Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 4(4(5(2(4(2(2(x1))))))) -> 4(0(5(5(4(5(1(2(2(1(x1))))))))))
, 0(1(5(5(5(3(5(x1))))))) -> 5(3(2(5(1(0(1(2(0(5(x1))))))))))
, 5(5(2(4(5(0(x1)))))) -> 2(1(1(4(2(4(0(4(2(0(x1))))))))))
, 5(2(5(5(0(4(x1)))))) -> 0(4(2(3(3(5(2(1(4(4(x1))))))))))
, 4(2(5(5(1(5(x1)))))) -> 2(3(4(2(1(1(3(4(2(5(x1))))))))))
, 4(1(5(5(0(4(x1)))))) -> 1(0(3(0(4(2(4(4(3(4(x1))))))))))
, 1(2(4(5(2(4(x1)))))) -> 3(3(5(3(0(4(0(3(1(3(x1))))))))))
, 0(4(4(5(5(5(x1)))))) -> 0(4(4(4(3(3(4(1(3(1(x1))))))))))
, 5(5(5(1(4(x1))))) -> 3(3(0(5(0(4(3(4(4(0(x1))))))))))
, 2(5(5(3(4(x1))))) -> 4(5(4(3(1(4(0(2(4(4(x1))))))))))
, 0(2(5(3(4(x1))))) -> 3(2(4(3(1(5(1(1(3(4(x1))))))))))
, 4(5(5(5(x1)))) -> 1(5(1(2(0(3(2(1(0(5(x1))))))))))
, 4(5(2(4(x1)))) -> 4(1(5(5(2(0(3(1(3(3(x1))))))))))
, 2(5(0(4(x1)))) -> 4(4(3(2(4(4(5(1(0(0(x1))))))))))
, 5(5(5(x1))) -> 5(3(4(1(0(1(4(5(0(0(x1))))))))))
, 5(5(3(x1))) -> 0(3(5(4(4(1(0(1(5(0(x1))))))))))
, 5(5(2(x1))) -> 0(1(3(2(3(0(3(2(5(3(x1))))))))))
, 5(2(4(x1))) -> 0(5(0(2(3(3(4(2(4(2(x1))))))))))
, 2(5(5(x1))) -> 4(2(5(4(4(0(0(1(1(2(x1))))))))))
, 5(5(x1)) -> 3(4(1(1(1(1(4(4(0(4(x1))))))))))
, 5(5(x1)) -> 0(5(4(0(2(5(4(5(2(1(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ 5_0(1) -> 1
, 5_1(1) -> 19
, 5_1(4) -> 3
, 5_1(5) -> 4
, 5_1(7) -> 6
, 5_1(9) -> 208
, 5_1(11) -> 1
, 5_1(11) -> 19
, 5_1(11) -> 28
, 5_1(14) -> 13
, 5_1(28) -> 124
, 5_1(34) -> 33
, 5_1(52) -> 140
, 5_1(55) -> 54
, 5_1(68) -> 67
, 5_1(73) -> 2
, 5_1(83) -> 82
, 5_1(84) -> 45
, 5_1(91) -> 90
, 5_1(92) -> 91
, 5_1(102) -> 101
, 5_1(103) -> 117
, 5_1(119) -> 118
, 5_1(150) -> 29
, 5_1(156) -> 155
, 5_1(207) -> 206
, 5_2(110) -> 109
, 5_2(127) -> 126
, 5_2(133) -> 132
, 5_2(149) -> 148
, 5_2(163) -> 162
, 5_2(210) -> 209
, 5_2(214) -> 213
, 5_2(216) -> 215
, 5_2(218) -> 125
, 5_2(222) -> 221
, 5_2(224) -> 223
, 5_2(226) -> 141
, 5_2(230) -> 229
, 5_2(232) -> 231
, 5_2(234) -> 104
, 1_0(1) -> 1
, 1_1(1) -> 10
, 1_1(8) -> 7
, 1_1(10) -> 83
, 1_1(11) -> 10
, 1_1(15) -> 14
, 1_1(17) -> 16
, 1_1(18) -> 89
, 1_1(20) -> 10
, 1_1(21) -> 20
, 1_1(22) -> 21
, 1_1(28) -> 89
, 1_1(36) -> 35
, 1_1(37) -> 35
, 1_1(41) -> 40
, 1_1(42) -> 41
, 1_1(44) -> 161
, 1_1(45) -> 1
, 1_1(45) -> 37
, 1_1(52) -> 60
, 1_1(60) -> 83
, 1_1(66) -> 65
, 1_1(76) -> 75
, 1_1(82) -> 81
, 1_1(85) -> 84
, 1_1(90) -> 2
, 1_1(96) -> 95
, 1_1(103) -> 102
, 1_1(114) -> 113
, 1_1(116) -> 115
, 1_1(122) -> 121
, 1_1(124) -> 123
, 1_1(134) -> 29
, 1_1(161) -> 160
, 1_1(171) -> 170
, 1_1(172) -> 171
, 1_1(173) -> 172
, 1_1(174) -> 173
, 1_2(5) -> 217
, 1_2(11) -> 225
, 1_2(92) -> 233
, 1_2(111) -> 110
, 1_2(130) -> 129
, 1_2(132) -> 131
, 1_2(142) -> 141
, 1_2(168) -> 167
, 1_2(169) -> 168
, 1_2(179) -> 178
, 1_2(180) -> 179
, 1_2(181) -> 180
, 1_2(182) -> 181
, 1_2(188) -> 187
, 1_2(189) -> 188
, 1_2(190) -> 189
, 1_2(191) -> 190
, 1_2(197) -> 196
, 1_2(198) -> 197
, 1_2(199) -> 198
, 1_2(200) -> 199
, 1_2(237) -> 236
, 2_0(1) -> 1
, 2_1(1) -> 44
, 2_1(2) -> 37
, 2_1(9) -> 8
, 2_1(10) -> 9
, 2_1(11) -> 44
, 2_1(13) -> 12
, 2_1(18) -> 17
, 2_1(19) -> 44
, 2_1(20) -> 1
, 2_1(20) -> 19
, 2_1(20) -> 37
, 2_1(20) -> 43
, 2_1(24) -> 23
, 2_1(28) -> 27
, 2_1(31) -> 30
, 2_1(35) -> 34
, 2_1(36) -> 78
, 2_1(40) -> 39
, 2_1(43) -> 78
, 2_1(45) -> 44
, 2_1(50) -> 49
, 2_1(79) -> 53
, 2_1(86) -> 85
, 2_1(89) -> 88
, 2_1(93) -> 92
, 2_1(99) -> 98
, 2_1(136) -> 135
, 2_1(140) -> 139
, 2_1(152) -> 151
, 2_1(155) -> 2
, 2_1(206) -> 205
, 2_2(11) -> 169
, 2_2(107) -> 106
, 2_2(144) -> 143
, 2_2(148) -> 147
, 2_2(162) -> 104
, 2_2(213) -> 212
, 2_2(217) -> 216
, 2_2(221) -> 220
, 2_2(225) -> 224
, 2_2(229) -> 228
, 2_2(233) -> 232
, 2_2(240) -> 239
, 4_0(1) -> 1
, 4_1(1) -> 37
, 4_1(2) -> 1
, 4_1(2) -> 36
, 4_1(2) -> 37
, 4_1(2) -> 44
, 4_1(6) -> 5
, 4_1(11) -> 37
, 4_1(12) -> 36
, 4_1(23) -> 22
, 4_1(25) -> 24
, 4_1(27) -> 26
, 4_1(28) -> 72
, 4_1(29) -> 36
, 4_1(30) -> 29
, 4_1(37) -> 36
, 4_1(39) -> 38
, 4_1(44) -> 43
, 4_1(49) -> 48
, 4_1(51) -> 50
, 4_1(52) -> 51
, 4_1(53) -> 36
, 4_1(58) -> 57
, 4_1(61) -> 30
, 4_1(62) -> 61
, 4_1(65) -> 64
, 4_1(70) -> 69
, 4_1(72) -> 71
, 4_1(74) -> 73
, 4_1(77) -> 76
, 4_1(78) -> 154
, 4_1(80) -> 79
, 4_1(97) -> 2
, 4_1(100) -> 99
, 4_1(101) -> 100
, 4_1(113) -> 12
, 4_1(117) -> 116
, 4_1(120) -> 119
, 4_1(121) -> 120
, 4_1(157) -> 156
, 4_1(158) -> 157
, 4_1(170) -> 53
, 4_1(175) -> 174
, 4_1(176) -> 175
, 4_1(204) -> 150
, 4_1(208) -> 207
, 4_2(5) -> 185
, 4_2(11) -> 194
, 4_2(92) -> 203
, 4_2(104) -> 44
, 4_2(105) -> 104
, 4_2(108) -> 107
, 4_2(109) -> 108
, 4_2(113) -> 241
, 4_2(128) -> 127
, 4_2(129) -> 128
, 4_2(164) -> 163
, 4_2(165) -> 164
, 4_2(178) -> 177
, 4_2(183) -> 182
, 4_2(184) -> 183
, 4_2(187) -> 186
, 4_2(192) -> 191
, 4_2(193) -> 192
, 4_2(196) -> 195
, 4_2(201) -> 200
, 4_2(202) -> 201
, 4_2(211) -> 210
, 4_2(215) -> 214
, 4_2(219) -> 218
, 4_2(223) -> 222
, 4_2(227) -> 226
, 4_2(231) -> 230
, 4_2(235) -> 234
, 4_2(238) -> 237
, 4_2(241) -> 240
, 0_0(1) -> 1
, 0_1(1) -> 28
, 0_1(2) -> 28
, 0_1(3) -> 2
, 0_1(11) -> 28
, 0_1(12) -> 28
, 0_1(16) -> 15
, 0_1(19) -> 18
, 0_1(26) -> 25
, 0_1(28) -> 103
, 0_1(29) -> 1
, 0_1(29) -> 19
, 0_1(29) -> 28
, 0_1(29) -> 176
, 0_1(30) -> 28
, 0_1(37) -> 176
, 0_1(46) -> 45
, 0_1(48) -> 47
, 0_1(53) -> 28
, 0_1(57) -> 56
, 0_1(59) -> 58
, 0_1(67) -> 54
, 0_1(69) -> 68
, 0_1(78) -> 77
, 0_1(87) -> 86
, 0_1(94) -> 93
, 0_1(115) -> 114
, 0_1(123) -> 122
, 0_1(138) -> 137
, 0_1(151) -> 150
, 0_1(159) -> 158
, 0_1(160) -> 159
, 0_1(205) -> 204
, 0_2(12) -> 133
, 0_2(30) -> 112
, 0_2(112) -> 111
, 0_2(125) -> 19
, 0_2(125) -> 124
, 0_2(131) -> 130
, 0_2(141) -> 90
, 0_2(146) -> 145
, 0_2(166) -> 165
, 0_2(167) -> 166
, 0_2(185) -> 184
, 0_2(194) -> 193
, 0_2(203) -> 202
, 0_2(209) -> 3
, 0_2(212) -> 211
, 0_2(220) -> 219
, 0_2(228) -> 227
, 0_2(239) -> 238
, 3_0(1) -> 1
, 3_1(1) -> 52
, 3_1(2) -> 52
, 3_1(10) -> 66
, 3_1(12) -> 11
, 3_1(20) -> 52
, 3_1(29) -> 52
, 3_1(32) -> 31
, 3_1(33) -> 32
, 3_1(37) -> 52
, 3_1(38) -> 20
, 3_1(43) -> 42
, 3_1(47) -> 46
, 3_1(52) -> 96
, 3_1(53) -> 1
, 3_1(53) -> 10
, 3_1(53) -> 19
, 3_1(53) -> 28
, 3_1(53) -> 161
, 3_1(54) -> 53
, 3_1(56) -> 55
, 3_1(60) -> 59
, 3_1(63) -> 62
, 3_1(64) -> 63
, 3_1(71) -> 70
, 3_1(75) -> 74
, 3_1(81) -> 80
, 3_1(88) -> 87
, 3_1(95) -> 94
, 3_1(98) -> 97
, 3_1(118) -> 29
, 3_1(135) -> 134
, 3_1(137) -> 136
, 3_1(139) -> 138
, 3_1(153) -> 152
, 3_1(154) -> 153
, 3_2(93) -> 149
, 3_2(106) -> 105
, 3_2(126) -> 125
, 3_2(143) -> 142
, 3_2(145) -> 144
, 3_2(147) -> 146
, 3_2(177) -> 3
, 3_2(186) -> 19
, 3_2(186) -> 124
, 3_2(195) -> 90
, 3_2(236) -> 235}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 4(4(5(2(4(2(2(x1))))))) -> 4(0(5(5(4(5(1(2(2(1(x1))))))))))
, 0(1(5(5(5(3(5(x1))))))) -> 5(3(2(5(1(0(1(2(0(5(x1))))))))))
, 5(5(2(4(5(0(x1)))))) -> 2(1(1(4(2(4(0(4(2(0(x1))))))))))
, 5(2(5(5(0(4(x1)))))) -> 0(4(2(3(3(5(2(1(4(4(x1))))))))))
, 4(2(5(5(1(5(x1)))))) -> 2(3(4(2(1(1(3(4(2(5(x1))))))))))
, 4(1(5(5(0(4(x1)))))) -> 1(0(3(0(4(2(4(4(3(4(x1))))))))))
, 1(2(4(5(2(4(x1)))))) -> 3(3(5(3(0(4(0(3(1(3(x1))))))))))
, 0(4(4(5(5(5(x1)))))) -> 0(4(4(4(3(3(4(1(3(1(x1))))))))))
, 5(5(5(1(4(x1))))) -> 3(3(0(5(0(4(3(4(4(0(x1))))))))))
, 2(5(5(3(4(x1))))) -> 4(5(4(3(1(4(0(2(4(4(x1))))))))))
, 0(2(5(3(4(x1))))) -> 3(2(4(3(1(5(1(1(3(4(x1))))))))))
, 4(5(5(5(x1)))) -> 1(5(1(2(0(3(2(1(0(5(x1))))))))))
, 4(5(2(4(x1)))) -> 4(1(5(5(2(0(3(1(3(3(x1))))))))))
, 2(5(0(4(x1)))) -> 4(4(3(2(4(4(5(1(0(0(x1))))))))))
, 5(5(5(x1))) -> 5(3(4(1(0(1(4(5(0(0(x1))))))))))
, 5(5(3(x1))) -> 0(3(5(4(4(1(0(1(5(0(x1))))))))))
, 5(5(2(x1))) -> 0(1(3(2(3(0(3(2(5(3(x1))))))))))
, 5(2(4(x1))) -> 0(5(0(2(3(3(4(2(4(2(x1))))))))))
, 2(5(5(x1))) -> 4(2(5(4(4(0(0(1(1(2(x1))))))))))
, 5(5(x1)) -> 3(4(1(1(1(1(4(4(0(4(x1))))))))))
, 5(5(x1)) -> 0(5(4(0(2(5(4(5(2(1(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 4(4(5(2(4(2(2(x1))))))) -> 4(0(5(5(4(5(1(2(2(1(x1))))))))))
, 0(1(5(5(5(3(5(x1))))))) -> 5(3(2(5(1(0(1(2(0(5(x1))))))))))
, 5(5(2(4(5(0(x1)))))) -> 2(1(1(4(2(4(0(4(2(0(x1))))))))))
, 5(2(5(5(0(4(x1)))))) -> 0(4(2(3(3(5(2(1(4(4(x1))))))))))
, 4(2(5(5(1(5(x1)))))) -> 2(3(4(2(1(1(3(4(2(5(x1))))))))))
, 4(1(5(5(0(4(x1)))))) -> 1(0(3(0(4(2(4(4(3(4(x1))))))))))
, 1(2(4(5(2(4(x1)))))) -> 3(3(5(3(0(4(0(3(1(3(x1))))))))))
, 0(4(4(5(5(5(x1)))))) -> 0(4(4(4(3(3(4(1(3(1(x1))))))))))
, 5(5(5(1(4(x1))))) -> 3(3(0(5(0(4(3(4(4(0(x1))))))))))
, 2(5(5(3(4(x1))))) -> 4(5(4(3(1(4(0(2(4(4(x1))))))))))
, 0(2(5(3(4(x1))))) -> 3(2(4(3(1(5(1(1(3(4(x1))))))))))
, 4(5(5(5(x1)))) -> 1(5(1(2(0(3(2(1(0(5(x1))))))))))
, 4(5(2(4(x1)))) -> 4(1(5(5(2(0(3(1(3(3(x1))))))))))
, 2(5(0(4(x1)))) -> 4(4(3(2(4(4(5(1(0(0(x1))))))))))
, 5(5(5(x1))) -> 5(3(4(1(0(1(4(5(0(0(x1))))))))))
, 5(5(3(x1))) -> 0(3(5(4(4(1(0(1(5(0(x1))))))))))
, 5(5(2(x1))) -> 0(1(3(2(3(0(3(2(5(3(x1))))))))))
, 5(2(4(x1))) -> 0(5(0(2(3(3(4(2(4(2(x1))))))))))
, 2(5(5(x1))) -> 4(2(5(4(4(0(0(1(1(2(x1))))))))))
, 5(5(x1)) -> 3(4(1(1(1(1(4(4(0(4(x1))))))))))
, 5(5(x1)) -> 0(5(4(0(2(5(4(5(2(1(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 4(4(5(2(4(2(2(x1))))))) -> 4(0(5(5(4(5(1(2(2(1(x1))))))))))
, 0(1(5(5(5(3(5(x1))))))) -> 5(3(2(5(1(0(1(2(0(5(x1))))))))))
, 5(5(2(4(5(0(x1)))))) -> 2(1(1(4(2(4(0(4(2(0(x1))))))))))
, 5(2(5(5(0(4(x1)))))) -> 0(4(2(3(3(5(2(1(4(4(x1))))))))))
, 4(2(5(5(1(5(x1)))))) -> 2(3(4(2(1(1(3(4(2(5(x1))))))))))
, 4(1(5(5(0(4(x1)))))) -> 1(0(3(0(4(2(4(4(3(4(x1))))))))))
, 1(2(4(5(2(4(x1)))))) -> 3(3(5(3(0(4(0(3(1(3(x1))))))))))
, 0(4(4(5(5(5(x1)))))) -> 0(4(4(4(3(3(4(1(3(1(x1))))))))))
, 5(5(5(1(4(x1))))) -> 3(3(0(5(0(4(3(4(4(0(x1))))))))))
, 2(5(5(3(4(x1))))) -> 4(5(4(3(1(4(0(2(4(4(x1))))))))))
, 0(2(5(3(4(x1))))) -> 3(2(4(3(1(5(1(1(3(4(x1))))))))))
, 4(5(5(5(x1)))) -> 1(5(1(2(0(3(2(1(0(5(x1))))))))))
, 4(5(2(4(x1)))) -> 4(1(5(5(2(0(3(1(3(3(x1))))))))))
, 2(5(0(4(x1)))) -> 4(4(3(2(4(4(5(1(0(0(x1))))))))))
, 5(5(5(x1))) -> 5(3(4(1(0(1(4(5(0(0(x1))))))))))
, 5(5(3(x1))) -> 0(3(5(4(4(1(0(1(5(0(x1))))))))))
, 5(5(2(x1))) -> 0(1(3(2(3(0(3(2(5(3(x1))))))))))
, 5(2(4(x1))) -> 0(5(0(2(3(3(4(2(4(2(x1))))))))))
, 2(5(5(x1))) -> 4(2(5(4(4(0(0(1(1(2(x1))))))))))
, 5(5(x1)) -> 3(4(1(1(1(1(4(4(0(4(x1))))))))))
, 5(5(x1)) -> 0(5(4(0(2(5(4(5(2(1(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI2
stdout:
MAYBE
We consider the following Problem:
Strict Trs:
{ 4(4(5(2(4(2(2(x1))))))) -> 4(0(5(5(4(5(1(2(2(1(x1))))))))))
, 0(1(5(5(5(3(5(x1))))))) -> 5(3(2(5(1(0(1(2(0(5(x1))))))))))
, 5(5(2(4(5(0(x1)))))) -> 2(1(1(4(2(4(0(4(2(0(x1))))))))))
, 5(2(5(5(0(4(x1)))))) -> 0(4(2(3(3(5(2(1(4(4(x1))))))))))
, 4(2(5(5(1(5(x1)))))) -> 2(3(4(2(1(1(3(4(2(5(x1))))))))))
, 4(1(5(5(0(4(x1)))))) -> 1(0(3(0(4(2(4(4(3(4(x1))))))))))
, 1(2(4(5(2(4(x1)))))) -> 3(3(5(3(0(4(0(3(1(3(x1))))))))))
, 0(4(4(5(5(5(x1)))))) -> 0(4(4(4(3(3(4(1(3(1(x1))))))))))
, 5(5(5(1(4(x1))))) -> 3(3(0(5(0(4(3(4(4(0(x1))))))))))
, 2(5(5(3(4(x1))))) -> 4(5(4(3(1(4(0(2(4(4(x1))))))))))
, 0(2(5(3(4(x1))))) -> 3(2(4(3(1(5(1(1(3(4(x1))))))))))
, 4(5(5(5(x1)))) -> 1(5(1(2(0(3(2(1(0(5(x1))))))))))
, 4(5(2(4(x1)))) -> 4(1(5(5(2(0(3(1(3(3(x1))))))))))
, 2(5(0(4(x1)))) -> 4(4(3(2(4(4(5(1(0(0(x1))))))))))
, 5(5(5(x1))) -> 5(3(4(1(0(1(4(5(0(0(x1))))))))))
, 5(5(3(x1))) -> 0(3(5(4(4(1(0(1(5(0(x1))))))))))
, 5(5(2(x1))) -> 0(1(3(2(3(0(3(2(5(3(x1))))))))))
, 5(2(4(x1))) -> 0(5(0(2(3(3(4(2(4(2(x1))))))))))
, 2(5(5(x1))) -> 4(2(5(4(4(0(0(1(1(2(x1))))))))))
, 5(5(x1)) -> 3(4(1(1(1(1(4(4(0(4(x1))))))))))
, 5(5(x1)) -> 0(5(4(0(2(5(4(5(2(1(x1))))))))))}
StartTerms: all
Strategy: none
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..