3(4(2(x1))))))))))
, 2(3(2(1(3(2(x1)))))) -> 2(3(0(4(3(0(4(2(0(0(x1))))))))))
, 2(1(2(3(1(2(x1)))))) -> 2(0(1(2(3(4(2(0(2(0(x1))))))))))
, 1(5(0(5(3(5(x1)))))) -> 2(5(2(0(4(5(2(4(4(5(x1))))))))))
, 1(0(3(1(1(0(x1)))))) -> 2(2(0(4(2(3(5(3(4(0(x1))))))))))
, 5(5(5(5(0(x1))))) -> 3(5(4(3(3(3(0(4(2(2(x1))))))))))
, 5(5(0(2(5(x1))))) -> 3(5(1(1(2(2(4(3(2(3(x1))))))))))
, 5(1(4(3(0(x1))))) -> 3(5(2(2(4(1(3(0(2(0(x1))))))))))
, 5(1(2(3(2(x1))))) -> 5(5(3(0(0(0(0(0(2(0(x1))))))))))
, 5(1(1(1(5(x1))))) -> 3(5(3(3(1(4(0(4(2(4(x1))))))))))
, 5(0(5(1(5(x1))))) -> 5(0(3(5(2(0(4(2(0(4(x1))))))))))
, 5(0(4(4(2(x1))))) -> 1(2(0(2(0(0(4(0(4(2(x1))))))))))
, 4(5(1(0(1(x1))))) -> 4(1(2(0(2(0(0(3(4(1(x1))))))))))
, 2(5(5(5(2(x1))))) -> 4(5(4(5(3(3(0(3(2(0(x1))))))))))
, 2(3(2(1(0(x1))))) -> 2(0(0(3(2(2(4(2(1(4(x1))))))))))
, 1(5(4(2(1(x1))))) -> 1(1(0(2(4(2(2(2(4(1(x1))))))))))
, 5(4(0(3(x1)))) -> 5(0(1(0(0(0(2(0(2(0(x1))))))))))
, 2(5(5(5(x1)))) -> 2(2(2(0(0(3(4(1(2(4(x1))))))))))
, 2(5(5(0(x1)))) -> 2(4(2(5(2(4(4(3(5(2(x1))))))))))
, 2(1(0(1(x1)))) -> 3(4(1(2(0(0(0(4(2(1(x1))))))))))
, 0(2(1(0(x1)))) -> 0(4(2(0(4(2(4(3(0(0(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ 0_0(1) -> 1
, 0_1(1) -> 42
, 0_1(2) -> 1
, 0_1(2) -> 10
, 0_1(2) -> 42
, 0_1(2) -> 72
, 0_1(2) -> 83
, 0_1(4) -> 3
, 0_1(6) -> 139
, 0_1(11) -> 42
, 0_1(13) -> 12
, 0_1(14) -> 13
, 0_1(15) -> 14
, 0_1(19) -> 18
, 0_1(20) -> 42
, 0_1(21) -> 20
, 0_1(22) -> 21
, 0_1(30) -> 29
, 0_1(32) -> 31
, 0_1(33) -> 32
, 0_1(34) -> 18
, 0_1(36) -> 35
, 0_1(38) -> 37
, 0_1(42) -> 41
, 0_1(43) -> 34
, 0_1(50) -> 83
, 0_1(51) -> 41
, 0_1(52) -> 42
, 0_1(58) -> 57
, 0_1(59) -> 157
, 0_1(61) -> 42
, 0_1(63) -> 62
, 0_1(70) -> 187
, 0_1(71) -> 32
, 0_1(73) -> 22
, 0_1(76) -> 75
, 0_1(79) -> 78
, 0_1(81) -> 80
, 0_1(89) -> 88
, 0_1(95) -> 193
, 0_1(96) -> 217
, 0_1(97) -> 84
, 0_1(98) -> 97
, 0_1(99) -> 98
, 0_1(103) -> 51
, 0_1(110) -> 60
, 0_1(118) -> 117
, 0_1(122) -> 183
, 0_1(131) -> 130
, 0_1(138) -> 137
, 0_1(139) -> 138
, 0_1(140) -> 139
, 0_1(142) -> 172
, 0_1(148) -> 147
, 0_1(153) -> 152
, 0_1(157) -> 156
, 0_1(160) -> 279
, 0_1(164) -> 163
, 0_1(169) -> 168
, 0_1(170) -> 169
, 0_1(172) -> 171
, 0_1(173) -> 172
, 0_1(176) -> 175
, 0_1(183) -> 275
, 0_1(185) -> 184
, 0_1(188) -> 187
, 0_1(189) -> 213
, 0_1(194) -> 193
, 0_1(200) -> 199
, 0_1(201) -> 200
, 0_1(209) -> 42
, 0_1(213) -> 212
, 0_1(218) -> 217
, 0_1(219) -> 289
, 0_1(220) -> 42
, 0_1(221) -> 220
, 0_1(224) -> 223
, 0_1(228) -> 310
, 0_1(231) -> 230
, 0_1(236) -> 287
, 0_1(241) -> 240
, 0_1(262) -> 42
, 0_1(264) -> 42
, 0_1(273) -> 272
, 0_1(274) -> 273
, 0_1(275) -> 274
, 0_1(283) -> 282
, 0_1(285) -> 52
, 0_1(287) -> 286
, 0_1(288) -> 287
, 0_1(292) -> 291
, 0_1(294) -> 293
, 0_1(295) -> 294
, 0_1(300) -> 299
, 0_1(306) -> 136
, 0_1(309) -> 44
, 0_1(310) -> 309
, 0_1(321) -> 320
, 0_1(322) -> 321
, 0_1(350) -> 349
, 0_1(351) -> 350
, 0_1(352) -> 351
, 0_1(356) -> 355
, 0_2(103) -> 366
, 0_2(131) -> 261
, 0_2(169) -> 366
, 0_2(200) -> 270
, 0_2(209) -> 404
, 0_2(260) -> 259
, 0_2(269) -> 268
, 0_2(280) -> 319
, 0_2(309) -> 366
, 0_2(312) -> 311
, 0_2(314) -> 313
, 0_2(315) -> 314
, 0_2(316) -> 315
, 0_2(318) -> 317
, 0_2(328) -> 327
, 0_2(329) -> 328
, 0_2(358) -> 83
, 0_2(361) -> 360
, 0_2(366) -> 365
, 0_2(396) -> 72
, 0_2(403) -> 402
, 0_2(444) -> 443
, 0_2(445) -> 444
, 0_2(446) -> 445
, 1_0(1) -> 1
, 1_1(1) -> 19
, 1_1(7) -> 6
, 1_1(10) -> 102
, 1_1(17) -> 16
, 1_1(19) -> 89
, 1_1(28) -> 27
, 1_1(31) -> 30
, 1_1(33) -> 77
, 1_1(34) -> 19
, 1_1(39) -> 38
, 1_1(42) -> 90
, 1_1(44) -> 43
, 1_1(50) -> 167
, 1_1(51) -> 1
, 1_1(51) -> 9
, 1_1(51) -> 10
, 1_1(51) -> 19
, 1_1(51) -> 33
, 1_1(51) -> 50
, 1_1(51) -> 66
, 1_1(51) -> 72
, 1_1(51) -> 77
, 1_1(51) -> 102
, 1_1(51) -> 167
, 1_1(51) -> 208
, 1_1(51) -> 248
, 1_1(51) -> 353
, 1_1(54) -> 53
, 1_1(55) -> 54
, 1_1(56) -> 55
, 1_1(58) -> 324
, 1_1(59) -> 305
, 1_1(60) -> 102
, 1_1(64) -> 63
, 1_1(74) -> 73
, 1_1(77) -> 76
, 1_1(78) -> 35
, 1_1(82) -> 251
, 1_1(87) -> 86
, 1_1(89) -> 114
, 1_1(90) -> 89
, 1_1(93) -> 92
, 1_1(96) -> 95
, 1_1(101) -> 100
, 1_1(102) -> 115
, 1_1(106) -> 105
, 1_1(114) -> 113
, 1_1(115) -> 114
, 1_1(120) -> 119
, 1_1(122) -> 121
, 1_1(123) -> 20
, 1_1(136) -> 51
, 1_1(141) -> 140
, 1_1(144) -> 143
, 1_1(154) -> 153
, 1_1(158) -> 69
, 1_1(168) -> 11
, 1_1(177) -> 176
, 1_1(181) -> 180
, 1_1(191) -> 190
, 1_1(195) -> 194
, 1_1(196) -> 6
, 1_1(197) -> 34
, 1_1(208) -> 207
, 1_1(211) -> 210
, 1_1(215) -> 214
, 1_1(225) -> 21
, 1_1(243) -> 12
, 1_1(244) -> 243
, 1_1(252) -> 251
, 1_1(278) -> 277
, 1_1(290) -> 60
, 1_1(348) -> 347
, 1_2(44) -> 448
, 1_2(258) -> 257
, 1_2(267) -> 266
, 1_2(313) -> 312
, 1_2(332) -> 331
, 1_2(400) -> 399
, 1_2(423) -> 422
, 1_2(442) -> 441
, 2_0(1) -> 1
, 2_1(1) -> 50
, 2_1(2) -> 50
, 2_1(3) -> 2
, 2_1(10) -> 9
, 2_1(11) -> 50
, 2_1(19) -> 353
, 2_1(20) -> 1
, 2_1(20) -> 9
, 2_1(20) -> 10
, 2_1(20) -> 17
, 2_1(20) -> 19
, 2_1(20) -> 42
, 2_1(20) -> 50
, 2_1(20) -> 59
, 2_1(20) -> 89
, 2_1(20) -> 90
, 2_1(20) -> 102
, 2_1(20) -> 109
, 2_1(20) -> 115
, 2_1(20) -> 236
, 2_1(20) -> 248
, 2_1(20) -> 353
, 2_1(23) -> 22
, 2_1(32) -> 128
, 2_1(33) -> 248
, 2_1(39) -> 357
, 2_1(41) -> 146
, 2_1(42) -> 122
, 2_1(43) -> 50
, 2_1(47) -> 46
, 2_1(50) -> 242
, 2_1(52) -> 51
, 2_1(58) -> 107
, 2_1(59) -> 58
, 2_1(61) -> 60
, 2_1(68) -> 21
, 2_1(71) -> 248
, 2_1(80) -> 79
, 2_1(104) -> 103
, 2_1(105) -> 104
, 2_1(107) -> 308
, 2_1(108) -> 107
, 2_1(109) -> 108
, 2_1(117) -> 116
, 2_1(119) -> 118
, 2_1(125) -> 124
, 2_1(127) -> 126
, 2_1(130) -> 50
, 2_1(132) -> 131
, 2_1(145) -> 144
, 2_1(150) -> 149
, 2_1(152) -> 151
, 2_1(157) -> 284
, 2_1(160) -> 159
, 2_1(162) -> 161
, 2_1(171) -> 170
, 2_1(174) -> 43
, 2_1(175) -> 174
, 2_1(180) -> 27
, 2_1(183) -> 228
, 2_1(184) -> 61
, 2_1(187) -> 186
, 2_1(203) -> 91
, 2_1(207) -> 206
, 2_1(209) -> 123
, 2_1(210) -> 209
, 2_1(217) -> 216
, 2_1(220) -> 11
, 2_1(226) -> 225
, 2_1(230) -> 20
, 2_1(233) -> 232
, 2_1(245) -> 244
, 2_1(246) -> 245
, 2_1(249) -> 12
, 2_1(250) -> 249
, 2_1(262) -> 11
, 2_1(264) -> 1
, 2_1(282) -> 281
, 2_1(286) -> 285
, 2_1(291) -> 290
, 2_1(293) -> 292
, 2_1(302) -> 301
, 2_1(303) -> 302
, 2_1(305) -> 304
, 2_1(307) -> 306
, 2_1(320) -> 230
, 2_1(334) -> 190
, 2_1(336) -> 335
, 2_1(349) -> 348
, 2_1(355) -> 354
, 2_2(43) -> 346
, 2_2(255) -> 254
, 2_2(256) -> 255
, 2_2(261) -> 260
, 2_2(264) -> 263
, 2_2(265) -> 264
, 2_2(270) -> 269
, 2_2(317) -> 316
, 2_2(319) -> 318
, 2_2(325) -> 9
, 2_2(326) -> 325
, 2_2(327) -> 326
, 2_2(333) -> 332
, 2_2(340) -> 339
, 2_2(342) -> 341
, 2_2(360) -> 359
, 2_2(363) -> 362
, 2_2(397) -> 396
, 2_2(399) -> 398
, 2_2(404) -> 403
, 2_2(418) -> 417
, 2_2(422) -> 421
, 2_2(443) -> 442
, 2_2(448) -> 447
, 3_0(1) -> 1
, 3_1(1) -> 33
, 3_1(9) -> 8
, 3_1(10) -> 179
, 3_1(11) -> 1
, 3_1(11) -> 8
, 3_1(11) -> 10
, 3_1(11) -> 33
, 3_1(11) -> 50
, 3_1(11) -> 67
, 3_1(11) -> 150
, 3_1(11) -> 247
, 3_1(11) -> 353
, 3_1(12) -> 71
, 3_1(19) -> 142
, 3_1(33) -> 208
, 3_1(34) -> 71
, 3_1(35) -> 34
, 3_1(37) -> 36
, 3_1(41) -> 40
, 3_1(42) -> 189
, 3_1(46) -> 45
, 3_1(48) -> 96
, 3_1(49) -> 338
, 3_1(50) -> 67
, 3_1(51) -> 33
, 3_1(59) -> 96
, 3_1(60) -> 33
, 3_1(62) -> 61
, 3_1(65) -> 64
, 3_1(67) -> 66
, 3_1(69) -> 68
, 3_1(72) -> 71
, 3_1(83) -> 82
, 3_1(84) -> 51
, 3_1(91) -> 11
, 3_1(92) -> 91
, 3_1(94) -> 93
, 3_1(102) -> 173
, 3_1(109) -> 295
, 3_1(112) -> 111
, 3_1(113) -> 112
, 3_1(122) -> 300
, 3_1(123) -> 33
, 3_1(130) -> 129
, 3_1(136) -> 33
, 3_1(147) -> 131
, 3_1(151) -> 33
, 3_1(156) -> 155
, 3_1(161) -> 60
, 3_1(167) -> 166
, 3_1(178) -> 177
, 3_1(179) -> 178
, 3_1(183) -> 252
, 3_1(196) -> 195
, 3_1(199) -> 198
, 3_1(205) -> 204
, 3_1(206) -> 205
, 3_1(216) -> 215
, 3_1(219) -> 218
, 3_1(220) -> 20
, 3_1(223) -> 222
, 3_1(227) -> 226
, 3_1(234) -> 233
, 3_1(236) -> 235
, 3_1(238) -> 237
, 3_1(239) -> 238
, 3_1(240) -> 239
, 3_1(248) -> 247
, 3_1(262) -> 1
, 3_1(271) -> 33
, 3_1(272) -> 271
, 3_1(276) -> 12
, 3_1(277) -> 276
, 3_1(280) -> 43
, 3_1(298) -> 297
, 3_1(299) -> 298
, 3_1(301) -> 22
, 3_1(323) -> 322
, 3_2(123) -> 424
, 3_2(253) -> 10
, 3_2(253) -> 49
, 3_2(259) -> 258
, 3_2(262) -> 1
, 3_2(262) -> 10
, 3_2(262) -> 33
, 3_2(262) -> 71
, 3_2(262) -> 72
, 3_2(262) -> 150
, 3_2(262) -> 179
, 3_2(268) -> 267
, 3_2(330) -> 329
, 3_2(345) -> 344
, 3_2(365) -> 364
, 3_2(416) -> 247
, 3_2(417) -> 416
, 3_2(420) -> 419
, 3_2(421) -> 420
, 3_2(424) -> 423
, 3_2(440) -> 353
, 4_0(1) -> 1
, 4_1(1) -> 59
, 4_1(2) -> 59
, 4_1(5) -> 4
, 4_1(6) -> 5
, 4_1(8) -> 7
, 4_1(9) -> 26
, 4_1(10) -> 48
, 4_1(11) -> 48
, 4_1(16) -> 15
, 4_1(18) -> 17
, 4_1(19) -> 109
, 4_1(20) -> 59
, 4_1(24) -> 23
, 4_1(25) -> 24
, 4_1(26) -> 25
, 4_1(27) -> 3
, 4_1(29) -> 28
, 4_1(33) -> 196
, 4_1(34) -> 59
, 4_1(40) -> 39
, 4_1(41) -> 17
, 4_1(42) -> 236
, 4_1(43) -> 48
, 4_1(48) -> 47
, 4_1(49) -> 48
, 4_1(50) -> 219
, 4_1(51) -> 59
, 4_1(53) -> 52
, 4_1(57) -> 56
, 4_1(58) -> 160
, 4_1(59) -> 135
, 4_1(60) -> 1
, 4_1(60) -> 9
, 4_1(60) -> 26
, 4_1(60) -> 32
, 4_1(60) -> 42
, 4_1(60) -> 48
, 4_1(60) -> 50
, 4_1(60) -> 59
, 4_1(60) -> 109
, 4_1(60) -> 219
, 4_1(60) -> 248
, 4_1(66) -> 65
, 4_1(71) -> 70
, 4_1(75) -> 74
, 4_1(82) -> 81
, 4_1(83) -> 56
, 4_1(85) -> 84
, 4_1(86) -> 85
, 4_1(88) -> 87
, 4_1(102) -> 101
, 4_1(103) -> 59
, 4_1(107) -> 106
, 4_1(111) -> 110
, 4_1(121) -> 120
, 4_1(123) -> 59
, 4_1(124) -> 123
, 4_1(126) -> 125
, 4_1(129) -> 51
, 4_1(133) -> 132
, 4_1(135) -> 134
, 4_1(136) -> 48
, 4_1(137) -> 136
, 4_1(141) -> 164
, 4_1(142) -> 141
, 4_1(143) -> 137
, 4_1(146) -> 224
, 4_1(149) -> 148
, 4_1(155) -> 154
, 4_1(157) -> 236
, 4_1(163) -> 162
, 4_1(165) -> 164
, 4_1(166) -> 165
, 4_1(182) -> 181
, 4_1(183) -> 182
, 4_1(189) -> 188
, 4_1(190) -> 20
, 4_1(192) -> 191
, 4_1(193) -> 192
, 4_1(196) -> 202
, 4_1(198) -> 197
, 4_1(202) -> 201
, 4_1(204) -> 203
, 4_1(212) -> 211
, 4_1(214) -> 103
, 4_1(222) -> 221
, 4_1(228) -> 227
, 4_1(229) -> 153
, 4_1(232) -> 231
, 4_1(237) -> 12
, 4_1(242) -> 241
, 4_1(247) -> 246
, 4_1(251) -> 250
, 4_1(271) -> 59
, 4_1(279) -> 278
, 4_1(284) -> 283
, 4_1(289) -> 288
, 4_1(296) -> 116
, 4_1(304) -> 303
, 4_1(308) -> 307
, 4_1(324) -> 323
, 4_1(337) -> 336
, 4_1(338) -> 337
, 4_1(347) -> 11
, 4_1(353) -> 352
, 4_1(354) -> 2
, 4_1(357) -> 356
, 4_2(257) -> 256
, 4_2(266) -> 265
, 4_2(271) -> 333
, 4_2(331) -> 330
, 4_2(339) -> 325
, 4_2(343) -> 342
, 4_2(344) -> 343
, 4_2(359) -> 358
, 4_2(362) -> 361
, 4_2(364) -> 363
, 4_2(398) -> 397
, 4_2(401) -> 400
, 4_2(402) -> 401
, 4_2(419) -> 418
, 4_2(441) -> 440
, 4_2(447) -> 446
, 5_0(1) -> 1
, 5_1(1) -> 10
, 5_1(12) -> 11
, 5_1(18) -> 72
, 5_1(34) -> 1
, 5_1(34) -> 10
, 5_1(34) -> 33
, 5_1(34) -> 71
, 5_1(34) -> 72
, 5_1(34) -> 150
, 5_1(34) -> 179
, 5_1(42) -> 72
, 5_1(45) -> 44
, 5_1(46) -> 229
, 5_1(50) -> 49
, 5_1(51) -> 10
, 5_1(59) -> 150
, 5_1(70) -> 69
, 5_1(95) -> 94
, 5_1(96) -> 234
, 5_1(100) -> 99
, 5_1(116) -> 60
, 5_1(122) -> 127
, 5_1(128) -> 127
, 5_1(134) -> 133
, 5_1(136) -> 10
, 5_1(146) -> 145
, 5_1(151) -> 20
, 5_1(159) -> 158
, 5_1(186) -> 185
, 5_1(235) -> 234
, 5_1(263) -> 10
, 5_1(271) -> 34
, 5_1(281) -> 280
, 5_1(297) -> 296
, 5_1(335) -> 334
, 5_2(254) -> 253
, 5_2(263) -> 262
, 5_2(311) -> 150
, 5_2(341) -> 340
, 5_2(346) -> 345}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(3(0(3(2(5(x1))))))) -> 0(2(0(4(4(1(4(3(2(5(x1))))))))))
, 5(5(1(1(1(1(1(x1))))))) -> 3(5(0(0(0(4(1(4(0(1(x1))))))))))
, 5(5(0(3(0(1(1(x1))))))) -> 2(0(0(2(4(4(4(4(2(5(x1))))))))))
, 5(1(4(1(2(5(5(x1))))))) -> 0(2(4(1(4(0(1(0(0(3(x1))))))))))
, 5(0(5(2(3(2(3(x1))))))) -> 5(3(0(3(0(1(4(3(0(0(x1))))))))))
, 5(0(3(5(3(5(2(x1))))))) -> 5(0(1(5(3(2(4(4(5(2(x1))))))))))
, 5(0(3(2(5(0(4(x1))))))) -> 1(2(4(1(1(1(4(0(2(4(x1))))))))))
, 4(2(5(5(0(2(3(x1))))))) -> 4(2(3(0(1(3(4(3(3(2(x1))))))))))
, 4(1(0(5(5(5(1(x1))))))) -> 2(0(2(3(5(4(3(5(0(1(x1))))))))))
, 4(0(1(0(5(1(1(x1))))))) -> 2(0(0(0(1(4(0(1(1(3(x1))))))))))
, 3(5(1(3(1(5(0(x1))))))) -> 5(3(1(0(2(0(4(3(0(2(x1))))))))))
, 3(3(2(5(5(5(0(x1))))))) -> 1(3(4(4(1(4(0(1(1(0(x1))))))))))
, 3(2(5(0(5(2(5(x1))))))) -> 3(3(3(1(3(5(1(3(4(5(x1))))))))))
, 2(5(5(5(2(4(5(x1))))))) -> 1(3(0(0(0(5(1(4(1(5(x1))))))))))
, 2(5(5(3(4(4(1(x1))))))) -> 1(0(2(2(1(4(2(2(4(1(x1))))))))))
, 2(5(2(1(2(5(5(x1))))))) -> 4(0(4(3(3(1(1(1(1(5(x1))))))))))
, 2(3(5(3(1(0(3(x1))))))) -> 4(5(2(0(2(1(4(1(2(0(x1))))))))))
, 2(3(3(2(2(3(3(x1))))))) -> 2(1(4(2(4(2(5(2(0(3(x1))))))))))
, 2(3(0(3(2(5(5(x1))))))) -> 1(4(3(0(2(4(5(4(4(4(x1))))))))))
, 2(1(0(3(3(1(1(x1))))))) -> 1(1(4(0(0(0(1(4(3(1(x1))))))))))
, 1(3(2(5(5(4(2(x1))))))) -> 1(1(4(4(1(2(5(2(0(0(x1))))))))))
, 1(2(3(5(5(1(5(x1))))))) -> 1(4(3(0(3(0(4(2(5(4(x1))))))))))
, 1(1(5(0(4(2(1(x1))))))) -> 2(5(2(0(1(4(3(0(0(4(x1))))))))))
, 0(5(0(0(1(0(5(x1))))))) -> 2(0(2(3(1(5(2(4(2(4(x1))))))))))
, 0(3(5(2(5(5(2(x1))))))) -> 4(3(2(4(0(4(4(3(1(2(x1))))))))))
, 5(4(0(3(5(5(x1)))))) -> 3(1(0(0(2(0(0(3(1(5(x1))))))))))
, 5(4(0(1(1(5(x1)))))) -> 5(0(2(2(0(1(3(3(3(5(x1))))))))))
, 5(0(1(2(1(2(x1)))))) -> 0(2(4(2(1(4(4(0(2(0(x1))))))))))
, 4(1(1(3(5(0(x1)))))) -> 4(2(2(0(5(2(0(4(3(0(x1))))))))))
, 4(1(0(5(0(3(x1)))))) -> 2(4(1(4(4(0(1(3(4(3(x1))))))))))
, 3(5(0(5(5(4(x1)))))) -> 5(1(4(3(0(0(4(4(4(3(x1))))))))))
, 3(2(3(5(2(1(x1)))))) -> 3(3(2(4(3(3(2(1(3(3(x1))))))))))
, 2(5(5(2(2(3(x1)))))) -> 2(1(2(2(1(4(0(0(3(0(x1))))))))))
, 2(3(2(2(2(3(x1)))))) -> 1(0(4(1(3(2(0(3(4(2(x1))))))))))
, 2(3(2(1(3(2(x1)))))) -> 2(3(0(4(3(0(4(2(0(0(x1))))))))))
, 2(1(2(3(1(2(x1)))))) -> 2(0(1(2(3(4(2(0(2(0(x1))))))))))
, 1(5(0(5(3(5(x1)))))) -> 2(5(2(0(4(5(2(4(4(5(x1))))))))))
, 1(0(3(1(1(0(x1)))))) -> 2(2(0(4(2(3(5(3(4(0(x1))))))))))
, 5(5(5(5(0(x1))))) -> 3(5(4(3(3(3(0(4(2(2(x1))))))))))
, 5(5(0(2(5(x1))))) -> 3(5(1(1(2(2(4(3(2(3(x1))))))))))
, 5(1(4(3(0(x1))))) -> 3(5(2(2(4(1(3(0(2(0(x1))))))))))
, 5(1(2(3(2(x1))))) -> 5(5(3(0(0(0(0(0(2(0(x1))))))))))
, 5(1(1(1(5(x1))))) -> 3(5(3(3(1(4(0(4(2(4(x1))))))))))
, 5(0(5(1(5(x1))))) -> 5(0(3(5(2(0(4(2(0(4(x1))))))))))
, 5(0(4(4(2(x1))))) -> 1(2(0(2(0(0(4(0(4(2(x1))))))))))
, 4(5(1(0(1(x1))))) -> 4(1(2(0(2(0(0(3(4(1(x1))))))))))
, 2(5(5(5(2(x1))))) -> 4(5(4(5(3(3(0(3(2(0(x1))))))))))
, 2(3(2(1(0(x1))))) -> 2(0(0(3(2(2(4(2(1(4(x1))))))))))
, 1(5(4(2(1(x1))))) -> 1(1(0(2(4(2(2(2(4(1(x1))))))))))
, 5(4(0(3(x1)))) -> 5(0(1(0(0(0(2(0(2(0(x1))))))))))
, 2(5(5(5(x1)))) -> 2(2(2(0(0(3(4(1(2(4(x1))))))))))
, 2(5(5(0(x1)))) -> 2(4(2(5(2(4(4(3(5(2(x1))))))))))
, 2(1(0(1(x1)))) -> 3(4(1(2(0(0(0(4(2(1(x1))))))))))
, 0(2(1(0(x1)))) -> 0(4(2(0(4(2(4(3(0(0(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(3(0(3(2(5(x1))))))) -> 0(2(0(4(4(1(4(3(2(5(x1))))))))))
, 5(5(1(1(1(1(1(x1))))))) -> 3(5(0(0(0(4(1(4(0(1(x1))))))))))
, 5(5(0(3(0(1(1(x1))))))) -> 2(0(0(2(4(4(4(4(2(5(x1))))))))))
, 5(1(4(1(2(5(5(x1))))))) -> 0(2(4(1(4(0(1(0(0(3(x1))))))))))
, 5(0(5(2(3(2(3(x1))))))) -> 5(3(0(3(0(1(4(3(0(0(x1))))))))))
, 5(0(3(5(3(5(2(x1))))))) -> 5(0(1(5(3(2(4(4(5(2(x1))))))))))
, 5(0(3(2(5(0(4(x1))))))) -> 1(2(4(1(1(1(4(0(2(4(x1))))))))))
, 4(2(5(5(0(2(3(x1))))))) -> 4(2(3(0(1(3(4(3(3(2(x1))))))))))
, 4(1(0(5(5(5(1(x1))))))) -> 2(0(2(3(5(4(3(5(0(1(x1))))))))))
, 4(0(1(0(5(1(1(x1))))))) -> 2(0(0(0(1(4(0(1(1(3(x1))))))))))
, 3(5(1(3(1(5(0(x1))))))) -> 5(3(1(0(2(0(4(3(0(2(x1))))))))))
, 3(3(2(5(5(5(0(x1))))))) -> 1(3(4(4(1(4(0(1(1(0(x1))))))))))
, 3(2(5(0(5(2(5(x1))))))) -> 3(3(3(1(3(5(1(3(4(5(x1))))))))))
, 2(5(5(5(2(4(5(x1))))))) -> 1(3(0(0(0(5(1(4(1(5(x1))))))))))
, 2(5(5(3(4(4(1(x1))))))) -> 1(0(2(2(1(4(2(2(4(1(x1))))))))))
, 2(5(2(1(2(5(5(x1))))))) -> 4(0(4(3(3(1(1(1(1(5(x1))))))))))
, 2(3(5(3(1(0(3(x1))))))) -> 4(5(2(0(2(1(4(1(2(0(x1))))))))))
, 2(3(3(2(2(3(3(x1))))))) -> 2(1(4(2(4(2(5(2(0(3(x1))))))))))
, 2(3(0(3(2(5(5(x1))))))) -> 1(4(3(0(2(4(5(4(4(4(x1))))))))))
, 2(1(0(3(3(1(1(x1))))))) -> 1(1(4(0(0(0(1(4(3(1(x1))))))))))
, 1(3(2(5(5(4(2(x1))))))) -> 1(1(4(4(1(2(5(2(0(0(x1))))))))))
, 1(2(3(5(5(1(5(x1))))))) -> 1(4(3(0(3(0(4(2(5(4(x1))))))))))
, 1(1(5(0(4(2(1(x1))))))) -> 2(5(2(0(1(4(3(0(0(4(x1))))))))))
, 0(5(0(0(1(0(5(x1))))))) -> 2(0(2(3(1(5(2(4(2(4(x1))))))))))
, 0(3(5(2(5(5(2(x1))))))) -> 4(3(2(4(0(4(4(3(1(2(x1))))))))))
, 5(4(0(3(5(5(x1)))))) -> 3(1(0(0(2(0(0(3(1(5(x1))))))))))
, 5(4(0(1(1(5(x1)))))) -> 5(0(2(2(0(1(3(3(3(5(x1))))))))))
, 5(0(1(2(1(2(x1)))))) -> 0(2(4(2(1(4(4(0(2(0(x1))))))))))
, 4(1(1(3(5(0(x1)))))) -> 4(2(2(0(5(2(0(4(3(0(x1))))))))))
, 4(1(0(5(0(3(x1)))))) -> 2(4(1(4(4(0(1(3(4(3(x1))))))))))
, 3(5(0(5(5(4(x1)))))) -> 5(1(4(3(0(0(4(4(4(3(x1))))))))))
, 3(2(3(5(2(1(x1)))))) -> 3(3(2(4(3(3(2(1(3(3(x1))))))))))
, 2(5(5(2(2(3(x1)))))) -> 2(1(2(2(1(4(0(0(3(0(x1))))))))))
, 2(3(2(2(2(3(x1)))))) -> 1(0(4(1(3(2(0(3(4(2(x1))))))))))
, 2(3(2(1(3(2(x1)))))) -> 2(3(0(4(3(0(4(2(0(0(x1))))))))))
, 2(1(2(3(1(2(x1)))))) -> 2(0(1(2(3(4(2(0(2(0(x1))))))))))
, 1(5(0(5(3(5(x1)))))) -> 2(5(2(0(4(5(2(4(4(5(x1))))))))))
, 1(0(3(1(1(0(x1)))))) -> 2(2(0(4(2(3(5(3(4(0(x1))))))))))
, 5(5(5(5(0(x1))))) -> 3(5(4(3(3(3(0(4(2(2(x1))))))))))
, 5(5(0(2(5(x1))))) -> 3(5(1(1(2(2(4(3(2(3(x1))))))))))
, 5(1(4(3(0(x1))))) -> 3(5(2(2(4(1(3(0(2(0(x1))))))))))
, 5(1(2(3(2(x1))))) -> 5(5(3(0(0(0(0(0(2(0(x1))))))))))
, 5(1(1(1(5(x1))))) -> 3(5(3(3(1(4(0(4(2(4(x1))))))))))
, 5(0(5(1(5(x1))))) -> 5(0(3(5(2(0(4(2(0(4(x1))))))))))
, 5(0(4(4(2(x1))))) -> 1(2(0(2(0(0(4(0(4(2(x1))))))))))
, 4(5(1(0(1(x1))))) -> 4(1(2(0(2(0(0(3(4(1(x1))))))))))
, 2(5(5(5(2(x1))))) -> 4(5(4(5(3(3(0(3(2(0(x1))))))))))
, 2(3(2(1(0(x1))))) -> 2(0(0(3(2(2(4(2(1(4(x1))))))))))
, 1(5(4(2(1(x1))))) -> 1(1(0(2(4(2(2(2(4(1(x1))))))))))
, 5(4(0(3(x1)))) -> 5(0(1(0(0(0(2(0(2(0(x1))))))))))
, 2(5(5(5(x1)))) -> 2(2(2(0(0(3(4(1(2(4(x1))))))))))
, 2(5(5(0(x1)))) -> 2(4(2(5(2(4(4(3(5(2(x1))))))))))
, 2(1(0(1(x1)))) -> 3(4(1(2(0(0(0(4(2(1(x1))))))))))
, 0(2(1(0(x1)))) -> 0(4(2(0(4(2(4(3(0(0(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(3(0(3(2(5(x1))))))) -> 0(2(0(4(4(1(4(3(2(5(x1))))))))))
, 5(5(1(1(1(1(1(x1))))))) -> 3(5(0(0(0(4(1(4(0(1(x1))))))))))
, 5(5(0(3(0(1(1(x1))))))) -> 2(0(0(2(4(4(4(4(2(5(x1))))))))))
, 5(1(4(1(2(5(5(x1))))))) -> 0(2(4(1(4(0(1(0(0(3(x1))))))))))
, 5(0(5(2(3(2(3(x1))))))) -> 5(3(0(3(0(1(4(3(0(0(x1))))))))))
, 5(0(3(5(3(5(2(x1))))))) -> 5(0(1(5(3(2(4(4(5(2(x1))))))))))
, 5(0(3(2(5(0(4(x1))))))) -> 1(2(4(1(1(1(4(0(2(4(x1))))))))))
, 4(2(5(5(0(2(3(x1))))))) -> 4(2(3(0(1(3(4(3(3(2(x1))))))))))
, 4(1(0(5(5(5(1(x1))))))) -> 2(0(2(3(5(4(3(5(0(1(x1))))))))))
, 4(0(1(0(5(1(1(x1))))))) -> 2(0(0(0(1(4(0(1(1(3(x1))))))))))
, 3(5(1(3(1(5(0(x1))))))) -> 5(3(1(0(2(0(4(3(0(2(x1))))))))))
, 3(3(2(5(5(5(0(x1))))))) -> 1(3(4(4(1(4(0(1(1(0(x1))))))))))
, 3(2(5(0(5(2(5(x1))))))) -> 3(3(3(1(3(5(1(3(4(5(x1))))))))))
, 2(5(5(5(2(4(5(x1))))))) -> 1(3(0(0(0(5(1(4(1(5(x1))))))))))
, 2(5(5(3(4(4(1(x1))))))) -> 1(0(2(2(1(4(2(2(4(1(x1))))))))))
, 2(5(2(1(2(5(5(x1))))))) -> 4(0(4(3(3(1(1(1(1(5(x1))))))))))
, 2(3(5(3(1(0(3(x1))))))) -> 4(5(2(0(2(1(4(1(2(0(x1))))))))))
, 2(3(3(2(2(3(3(x1))))))) -> 2(1(4(2(4(2(5(2(0(3(x1))))))))))
, 2(3(0(3(2(5(5(x1))))))) -> 1(4(3(0(2(4(5(4(4(4(x1))))))))))
, 2(1(0(3(3(1(1(x1))))))) -> 1(1(4(0(0(0(1(4(3(1(x1))))))))))
, 1(3(2(5(5(4(2(x1))))))) -> 1(1(4(4(1(2(5(2(0(0(x1))))))))))
, 1(2(3(5(5(1(5(x1))))))) -> 1(4(3(0(3(0(4(2(5(4(x1))))))))))
, 1(1(5(0(4(2(1(x1))))))) -> 2(5(2(0(1(4(3(0(0(4(x1))))))))))
, 0(5(0(0(1(0(5(x1))))))) -> 2(0(2(3(1(5(2(4(2(4(x1))))))))))
, 0(3(5(2(5(5(2(x1))))))) -> 4(3(2(4(0(4(4(3(1(2(x1))))))))))
, 5(4(0(3(5(5(x1)))))) -> 3(1(0(0(2(0(0(3(1(5(x1))))))))))
, 5(4(0(1(1(5(x1)))))) -> 5(0(2(2(0(1(3(3(3(5(x1))))))))))
, 5(0(1(2(1(2(x1)))))) -> 0(2(4(2(1(4(4(0(2(0(x1))))))))))
, 4(1(1(3(5(0(x1)))))) -> 4(2(2(0(5(2(0(4(3(0(x1))))))))))
, 4(1(0(5(0(3(x1)))))) -> 2(4(1(4(4(0(1(3(4(3(x1))))))))))
, 3(5(0(5(5(4(x1)))))) -> 5(1(4(3(0(0(4(4(4(3(x1))))))))))
, 3(2(3(5(2(1(x1)))))) -> 3(3(2(4(3(3(2(1(3(3(x1))))))))))
, 2(5(5(2(2(3(x1)))))) -> 2(1(2(2(1(4(0(0(3(0(x1))))))))))
, 2(3(2(2(2(3(x1)))))) -> 1(0(4(1(3(2(0(3(4(2(x1))))))))))
, 2(3(2(1(3(2(x1)))))) -> 2(3(0(4(3(0(4(2(0(0(x1))))))))))
, 2(1(2(3(1(2(x1)))))) -> 2(0(1(2(3(4(2(0(2(0(x1))))))))))
, 1(5(0(5(3(5(x1)))))) -> 2(5(2(0(4(5(2(4(4(5(x1))))))))))
, 1(0(3(1(1(0(x1)))))) -> 2(2(0(4(2(3(5(3(4(0(x1))))))))))
, 5(5(5(5(0(x1))))) -> 3(5(4(3(3(3(0(4(2(2(x1))))))))))
, 5(5(0(2(5(x1))))) -> 3(5(1(1(2(2(4(3(2(3(x1))))))))))
, 5(1(4(3(0(x1))))) -> 3(5(2(2(4(1(3(0(2(0(x1))))))))))
, 5(1(2(3(2(x1))))) -> 5(5(3(0(0(0(0(0(2(0(x1))))))))))
, 5(1(1(1(5(x1))))) -> 3(5(3(3(1(4(0(4(2(4(x1))))))))))
, 5(0(5(1(5(x1))))) -> 5(0(3(5(2(0(4(2(0(4(x1))))))))))
, 5(0(4(4(2(x1))))) -> 1(2(0(2(0(0(4(0(4(2(x1))))))))))
, 4(5(1(0(1(x1))))) -> 4(1(2(0(2(0(0(3(4(1(x1))))))))))
, 2(5(5(5(2(x1))))) -> 4(5(4(5(3(3(0(3(2(0(x1))))))))))
, 2(3(2(1(0(x1))))) -> 2(0(0(3(2(2(4(2(1(4(x1))))))))))
, 1(5(4(2(1(x1))))) -> 1(1(0(2(4(2(2(2(4(1(x1))))))))))
, 5(4(0(3(x1)))) -> 5(0(1(0(0(0(2(0(2(0(x1))))))))))
, 2(5(5(5(x1)))) -> 2(2(2(0(0(3(4(1(2(4(x1))))))))))
, 2(5(5(0(x1)))) -> 2(4(2(5(2(4(4(3(5(2(x1))))))))))
, 2(1(0(1(x1)))) -> 3(4(1(2(0(0(0(4(2(1(x1))))))))))
, 0(2(1(0(x1)))) -> 0(4(2(0(4(2(4(3(0(0(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI2
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(5(3(0(3(2(5(x1))))))) -> 0(2(0(4(4(1(4(3(2(5(x1))))))))))
, 5(5(1(1(1(1(1(x1))))))) -> 3(5(0(0(0(4(1(4(0(1(x1))))))))))
, 5(5(0(3(0(1(1(x1))))))) -> 2(0(0(2(4(4(4(4(2(5(x1))))))))))
, 5(1(4(1(2(5(5(x1))))))) -> 0(2(4(1(4(0(1(0(0(3(x1))))))))))
, 5(0(5(2(3(2(3(x1))))))) -> 5(3(0(3(0(1(4(3(0(0(x1))))))))))
, 5(0(3(5(3(5(2(x1))))))) -> 5(0(1(5(3(2(4(4(5(2(x1))))))))))
, 5(0(3(2(5(0(4(x1))))))) -> 1(2(4(1(1(1(4(0(2(4(x1))))))))))
, 4(2(5(5(0(2(3(x1))))))) -> 4(2(3(0(1(3(4(3(3(2(x1))))))))))
, 4(1(0(5(5(5(1(x1))))))) -> 2(0(2(3(5(4(3(5(0(1(x1))))))))))
, 4(0(1(0(5(1(1(x1))))))) -> 2(0(0(0(1(4(0(1(1(3(x1))))))))))
, 3(5(1(3(1(5(0(x1))))))) -> 5(3(1(0(2(0(4(3(0(2(x1))))))))))
, 3(3(2(5(5(5(0(x1))))))) -> 1(3(4(4(1(4(0(1(1(0(x1))))))))))
, 3(2(5(0(5(2(5(x1))))))) -> 3(3(3(1(3(5(1(3(4(5(x1))))))))))
, 2(5(5(5(2(4(5(x1))))))) -> 1(3(0(0(0(5(1(4(1(5(x1))))))))))
, 2(5(5(3(4(4(1(x1))))))) -> 1(0(2(2(1(4(2(2(4(1(x1))))))))))
, 2(5(2(1(2(5(5(x1))))))) -> 4(0(4(3(3(1(1(1(1(5(x1))))))))))
, 2(3(5(3(1(0(3(x1))))))) -> 4(5(2(0(2(1(4(1(2(0(x1))))))))))
, 2(3(3(2(2(3(3(x1))))))) -> 2(1(4(2(4(2(5(2(0(3(x1))))))))))
, 2(3(0(3(2(5(5(x1))))))) -> 1(4(3(0(2(4(5(4(4(4(x1))))))))))
, 2(1(0(3(3(1(1(x1))))))) -> 1(1(4(0(0(0(1(4(3(1(x1))))))))))
, 1(3(2(5(5(4(2(x1))))))) -> 1(1(4(4(1(2(5(2(0(0(x1))))))))))
, 1(2(3(5(5(1(5(x1))))))) -> 1(4(3(0(3(0(4(2(5(4(x1))))))))))
, 1(1(5(0(4(2(1(x1))))))) -> 2(5(2(0(1(4(3(0(0(4(x1))))))))))
, 0(5(0(0(1(0(5(x1))))))) -> 2(0(2(3(1(5(2(4(2(4(x1))))))))))
, 0(3(5(2(5(5(2(x1))))))) -> 4(3(2(4(0(4(4(3(1(2(x1))))))))))
, 5(4(0(3(5(5(x1)))))) -> 3(1(0(0(2(0(0(3(1(5(x1))))))))))
, 5(4(0(1(1(5(x1)))))) -> 5(0(2(2(0(1(3(3(3(5(x1))))))))))
, 5(0(1(2(1(2(x1)))))) -> 0(2(4(2(1(4(4(0(2(0(x1))))))))))
, 4(1(1(3(5(0(x1)))))) -> 4(2(2(0(5(2(0(4(3(0(x1))))))))))
, 4(1(0(5(0(3(x1)))))) -> 2(4(1(4(4(0(1(3(4(3(x1))))))))))
, 3(5(0(5(5(4(x1)))))) -> 5(1(4(3(0(0(4(4(4(3(x1))))))))))
, 3(2(3(5(2(1(x1)))))) -> 3(3(2(4(3(3(2(1(3(3(x1))))))))))
, 2(5(5(2(2(3(x1)))))) -> 2(1(2(2(1(4(0(0(3(0(x1))))))))))
, 2(3(2(2(2(3(x1)))))) -> 1(0(4(1(3(2(0(3(4(2(x1))))))))))
, 2(3(2(1(3(2(x1)))))) -> 2(3(0(4(3(0(4(2(0(0(x1))))))))))
, 2(1(2(3(1(2(x1)))))) -> 2(0(1(2(3(4(2(0(2(0(x1))))))))))
, 1(5(0(5(3(5(x1)))))) -> 2(5(2(0(4(5(2(4(4(5(x1))))))))))
, 1(0(3(1(1(0(x1)))))) -> 2(2(0(4(2(3(5(3(4(0(x1))))))))))
, 5(5(5(5(0(x1))))) -> 3(5(4(3(3(3(0(4(2(2(x1))))))))))
, 5(5(0(2(5(x1))))) -> 3(5(1(1(2(2(4(3(2(3(x1))))))))))
, 5(1(4(3(0(x1))))) -> 3(5(2(2(4(1(3(0(2(0(x1))))))))))
, 5(1(2(3(2(x1))))) -> 5(5(3(0(0(0(0(0(2(0(x1))))))))))
, 5(1(1(1(5(x1))))) -> 3(5(3(3(1(4(0(4(2(4(x1))))))))))
, 5(0(5(1(5(x1))))) -> 5(0(3(5(2(0(4(2(0(4(x1))))))))))
, 5(0(4(4(2(x1))))) -> 1(2(0(2(0(0(4(0(4(2(x1))))))))))
, 4(5(1(0(1(x1))))) -> 4(1(2(0(2(0(0(3(4(1(x1))))))))))
, 2(5(5(5(2(x1))))) -> 4(5(4(5(3(3(0(3(2(0(x1))))))))))
, 2(3(2(1(0(x1))))) -> 2(0(0(3(2(2(4(2(1(4(x1))))))))))
, 1(5(4(2(1(x1))))) -> 1(1(0(2(4(2(2(2(4(1(x1))))))))))
, 5(4(0(3(x1)))) -> 5(0(1(0(0(0(2(0(2(0(x1))))))))))
, 2(5(5(5(x1)))) -> 2(2(2(0(0(3(4(1(2(4(x1))))))))))
, 2(5(5(0(x1)))) -> 2(4(2(5(2(4(4(3(5(2(x1))))))))))
, 2(1(0(1(x1)))) -> 3(4(1(2(0(0(0(4(2(1(x1))))))))))
, 0(2(1(0(x1)))) -> 0(4(2(0(4(2(4(3(0(0(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..