Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 5(2(0(1(1(3(1(x1))))))) -> 5(3(0(5(3(2(1(4(1(1(x1))))))))))
, 5(1(3(4(1(0(0(x1))))))) -> 2(4(5(3(5(1(2(2(4(0(x1))))))))))
, 4(0(3(3(0(1(3(x1))))))) -> 0(3(3(2(3(4(5(5(1(3(x1))))))))))
, 3(0(4(3(3(0(1(x1))))))) -> 0(3(2(0(5(2(2(1(5(1(x1))))))))))
, 3(0(4(1(2(5(0(x1))))))) -> 3(1(0(2(0(4(0(0(2(3(x1))))))))))
, 3(0(1(0(1(4(0(x1))))))) -> 3(4(5(5(0(5(5(1(3(0(x1))))))))))
, 1(4(2(5(1(0(2(x1))))))) -> 4(4(0(1(5(4(3(5(3(2(x1))))))))))
, 1(3(5(3(4(3(5(x1))))))) -> 4(4(2(5(5(2(2(0(0(5(x1))))))))))
, 1(3(1(3(1(0(4(x1))))))) -> 4(4(5(1(2(1(5(0(0(5(x1))))))))))
, 1(2(1(1(3(0(0(x1))))))) -> 1(5(2(4(2(3(4(2(4(4(x1))))))))))
, 1(2(1(0(5(2(2(x1))))))) -> 1(0(5(3(1(5(3(3(0(2(x1))))))))))
, 1(1(1(5(0(4(0(x1))))))) -> 1(2(0(2(0(5(5(4(5(3(x1))))))))))
, 1(1(1(1(0(3(0(x1))))))) -> 3(0(2(5(1(4(4(0(0(2(x1))))))))))
, 1(0(4(3(3(5(5(x1))))))) -> 5(5(3(4(5(0(3(1(5(5(x1))))))))))
, 0(4(1(1(0(4(3(x1))))))) -> 5(5(2(0(2(5(2(4(2(5(x1))))))))))
, 0(1(1(1(4(0(0(x1))))))) -> 4(0(1(2(3(5(4(5(0(2(x1))))))))))
, 0(0(3(3(1(1(3(x1))))))) -> 1(0(3(5(5(1(4(1(5(0(x1))))))))))
, 3(1(2(0(2(1(x1)))))) -> 3(3(1(2(0(5(5(3(4(2(x1))))))))))
, 3(0(3(1(0(1(x1)))))) -> 0(2(4(5(2(2(5(3(4(2(x1))))))))))
, 2(0(3(1(5(5(x1)))))) -> 2(3(4(2(4(5(0(5(1(4(x1))))))))))
, 1(4(0(4(3(1(x1)))))) -> 3(0(2(1(2(0(2(1(5(4(x1))))))))))
, 1(1(2(0(1(4(x1)))))) -> 4(0(4(2(1(2(2(5(2(4(x1))))))))))
, 1(1(1(1(3(0(x1)))))) -> 1(5(3(0(5(1(5(3(1(0(x1))))))))))
, 1(0(1(0(1(0(x1)))))) -> 3(2(5(2(0(2(0(0(1(2(x1))))))))))
, 0(3(3(1(0(1(x1)))))) -> 5(3(2(0(2(4(3(2(4(1(x1))))))))))
, 2(2(4(4(3(x1))))) -> 5(5(3(1(5(4(5(2(5(3(x1))))))))))
, 2(1(3(1(3(x1))))) -> 5(1(0(0(2(5(5(4(2(3(x1))))))))))
, 2(1(2(1(0(x1))))) -> 2(3(0(5(1(5(4(5(3(0(x1))))))))))
, 2(1(0(1(1(x1))))) -> 2(2(5(2(2(5(0(0(2(1(x1))))))))))
, 1(3(3(1(3(x1))))) -> 5(4(2(0(5(3(3(4(3(3(x1))))))))))
, 1(0(4(4(3(x1))))) -> 4(0(5(5(3(2(2(5(2(2(x1))))))))))
, 1(0(1(2(0(x1))))) -> 1(4(4(5(1(1(4(1(4(3(x1))))))))))
, 0(5(5(2(4(x1))))) -> 0(0(4(0(0(5(5(3(5(4(x1))))))))))
, 0(5(1(0(0(x1))))) -> 0(2(3(0(2(2(2(2(2(2(x1))))))))))
, 0(0(4(2(2(x1))))) -> 5(5(3(3(5(4(4(1(0(2(x1))))))))))
, 2(1(0(0(x1)))) -> 4(4(5(3(3(5(0(2(5(5(x1))))))))))
, 1(4(2(1(x1)))) -> 4(3(2(5(1(5(4(5(5(2(x1))))))))))
, 1(0(5(2(x1)))) -> 1(0(2(3(4(5(1(0(2(2(x1))))))))))
, 1(0(4(1(x1)))) -> 4(5(1(5(3(3(3(3(0(3(x1))))))))))
, 0(4(1(0(x1)))) -> 5(3(4(2(2(2(0(2(4(3(x1))))))))))
, 0(1(3(3(x1)))) -> 4(0(0(2(1(5(3(4(3(4(x1))))))))))
, 0(1(1(0(x1)))) -> 5(3(4(2(3(3(5(1(3(4(x1))))))))))
, 2(1(1(x1))) -> 2(5(3(1(5(3(3(3(4(4(x1))))))))))
, 2(0(1(x1))) -> 5(4(2(1(2(5(2(5(2(5(x1))))))))))
, 0(4(1(x1))) -> 0(4(0(0(3(4(5(1(5(3(x1))))))))))
, 0(1(x1)) -> 0(2(3(4(5(1(4(3(4(5(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ 1_0(1) -> 1
, 1_1(1) -> 10
, 1_1(8) -> 7
, 1_1(10) -> 9
, 1_1(11) -> 210
, 1_1(16) -> 15
, 1_1(19) -> 203
, 1_1(20) -> 10
, 1_1(28) -> 27
, 1_1(34) -> 33
, 1_1(35) -> 48
, 1_1(36) -> 35
, 1_1(49) -> 48
, 1_1(53) -> 52
, 1_1(56) -> 553
, 1_1(58) -> 210
, 1_1(65) -> 33
, 1_1(67) -> 66
, 1_1(69) -> 68
, 1_1(70) -> 1
, 1_1(70) -> 9
, 1_1(70) -> 10
, 1_1(70) -> 19
, 1_1(70) -> 63
, 1_1(70) -> 203
, 1_1(70) -> 210
, 1_1(78) -> 173
, 1_1(82) -> 81
, 1_1(85) -> 354
, 1_1(90) -> 253
, 1_1(95) -> 94
, 1_1(105) -> 104
, 1_1(145) -> 144
, 1_1(153) -> 152
, 1_1(155) -> 154
, 1_1(157) -> 156
, 1_1(174) -> 93
, 1_1(178) -> 177
, 1_1(183) -> 182
, 1_1(201) -> 200
, 1_1(225) -> 100
, 1_1(240) -> 2
, 1_1(254) -> 253
, 1_1(308) -> 307
, 1_1(309) -> 308
, 1_1(311) -> 310
, 1_1(414) -> 413
, 1_1(426) -> 425
, 1_1(428) -> 427
, 1_1(464) -> 463
, 1_1(467) -> 493
, 1_1(508) -> 507
, 1_1(522) -> 59
, 1_1(556) -> 555
, 1_2(312) -> 203
, 1_2(316) -> 315
, 1_2(317) -> 316
, 1_2(319) -> 318
, 1_2(515) -> 514
, 1_2(542) -> 541
, 1_2(561) -> 560
, 1_2(570) -> 569
, 1_2(579) -> 578
, 1_2(588) -> 587
, 1_2(603) -> 602
, 1_2(664) -> 663
, 1_2(692) -> 691
, 1_2(739) -> 738
, 1_2(760) -> 759
, 1_2(773) -> 772
, 0_0(1) -> 1
, 0_1(1) -> 19
, 0_1(2) -> 19
, 0_1(4) -> 3
, 0_1(11) -> 85
, 0_1(19) -> 63
, 0_1(20) -> 1
, 0_1(20) -> 18
, 0_1(20) -> 19
, 0_1(20) -> 28
, 0_1(20) -> 49
, 0_1(20) -> 64
, 0_1(20) -> 78
, 0_1(20) -> 171
, 0_1(20) -> 435
, 0_1(25) -> 45
, 0_1(28) -> 436
, 0_1(30) -> 29
, 0_1(34) -> 171
, 0_1(35) -> 19
, 0_1(37) -> 36
, 0_1(39) -> 38
, 0_1(41) -> 40
, 0_1(42) -> 41
, 0_1(46) -> 45
, 0_1(50) -> 19
, 0_1(52) -> 51
, 0_1(58) -> 85
, 0_1(64) -> 63
, 0_1(65) -> 64
, 0_1(79) -> 70
, 0_1(85) -> 97
, 0_1(87) -> 86
, 0_1(89) -> 88
, 0_1(92) -> 35
, 0_1(103) -> 102
, 0_1(125) -> 124
, 0_1(144) -> 50
, 0_1(159) -> 158
, 0_1(172) -> 171
, 0_1(176) -> 175
, 0_1(199) -> 198
, 0_1(207) -> 206
, 0_1(209) -> 208
, 0_1(210) -> 209
, 0_1(213) -> 212
, 0_1(242) -> 240
, 0_1(244) -> 242
, 0_1(252) -> 167
, 0_1(262) -> 261
, 0_1(263) -> 262
, 0_1(265) -> 59
, 0_1(285) -> 426
, 0_1(321) -> 20
, 0_1(323) -> 322
, 0_1(324) -> 323
, 0_1(328) -> 327
, 0_1(330) -> 327
, 0_1(372) -> 371
, 0_1(447) -> 446
, 0_1(461) -> 144
, 0_1(549) -> 548
, 0_1(550) -> 549
, 0_1(583) -> 1
, 0_2(244) -> 606
, 0_2(332) -> 19
, 0_2(332) -> 63
, 0_2(332) -> 64
, 0_2(332) -> 85
, 0_2(332) -> 209
, 0_2(332) -> 262
, 0_2(332) -> 426
, 0_2(335) -> 334
, 0_2(341) -> 171
, 0_2(344) -> 343
, 0_2(399) -> 398
, 0_2(408) -> 407
, 0_2(565) -> 51
, 0_2(574) -> 209
, 0_2(583) -> 50
, 0_2(666) -> 665
, 0_2(698) -> 64
, 0_2(699) -> 698
, 0_2(701) -> 700
, 0_2(702) -> 701
, 0_2(734) -> 312
, 0_2(740) -> 739
, 0_2(766) -> 765
, 0_2(768) -> 767
, 0_2(769) -> 768
, 5_0(1) -> 1
, 5_1(1) -> 65
, 5_1(2) -> 1
, 5_1(2) -> 10
, 5_1(2) -> 16
, 5_1(2) -> 19
, 5_1(2) -> 58
, 5_1(2) -> 63
, 5_1(2) -> 65
, 5_1(2) -> 187
, 5_1(2) -> 203
, 5_1(2) -> 263
, 5_1(2) -> 285
, 5_1(2) -> 436
, 5_1(2) -> 582
, 5_1(5) -> 4
, 5_1(10) -> 34
, 5_1(11) -> 178
, 5_1(13) -> 12
, 5_1(15) -> 14
, 5_1(19) -> 155
, 5_1(20) -> 65
, 5_1(26) -> 25
, 5_1(27) -> 26
, 5_1(28) -> 56
, 5_1(31) -> 30
, 5_1(35) -> 65
, 5_1(44) -> 43
, 5_1(45) -> 44
, 5_1(47) -> 46
, 5_1(48) -> 47
, 5_1(49) -> 256
, 5_1(50) -> 1
, 5_1(50) -> 10
, 5_1(50) -> 27
, 5_1(50) -> 58
, 5_1(54) -> 53
, 5_1(57) -> 56
, 5_1(58) -> 187
, 5_1(60) -> 59
, 5_1(61) -> 60
, 5_1(63) -> 69
, 5_1(65) -> 105
, 5_1(66) -> 51
, 5_1(70) -> 65
, 5_1(71) -> 70
, 5_1(78) -> 178
, 5_1(80) -> 79
, 5_1(83) -> 82
, 5_1(85) -> 149
, 5_1(90) -> 89
, 5_1(91) -> 90
, 5_1(94) -> 93
, 5_1(98) -> 2
, 5_1(100) -> 65
, 5_1(102) -> 101
, 5_1(129) -> 128
, 5_1(133) -> 529
, 5_1(148) -> 147
, 5_1(151) -> 150
, 5_1(152) -> 151
, 5_1(160) -> 159
, 5_1(161) -> 160
, 5_1(165) -> 164
, 5_1(171) -> 170
, 5_1(173) -> 172
, 5_1(187) -> 416
, 5_1(188) -> 187
, 5_1(200) -> 199
, 5_1(202) -> 201
, 5_1(205) -> 204
, 5_1(226) -> 225
, 5_1(228) -> 227
, 5_1(247) -> 246
, 5_1(248) -> 247
, 5_1(253) -> 252
, 5_1(255) -> 254
, 5_1(258) -> 257
, 5_1(261) -> 260
, 5_1(266) -> 265
, 5_1(277) -> 144
, 5_1(279) -> 277
, 5_1(285) -> 284
, 5_1(307) -> 306
, 5_1(321) -> 65
, 5_1(325) -> 324
, 5_1(326) -> 325
, 5_1(352) -> 351
, 5_1(354) -> 424
, 5_1(371) -> 370
, 5_1(413) -> 412
, 5_1(415) -> 414
, 5_1(425) -> 424
, 5_1(427) -> 50
, 5_1(431) -> 428
, 5_1(465) -> 464
, 5_1(493) -> 492
, 5_1(506) -> 11
, 5_1(509) -> 508
, 5_1(526) -> 525
, 5_1(548) -> 1
, 5_1(553) -> 552
, 5_1(555) -> 554
, 5_1(583) -> 65
, 5_2(11) -> 582
, 5_2(36) -> 564
, 5_2(53) -> 573
, 5_2(58) -> 582
, 5_2(70) -> 547
, 5_2(145) -> 591
, 5_2(240) -> 547
, 5_2(244) -> 401
, 5_2(315) -> 314
, 5_2(321) -> 410
, 5_2(395) -> 394
, 5_2(398) -> 397
, 5_2(401) -> 400
, 5_2(404) -> 403
, 5_2(407) -> 406
, 5_2(410) -> 409
, 5_2(513) -> 512
, 5_2(516) -> 515
, 5_2(539) -> 62
, 5_2(544) -> 543
, 5_2(546) -> 545
, 5_2(560) -> 559
, 5_2(569) -> 568
, 5_2(578) -> 577
, 5_2(587) -> 586
, 5_2(600) -> 599
, 5_2(602) -> 601
, 5_2(667) -> 666
, 5_2(668) -> 667
, 5_2(689) -> 16
, 5_2(690) -> 689
, 5_2(693) -> 692
, 5_2(695) -> 694
, 5_2(697) -> 696
, 5_2(703) -> 702
, 5_2(704) -> 703
, 5_2(706) -> 705
, 5_2(738) -> 737
, 5_2(759) -> 758
, 5_2(761) -> 760
, 5_2(766) -> 773
, 5_2(772) -> 771
, 4_0(1) -> 1
, 4_1(1) -> 78
, 4_1(2) -> 78
, 4_1(9) -> 8
, 4_1(10) -> 219
, 4_1(12) -> 11
, 4_1(19) -> 18
, 4_1(20) -> 78
, 4_1(25) -> 24
, 4_1(28) -> 311
, 4_1(35) -> 78
, 4_1(36) -> 78
, 4_1(40) -> 39
, 4_1(42) -> 248
, 4_1(43) -> 35
, 4_1(48) -> 8
, 4_1(50) -> 1
, 4_1(50) -> 9
, 4_1(50) -> 10
, 4_1(50) -> 19
, 4_1(50) -> 27
, 4_1(50) -> 58
, 4_1(50) -> 173
, 4_1(50) -> 203
, 4_1(50) -> 263
, 4_1(51) -> 50
, 4_1(55) -> 54
, 4_1(56) -> 91
, 4_1(58) -> 162
, 4_1(65) -> 558
, 4_1(70) -> 78
, 4_1(73) -> 72
, 4_1(76) -> 75
, 4_1(78) -> 77
, 4_1(79) -> 78
, 4_1(96) -> 95
, 4_1(97) -> 96
, 4_1(98) -> 1
, 4_1(98) -> 10
, 4_1(98) -> 173
, 4_1(101) -> 100
, 4_1(133) -> 132
, 4_1(149) -> 148
, 4_1(154) -> 153
, 4_1(156) -> 78
, 4_1(164) -> 163
, 4_1(168) -> 167
, 4_1(170) -> 169
, 4_1(180) -> 144
, 4_1(203) -> 353
, 4_1(217) -> 216
, 4_1(225) -> 11
, 4_1(227) -> 226
, 4_1(256) -> 255
, 4_1(269) -> 268
, 4_1(305) -> 70
, 4_1(306) -> 305
, 4_1(310) -> 309
, 4_1(321) -> 78
, 4_1(322) -> 321
, 4_1(353) -> 352
, 4_1(354) -> 353
, 4_1(416) -> 415
, 4_1(424) -> 423
, 4_1(427) -> 1
, 4_1(441) -> 3
, 4_1(467) -> 466
, 4_1(548) -> 20
, 4_1(552) -> 551
, 4_1(554) -> 327
, 4_1(557) -> 556
, 4_1(583) -> 78
, 4_2(70) -> 520
, 4_2(73) -> 706
, 4_2(313) -> 312
, 4_2(314) -> 313
, 4_2(318) -> 317
, 4_2(320) -> 319
, 4_2(393) -> 228
, 4_2(394) -> 393
, 4_2(402) -> 263
, 4_2(403) -> 402
, 4_2(520) -> 519
, 4_2(540) -> 539
, 4_2(547) -> 563
, 4_2(559) -> 334
, 4_2(562) -> 561
, 4_2(564) -> 563
, 4_2(568) -> 567
, 4_2(571) -> 570
, 4_2(573) -> 572
, 4_2(577) -> 576
, 4_2(580) -> 579
, 4_2(582) -> 581
, 4_2(586) -> 585
, 4_2(589) -> 588
, 4_2(591) -> 590
, 4_2(599) -> 598
, 4_2(606) -> 605
, 4_2(670) -> 669
, 4_2(694) -> 693
, 4_2(700) -> 699
, 4_2(737) -> 736
, 4_2(758) -> 203
, 4_2(767) -> 332
, 4_2(771) -> 770
, 3_0(1) -> 1
, 3_1(1) -> 28
, 3_1(3) -> 2
, 3_1(6) -> 5
, 3_1(10) -> 202
, 3_1(14) -> 13
, 3_1(19) -> 49
, 3_1(20) -> 28
, 3_1(21) -> 20
, 3_1(22) -> 21
, 3_1(24) -> 23
, 3_1(28) -> 269
, 3_1(33) -> 103
, 3_1(35) -> 1
, 3_1(35) -> 9
, 3_1(35) -> 10
, 3_1(35) -> 28
, 3_1(35) -> 49
, 3_1(35) -> 103
, 3_1(35) -> 173
, 3_1(35) -> 202
, 3_1(35) -> 203
, 3_1(48) -> 202
, 3_1(49) -> 83
, 3_1(50) -> 28
, 3_1(56) -> 55
, 3_1(58) -> 57
, 3_1(65) -> 326
, 3_1(70) -> 28
, 3_1(75) -> 74
, 3_1(77) -> 511
, 3_1(78) -> 467
, 3_1(79) -> 28
, 3_1(81) -> 80
, 3_1(84) -> 83
, 3_1(85) -> 84
, 3_1(87) -> 28
, 3_1(100) -> 98
, 3_1(104) -> 103
, 3_1(144) -> 28
, 3_1(147) -> 146
, 3_1(150) -> 79
, 3_1(155) -> 326
, 3_1(156) -> 35
, 3_1(162) -> 161
, 3_1(167) -> 11
, 3_1(178) -> 326
, 3_1(198) -> 71
, 3_1(203) -> 202
, 3_1(210) -> 103
, 3_1(218) -> 217
, 3_1(267) -> 266
, 3_1(268) -> 267
, 3_1(281) -> 279
, 3_1(327) -> 163
, 3_1(351) -> 100
, 3_1(369) -> 66
, 3_1(370) -> 369
, 3_1(423) -> 422
, 3_1(428) -> 28
, 3_1(433) -> 431
, 3_1(434) -> 433
, 3_1(435) -> 434
, 3_1(436) -> 435
, 3_1(466) -> 465
, 3_1(491) -> 444
, 3_1(492) -> 491
, 3_1(507) -> 506
, 3_1(510) -> 509
, 3_1(511) -> 510
, 3_1(549) -> 28
, 3_1(551) -> 550
, 3_1(558) -> 557
, 3_1(583) -> 28
, 3_2(87) -> 320
, 3_2(100) -> 697
, 3_2(334) -> 333
, 3_2(343) -> 342
, 3_2(396) -> 395
, 3_2(397) -> 396
, 3_2(405) -> 404
, 3_2(406) -> 405
, 3_2(428) -> 766
, 3_2(514) -> 513
, 3_2(517) -> 516
, 3_2(518) -> 517
, 3_2(519) -> 518
, 3_2(563) -> 562
, 3_2(567) -> 566
, 3_2(572) -> 571
, 3_2(576) -> 575
, 3_2(581) -> 580
, 3_2(585) -> 584
, 3_2(590) -> 589
, 3_2(601) -> 600
, 3_2(662) -> 103
, 3_2(663) -> 662
, 3_2(669) -> 668
, 3_2(691) -> 690
, 3_2(705) -> 704
, 3_2(736) -> 735
, 3_2(762) -> 761
, 3_2(763) -> 762
, 3_2(764) -> 763
, 3_2(765) -> 764
, 3_2(770) -> 769
, 2_0(1) -> 1
, 2_1(1) -> 58
, 2_1(2) -> 228
, 2_1(7) -> 6
, 2_1(10) -> 263
, 2_1(11) -> 1
, 2_1(11) -> 26
, 2_1(11) -> 34
, 2_1(11) -> 58
, 2_1(11) -> 65
, 2_1(11) -> 263
, 2_1(11) -> 492
, 2_1(17) -> 16
, 2_1(18) -> 17
, 2_1(20) -> 58
, 2_1(23) -> 22
, 2_1(28) -> 42
, 2_1(29) -> 21
, 2_1(32) -> 31
, 2_1(33) -> 32
, 2_1(35) -> 58
, 2_1(38) -> 37
, 2_1(56) -> 228
, 2_1(58) -> 285
, 2_1(59) -> 51
, 2_1(62) -> 61
, 2_1(63) -> 62
, 2_1(65) -> 133
, 2_1(68) -> 67
, 2_1(70) -> 58
, 2_1(72) -> 71
, 2_1(74) -> 73
, 2_1(77) -> 76
, 2_1(78) -> 188
, 2_1(79) -> 58
, 2_1(86) -> 70
, 2_1(88) -> 87
, 2_1(92) -> 11
, 2_1(93) -> 92
, 2_1(100) -> 58
, 2_1(105) -> 372
, 2_1(124) -> 98
, 2_1(128) -> 125
, 2_1(132) -> 129
, 2_1(146) -> 145
, 2_1(158) -> 157
, 2_1(160) -> 166
, 2_1(163) -> 20
, 2_1(166) -> 165
, 2_1(169) -> 168
, 2_1(175) -> 174
, 2_1(177) -> 176
, 2_1(182) -> 180
, 2_1(186) -> 183
, 2_1(187) -> 186
, 2_1(188) -> 16
, 2_1(204) -> 35
, 2_1(206) -> 205
, 2_1(208) -> 207
, 2_1(212) -> 3
, 2_1(216) -> 213
, 2_1(219) -> 218
, 2_1(244) -> 58
, 2_1(246) -> 244
, 2_1(257) -> 11
, 2_1(259) -> 258
, 2_1(260) -> 259
, 2_1(283) -> 281
, 2_1(284) -> 283
, 2_1(285) -> 331
, 2_1(311) -> 447
, 2_1(321) -> 58
, 2_1(329) -> 328
, 2_1(330) -> 329
, 2_1(331) -> 330
, 2_1(412) -> 100
, 2_1(422) -> 79
, 2_1(444) -> 441
, 2_1(445) -> 444
, 2_1(446) -> 445
, 2_1(461) -> 11
, 2_1(463) -> 461
, 2_1(525) -> 522
, 2_1(529) -> 526
, 2_1(583) -> 11
, 2_1(584) -> 1
, 2_2(124) -> 741
, 2_2(174) -> 670
, 2_2(244) -> 340
, 2_2(321) -> 349
, 2_2(333) -> 332
, 2_2(336) -> 335
, 2_2(337) -> 336
, 2_2(338) -> 337
, 2_2(339) -> 338
, 2_2(340) -> 339
, 2_2(342) -> 341
, 2_2(345) -> 344
, 2_2(346) -> 345
, 2_2(347) -> 346
, 2_2(348) -> 347
, 2_2(349) -> 348
, 2_2(400) -> 399
, 2_2(409) -> 408
, 2_2(512) -> 263
, 2_2(541) -> 540
, 2_2(543) -> 542
, 2_2(545) -> 544
, 2_2(547) -> 546
, 2_2(566) -> 565
, 2_2(575) -> 574
, 2_2(584) -> 583
, 2_2(598) -> 492
, 2_2(604) -> 603
, 2_2(605) -> 604
, 2_2(665) -> 664
, 2_2(696) -> 695
, 2_2(735) -> 734
, 2_2(741) -> 740}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(2(0(1(1(3(1(x1))))))) -> 5(3(0(5(3(2(1(4(1(1(x1))))))))))
, 5(1(3(4(1(0(0(x1))))))) -> 2(4(5(3(5(1(2(2(4(0(x1))))))))))
, 4(0(3(3(0(1(3(x1))))))) -> 0(3(3(2(3(4(5(5(1(3(x1))))))))))
, 3(0(4(3(3(0(1(x1))))))) -> 0(3(2(0(5(2(2(1(5(1(x1))))))))))
, 3(0(4(1(2(5(0(x1))))))) -> 3(1(0(2(0(4(0(0(2(3(x1))))))))))
, 3(0(1(0(1(4(0(x1))))))) -> 3(4(5(5(0(5(5(1(3(0(x1))))))))))
, 1(4(2(5(1(0(2(x1))))))) -> 4(4(0(1(5(4(3(5(3(2(x1))))))))))
, 1(3(5(3(4(3(5(x1))))))) -> 4(4(2(5(5(2(2(0(0(5(x1))))))))))
, 1(3(1(3(1(0(4(x1))))))) -> 4(4(5(1(2(1(5(0(0(5(x1))))))))))
, 1(2(1(1(3(0(0(x1))))))) -> 1(5(2(4(2(3(4(2(4(4(x1))))))))))
, 1(2(1(0(5(2(2(x1))))))) -> 1(0(5(3(1(5(3(3(0(2(x1))))))))))
, 1(1(1(5(0(4(0(x1))))))) -> 1(2(0(2(0(5(5(4(5(3(x1))))))))))
, 1(1(1(1(0(3(0(x1))))))) -> 3(0(2(5(1(4(4(0(0(2(x1))))))))))
, 1(0(4(3(3(5(5(x1))))))) -> 5(5(3(4(5(0(3(1(5(5(x1))))))))))
, 0(4(1(1(0(4(3(x1))))))) -> 5(5(2(0(2(5(2(4(2(5(x1))))))))))
, 0(1(1(1(4(0(0(x1))))))) -> 4(0(1(2(3(5(4(5(0(2(x1))))))))))
, 0(0(3(3(1(1(3(x1))))))) -> 1(0(3(5(5(1(4(1(5(0(x1))))))))))
, 3(1(2(0(2(1(x1)))))) -> 3(3(1(2(0(5(5(3(4(2(x1))))))))))
, 3(0(3(1(0(1(x1)))))) -> 0(2(4(5(2(2(5(3(4(2(x1))))))))))
, 2(0(3(1(5(5(x1)))))) -> 2(3(4(2(4(5(0(5(1(4(x1))))))))))
, 1(4(0(4(3(1(x1)))))) -> 3(0(2(1(2(0(2(1(5(4(x1))))))))))
, 1(1(2(0(1(4(x1)))))) -> 4(0(4(2(1(2(2(5(2(4(x1))))))))))
, 1(1(1(1(3(0(x1)))))) -> 1(5(3(0(5(1(5(3(1(0(x1))))))))))
, 1(0(1(0(1(0(x1)))))) -> 3(2(5(2(0(2(0(0(1(2(x1))))))))))
, 0(3(3(1(0(1(x1)))))) -> 5(3(2(0(2(4(3(2(4(1(x1))))))))))
, 2(2(4(4(3(x1))))) -> 5(5(3(1(5(4(5(2(5(3(x1))))))))))
, 2(1(3(1(3(x1))))) -> 5(1(0(0(2(5(5(4(2(3(x1))))))))))
, 2(1(2(1(0(x1))))) -> 2(3(0(5(1(5(4(5(3(0(x1))))))))))
, 2(1(0(1(1(x1))))) -> 2(2(5(2(2(5(0(0(2(1(x1))))))))))
, 1(3(3(1(3(x1))))) -> 5(4(2(0(5(3(3(4(3(3(x1))))))))))
, 1(0(4(4(3(x1))))) -> 4(0(5(5(3(2(2(5(2(2(x1))))))))))
, 1(0(1(2(0(x1))))) -> 1(4(4(5(1(1(4(1(4(3(x1))))))))))
, 0(5(5(2(4(x1))))) -> 0(0(4(0(0(5(5(3(5(4(x1))))))))))
, 0(5(1(0(0(x1))))) -> 0(2(3(0(2(2(2(2(2(2(x1))))))))))
, 0(0(4(2(2(x1))))) -> 5(5(3(3(5(4(4(1(0(2(x1))))))))))
, 2(1(0(0(x1)))) -> 4(4(5(3(3(5(0(2(5(5(x1))))))))))
, 1(4(2(1(x1)))) -> 4(3(2(5(1(5(4(5(5(2(x1))))))))))
, 1(0(5(2(x1)))) -> 1(0(2(3(4(5(1(0(2(2(x1))))))))))
, 1(0(4(1(x1)))) -> 4(5(1(5(3(3(3(3(0(3(x1))))))))))
, 0(4(1(0(x1)))) -> 5(3(4(2(2(2(0(2(4(3(x1))))))))))
, 0(1(3(3(x1)))) -> 4(0(0(2(1(5(3(4(3(4(x1))))))))))
, 0(1(1(0(x1)))) -> 5(3(4(2(3(3(5(1(3(4(x1))))))))))
, 2(1(1(x1))) -> 2(5(3(1(5(3(3(3(4(4(x1))))))))))
, 2(0(1(x1))) -> 5(4(2(1(2(5(2(5(2(5(x1))))))))))
, 0(4(1(x1))) -> 0(4(0(0(3(4(5(1(5(3(x1))))))))))
, 0(1(x1)) -> 0(2(3(4(5(1(4(3(4(5(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(2(0(1(1(3(1(x1))))))) -> 5(3(0(5(3(2(1(4(1(1(x1))))))))))
, 5(1(3(4(1(0(0(x1))))))) -> 2(4(5(3(5(1(2(2(4(0(x1))))))))))
, 4(0(3(3(0(1(3(x1))))))) -> 0(3(3(2(3(4(5(5(1(3(x1))))))))))
, 3(0(4(3(3(0(1(x1))))))) -> 0(3(2(0(5(2(2(1(5(1(x1))))))))))
, 3(0(4(1(2(5(0(x1))))))) -> 3(1(0(2(0(4(0(0(2(3(x1))))))))))
, 3(0(1(0(1(4(0(x1))))))) -> 3(4(5(5(0(5(5(1(3(0(x1))))))))))
, 1(4(2(5(1(0(2(x1))))))) -> 4(4(0(1(5(4(3(5(3(2(x1))))))))))
, 1(3(5(3(4(3(5(x1))))))) -> 4(4(2(5(5(2(2(0(0(5(x1))))))))))
, 1(3(1(3(1(0(4(x1))))))) -> 4(4(5(1(2(1(5(0(0(5(x1))))))))))
, 1(2(1(1(3(0(0(x1))))))) -> 1(5(2(4(2(3(4(2(4(4(x1))))))))))
, 1(2(1(0(5(2(2(x1))))))) -> 1(0(5(3(1(5(3(3(0(2(x1))))))))))
, 1(1(1(5(0(4(0(x1))))))) -> 1(2(0(2(0(5(5(4(5(3(x1))))))))))
, 1(1(1(1(0(3(0(x1))))))) -> 3(0(2(5(1(4(4(0(0(2(x1))))))))))
, 1(0(4(3(3(5(5(x1))))))) -> 5(5(3(4(5(0(3(1(5(5(x1))))))))))
, 0(4(1(1(0(4(3(x1))))))) -> 5(5(2(0(2(5(2(4(2(5(x1))))))))))
, 0(1(1(1(4(0(0(x1))))))) -> 4(0(1(2(3(5(4(5(0(2(x1))))))))))
, 0(0(3(3(1(1(3(x1))))))) -> 1(0(3(5(5(1(4(1(5(0(x1))))))))))
, 3(1(2(0(2(1(x1)))))) -> 3(3(1(2(0(5(5(3(4(2(x1))))))))))
, 3(0(3(1(0(1(x1)))))) -> 0(2(4(5(2(2(5(3(4(2(x1))))))))))
, 2(0(3(1(5(5(x1)))))) -> 2(3(4(2(4(5(0(5(1(4(x1))))))))))
, 1(4(0(4(3(1(x1)))))) -> 3(0(2(1(2(0(2(1(5(4(x1))))))))))
, 1(1(2(0(1(4(x1)))))) -> 4(0(4(2(1(2(2(5(2(4(x1))))))))))
, 1(1(1(1(3(0(x1)))))) -> 1(5(3(0(5(1(5(3(1(0(x1))))))))))
, 1(0(1(0(1(0(x1)))))) -> 3(2(5(2(0(2(0(0(1(2(x1))))))))))
, 0(3(3(1(0(1(x1)))))) -> 5(3(2(0(2(4(3(2(4(1(x1))))))))))
, 2(2(4(4(3(x1))))) -> 5(5(3(1(5(4(5(2(5(3(x1))))))))))
, 2(1(3(1(3(x1))))) -> 5(1(0(0(2(5(5(4(2(3(x1))))))))))
, 2(1(2(1(0(x1))))) -> 2(3(0(5(1(5(4(5(3(0(x1))))))))))
, 2(1(0(1(1(x1))))) -> 2(2(5(2(2(5(0(0(2(1(x1))))))))))
, 1(3(3(1(3(x1))))) -> 5(4(2(0(5(3(3(4(3(3(x1))))))))))
, 1(0(4(4(3(x1))))) -> 4(0(5(5(3(2(2(5(2(2(x1))))))))))
, 1(0(1(2(0(x1))))) -> 1(4(4(5(1(1(4(1(4(3(x1))))))))))
, 0(5(5(2(4(x1))))) -> 0(0(4(0(0(5(5(3(5(4(x1))))))))))
, 0(5(1(0(0(x1))))) -> 0(2(3(0(2(2(2(2(2(2(x1))))))))))
, 0(0(4(2(2(x1))))) -> 5(5(3(3(5(4(4(1(0(2(x1))))))))))
, 2(1(0(0(x1)))) -> 4(4(5(3(3(5(0(2(5(5(x1))))))))))
, 1(4(2(1(x1)))) -> 4(3(2(5(1(5(4(5(5(2(x1))))))))))
, 1(0(5(2(x1)))) -> 1(0(2(3(4(5(1(0(2(2(x1))))))))))
, 1(0(4(1(x1)))) -> 4(5(1(5(3(3(3(3(0(3(x1))))))))))
, 0(4(1(0(x1)))) -> 5(3(4(2(2(2(0(2(4(3(x1))))))))))
, 0(1(3(3(x1)))) -> 4(0(0(2(1(5(3(4(3(4(x1))))))))))
, 0(1(1(0(x1)))) -> 5(3(4(2(3(3(5(1(3(4(x1))))))))))
, 2(1(1(x1))) -> 2(5(3(1(5(3(3(3(4(4(x1))))))))))
, 2(0(1(x1))) -> 5(4(2(1(2(5(2(5(2(5(x1))))))))))
, 0(4(1(x1))) -> 0(4(0(0(3(4(5(1(5(3(x1))))))))))
, 0(1(x1)) -> 0(2(3(4(5(1(4(3(4(5(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(2(0(1(1(3(1(x1))))))) -> 5(3(0(5(3(2(1(4(1(1(x1))))))))))
, 5(1(3(4(1(0(0(x1))))))) -> 2(4(5(3(5(1(2(2(4(0(x1))))))))))
, 4(0(3(3(0(1(3(x1))))))) -> 0(3(3(2(3(4(5(5(1(3(x1))))))))))
, 3(0(4(3(3(0(1(x1))))))) -> 0(3(2(0(5(2(2(1(5(1(x1))))))))))
, 3(0(4(1(2(5(0(x1))))))) -> 3(1(0(2(0(4(0(0(2(3(x1))))))))))
, 3(0(1(0(1(4(0(x1))))))) -> 3(4(5(5(0(5(5(1(3(0(x1))))))))))
, 1(4(2(5(1(0(2(x1))))))) -> 4(4(0(1(5(4(3(5(3(2(x1))))))))))
, 1(3(5(3(4(3(5(x1))))))) -> 4(4(2(5(5(2(2(0(0(5(x1))))))))))
, 1(3(1(3(1(0(4(x1))))))) -> 4(4(5(1(2(1(5(0(0(5(x1))))))))))
, 1(2(1(1(3(0(0(x1))))))) -> 1(5(2(4(2(3(4(2(4(4(x1))))))))))
, 1(2(1(0(5(2(2(x1))))))) -> 1(0(5(3(1(5(3(3(0(2(x1))))))))))
, 1(1(1(5(0(4(0(x1))))))) -> 1(2(0(2(0(5(5(4(5(3(x1))))))))))
, 1(1(1(1(0(3(0(x1))))))) -> 3(0(2(5(1(4(4(0(0(2(x1))))))))))
, 1(0(4(3(3(5(5(x1))))))) -> 5(5(3(4(5(0(3(1(5(5(x1))))))))))
, 0(4(1(1(0(4(3(x1))))))) -> 5(5(2(0(2(5(2(4(2(5(x1))))))))))
, 0(1(1(1(4(0(0(x1))))))) -> 4(0(1(2(3(5(4(5(0(2(x1))))))))))
, 0(0(3(3(1(1(3(x1))))))) -> 1(0(3(5(5(1(4(1(5(0(x1))))))))))
, 3(1(2(0(2(1(x1)))))) -> 3(3(1(2(0(5(5(3(4(2(x1))))))))))
, 3(0(3(1(0(1(x1)))))) -> 0(2(4(5(2(2(5(3(4(2(x1))))))))))
, 2(0(3(1(5(5(x1)))))) -> 2(3(4(2(4(5(0(5(1(4(x1))))))))))
, 1(4(0(4(3(1(x1)))))) -> 3(0(2(1(2(0(2(1(5(4(x1))))))))))
, 1(1(2(0(1(4(x1)))))) -> 4(0(4(2(1(2(2(5(2(4(x1))))))))))
, 1(1(1(1(3(0(x1)))))) -> 1(5(3(0(5(1(5(3(1(0(x1))))))))))
, 1(0(1(0(1(0(x1)))))) -> 3(2(5(2(0(2(0(0(1(2(x1))))))))))
, 0(3(3(1(0(1(x1)))))) -> 5(3(2(0(2(4(3(2(4(1(x1))))))))))
, 2(2(4(4(3(x1))))) -> 5(5(3(1(5(4(5(2(5(3(x1))))))))))
, 2(1(3(1(3(x1))))) -> 5(1(0(0(2(5(5(4(2(3(x1))))))))))
, 2(1(2(1(0(x1))))) -> 2(3(0(5(1(5(4(5(3(0(x1))))))))))
, 2(1(0(1(1(x1))))) -> 2(2(5(2(2(5(0(0(2(1(x1))))))))))
, 1(3(3(1(3(x1))))) -> 5(4(2(0(5(3(3(4(3(3(x1))))))))))
, 1(0(4(4(3(x1))))) -> 4(0(5(5(3(2(2(5(2(2(x1))))))))))
, 1(0(1(2(0(x1))))) -> 1(4(4(5(1(1(4(1(4(3(x1))))))))))
, 0(5(5(2(4(x1))))) -> 0(0(4(0(0(5(5(3(5(4(x1))))))))))
, 0(5(1(0(0(x1))))) -> 0(2(3(0(2(2(2(2(2(2(x1))))))))))
, 0(0(4(2(2(x1))))) -> 5(5(3(3(5(4(4(1(0(2(x1))))))))))
, 2(1(0(0(x1)))) -> 4(4(5(3(3(5(0(2(5(5(x1))))))))))
, 1(4(2(1(x1)))) -> 4(3(2(5(1(5(4(5(5(2(x1))))))))))
, 1(0(5(2(x1)))) -> 1(0(2(3(4(5(1(0(2(2(x1))))))))))
, 1(0(4(1(x1)))) -> 4(5(1(5(3(3(3(3(0(3(x1))))))))))
, 0(4(1(0(x1)))) -> 5(3(4(2(2(2(0(2(4(3(x1))))))))))
, 0(1(3(3(x1)))) -> 4(0(0(2(1(5(3(4(3(4(x1))))))))))
, 0(1(1(0(x1)))) -> 5(3(4(2(3(3(5(1(3(4(x1))))))))))
, 2(1(1(x1))) -> 2(5(3(1(5(3(3(3(4(4(x1))))))))))
, 2(0(1(x1))) -> 5(4(2(1(2(5(2(5(2(5(x1))))))))))
, 0(4(1(x1))) -> 0(4(0(0(3(4(5(1(5(3(x1))))))))))
, 0(1(x1)) -> 0(2(3(4(5(1(4(3(4(5(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..