Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 5(3(4(2(5(2(5(1(1(5(3(5(1(5(0(4(1(0(2(2(0(x1)))))))))))))))))))))
-> 5(0(3(5(4(5(5(1(2(2(1(4(0(0(1(2(5(1(5(4(x1))))))))))))))))))))
, 2(4(4(3(3(3(5(2(3(0(2(5(1(3(3(0(4(3(4(0(1(x1)))))))))))))))))))))
-> 5(1(1(4(1(4(2(5(2(3(0(1(3(1(1(5(5(1(3(3(x1))))))))))))))))))))
, 1(2(4(1(0(2(1(5(0(0(5(1(4(0(4(5(3(1(2(5(0(x1)))))))))))))))))))))
->
1(0(2(3(5(4(1(1(1(1(1(5(5(4(1(4(4(4(1(2(0(x1)))))))))))))))))))))
, 4(0(0(1(2(4(0(2(4(1(2(1(0(4(3(1(1(0(2(x1))))))))))))))))))) ->
4(0(3(1(4(1(0(3(1(0(4(5(3(0(0(1(4(4(x1))))))))))))))))))
, 2(4(5(2(3(2(5(1(4(1(3(5(0(0(1(1(3(1(4(x1))))))))))))))))))) ->
5(2(4(4(4(4(5(4(5(3(4(1(4(5(5(0(x1))))))))))))))))
, 1(0(3(1(1(2(2(0(3(3(2(0(0(1(1(5(3(5(2(x1))))))))))))))))))) ->
0(1(3(1(1(4(5(0(1(2(1(4(2(2(2(4(4(x1)))))))))))))))))
, 5(4(3(4(3(4(5(2(2(0(5(0(4(3(4(0(2(2(x1)))))))))))))))))) ->
5(1(2(5(1(1(3(3(0(4(3(2(5(2(1(2(4(2(x1))))))))))))))))))
, 5(3(3(3(5(0(2(1(0(0(4(5(1(3(2(0(0(x1))))))))))))))))) ->
5(4(3(3(0(3(1(2(5(2(4(3(1(1(4(1(x1))))))))))))))))
, 2(5(4(3(0(1(2(2(5(2(3(4(3(3(5(0(2(x1))))))))))))))))) ->
4(4(3(3(4(0(2(1(3(3(5(5(0(3(3(1(4(x1)))))))))))))))))
, 2(0(2(3(5(1(1(5(4(4(3(4(2(2(2(4(5(x1))))))))))))))))) ->
2(2(5(3(0(3(5(4(3(4(0(1(5(4(5(5(x1))))))))))))))))
, 3(1(0(2(5(0(0(4(1(3(0(1(3(4(2(3(x1)))))))))))))))) ->
5(3(0(3(1(3(4(5(2(1(2(4(3(4(3(x1)))))))))))))))
, 3(0(0(4(1(4(0(1(4(4(0(4(4(5(5(0(x1)))))))))))))))) ->
2(3(0(4(4(1(1(1(0(2(0(0(1(4(0(5(1(x1)))))))))))))))))
, 4(1(0(5(1(2(5(5(3(4(2(1(3(0(0(x1))))))))))))))) ->
1(5(4(5(0(3(5(1(2(4(3(3(0(2(x1))))))))))))))
, 3(5(0(2(5(3(2(2(1(0(3(0(0(2(x1)))))))))))))) ->
3(5(3(2(1(2(3(4(3(1(1(0(5(x1)))))))))))))
, 2(3(0(4(3(3(1(1(0(2(1(4(5(5(x1)))))))))))))) ->
2(5(0(2(2(2(0(3(5(3(0(4(5(x1)))))))))))))
, 0(5(3(3(0(1(4(5(4(4(1(1(3(0(x1)))))))))))))) ->
0(1(5(0(3(5(2(4(0(5(3(1(3(2(x1))))))))))))))
, 4(0(3(4(0(4(3(0(2(3(0(5(2(x1))))))))))))) ->
2(3(4(5(1(3(5(0(5(5(2(2(x1))))))))))))
, 3(5(1(4(4(1(2(2(5(2(3(4(4(x1))))))))))))) ->
0(0(3(2(3(5(2(4(0(1(0(0(4(5(x1))))))))))))))
, 5(2(1(4(2(2(1(2(4(1(2(0(x1)))))))))))) ->
5(2(5(2(2(4(1(3(4(0(4(x1)))))))))))
, 3(3(5(5(5(5(2(4(1(0(1(5(x1)))))))))))) ->
5(0(5(1(1(1(3(0(1(2(0(5(x1))))))))))))
, 1(3(1(1(1(3(0(2(0(0(3(0(x1)))))))))))) ->
1(3(1(4(5(5(4(3(0(5(x1))))))))))
, 4(0(0(1(0(4(3(3(0(2(2(x1))))))))))) ->
5(3(5(3(4(2(4(4(2(x1)))))))))
, 2(1(2(1(3(2(4(4(0(0(3(x1))))))))))) ->
5(1(0(5(3(1(4(3(0(3(x1))))))))))
, 1(3(1(1(0(0(2(0(3(4(0(x1))))))))))) ->
1(2(0(0(2(3(4(3(2(1(x1))))))))))
, 4(3(5(5(2(5(3(3(0(1(x1)))))))))) ->
4(2(1(4(0(2(3(3(4(2(x1))))))))))
, 4(2(0(2(5(2(2(3(1(0(x1)))))))))) -> 5(0(5(1(2(5(0(5(x1))))))))
, 3(3(2(4(2(3(4(3(3(x1))))))))) -> 5(4(4(5(0(4(3(x1)))))))
, 3(0(5(0(5(0(3(3(x1)))))))) -> 5(5(1(0(2(4(1(x1)))))))
, 2(0(2(2(4(3(1(0(x1)))))))) -> 2(1(1(5(4(2(2(x1)))))))
, 1(2(3(3(3(5(1(1(x1)))))))) -> 1(5(0(1(5(0(1(x1)))))))
, 2(1(1(3(5(5(3(x1))))))) -> 1(3(5(4(0(5(x1))))))
, 0(3(5(4(5(3(0(x1))))))) -> 0(3(4(3(5(0(4(x1)))))))
, 0(3(1(2(1(1(0(x1))))))) -> 1(1(3(4(2(0(x1))))))
, 2(4(1(1(3(5(x1)))))) -> 2(0(4(4(5(x1)))))
, 0(3(4(5(3(0(x1)))))) -> 0(3(5(1(0(2(x1))))))
, 5(3(3(4(5(x1))))) -> 5(4(1(5(x1))))
, 2(1(0(1(0(x1))))) -> 1(3(4(0(x1))))
, 4(2(4(0(x1)))) -> 0(0(1(1(x1))))
, 2(3(3(4(x1)))) -> 4(1(4(x1)))
, 0(1(0(0(x1)))) -> 1(1(2(x1)))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ 0_0(1) -> 1
, 0_1(1) -> 58
, 0_1(2) -> 250
, 0_1(3) -> 2
, 0_1(14) -> 13
, 0_1(15) -> 14
, 0_1(20) -> 250
, 0_1(21) -> 300
, 0_1(30) -> 29
, 0_1(38) -> 273
, 0_1(39) -> 207
, 0_1(40) -> 39
, 0_1(59) -> 58
, 0_1(60) -> 59
, 0_1(63) -> 58
, 0_1(65) -> 64
, 0_1(68) -> 67
, 0_1(72) -> 71
, 0_1(73) -> 72
, 0_1(88) -> 1
, 0_1(88) -> 20
, 0_1(88) -> 38
, 0_1(88) -> 58
, 0_1(88) -> 115
, 0_1(88) -> 130
, 0_1(88) -> 207
, 0_1(88) -> 273
, 0_1(88) -> 325
, 0_1(89) -> 207
, 0_1(95) -> 94
, 0_1(108) -> 107
, 0_1(116) -> 196
, 0_1(120) -> 119
, 0_1(130) -> 300
, 0_1(135) -> 134
, 0_1(142) -> 141
, 0_1(144) -> 58
, 0_1(149) -> 148
, 0_1(155) -> 154
, 0_1(157) -> 216
, 0_1(159) -> 207
, 0_1(161) -> 160
, 0_1(171) -> 216
, 0_1(173) -> 172
, 0_1(179) -> 178
, 0_1(181) -> 180
, 0_1(182) -> 181
, 0_1(185) -> 184
, 0_1(189) -> 188
, 0_1(209) -> 208
, 0_1(213) -> 212
, 0_1(216) -> 243
, 0_1(218) -> 217
, 0_1(223) -> 222
, 0_1(232) -> 231
, 0_1(235) -> 88
, 0_1(242) -> 241
, 0_1(256) -> 255
, 0_1(260) -> 58
, 0_1(268) -> 21
, 0_1(275) -> 274
, 0_1(276) -> 275
, 0_1(284) -> 283
, 0_1(291) -> 290
, 0_1(297) -> 207
, 0_1(315) -> 145
, 0_2(40) -> 378
, 0_2(88) -> 378
, 0_2(235) -> 378
, 0_2(317) -> 316
, 0_2(321) -> 115
, 0_2(321) -> 294
, 0_2(321) -> 325
, 0_2(322) -> 321
, 0_2(381) -> 115
, 0_2(381) -> 265
, 0_2(381) -> 294
, 0_2(381) -> 325
, 0_2(382) -> 381
, 1_0(1) -> 1
, 1_1(1) -> 130
, 1_1(3) -> 130
, 1_1(9) -> 8
, 1_1(12) -> 11
, 1_1(16) -> 15
, 1_1(19) -> 18
, 1_1(20) -> 144
, 1_1(21) -> 2
, 1_1(22) -> 21
, 1_1(24) -> 23
, 1_1(31) -> 30
, 1_1(33) -> 32
, 1_1(34) -> 33
, 1_1(37) -> 36
, 1_1(39) -> 1
, 1_1(39) -> 20
, 1_1(39) -> 39
, 1_1(39) -> 58
, 1_1(39) -> 116
, 1_1(39) -> 129
, 1_1(39) -> 130
, 1_1(39) -> 273
, 1_1(39) -> 280
, 1_1(39) -> 300
, 1_1(39) -> 329
, 1_1(45) -> 44
, 1_1(46) -> 45
, 1_1(47) -> 46
, 1_1(48) -> 47
, 1_1(49) -> 48
, 1_1(53) -> 52
, 1_1(57) -> 56
, 1_1(60) -> 130
, 1_1(62) -> 61
, 1_1(64) -> 63
, 1_1(67) -> 66
, 1_1(74) -> 73
, 1_1(85) -> 84
, 1_1(88) -> 130
, 1_1(89) -> 88
, 1_1(91) -> 90
, 1_1(92) -> 91
, 1_1(96) -> 95
, 1_1(98) -> 97
, 1_1(104) -> 103
, 1_1(105) -> 104
, 1_1(114) -> 113
, 1_1(115) -> 144
, 1_1(116) -> 39
, 1_1(122) -> 121
, 1_1(128) -> 127
, 1_1(129) -> 128
, 1_1(130) -> 235
, 1_1(137) -> 136
, 1_1(156) -> 155
, 1_1(159) -> 117
, 1_1(163) -> 162
, 1_1(168) -> 167
, 1_1(176) -> 175
, 1_1(177) -> 176
, 1_1(178) -> 177
, 1_1(183) -> 182
, 1_1(192) -> 191
, 1_1(196) -> 320
, 1_1(197) -> 130
, 1_1(201) -> 200
, 1_1(206) -> 205
, 1_1(207) -> 206
, 1_1(226) -> 225
, 1_1(229) -> 228
, 1_1(235) -> 130
, 1_1(243) -> 242
, 1_1(248) -> 247
, 1_1(252) -> 251
, 1_1(253) -> 252
, 1_1(254) -> 253
, 1_1(257) -> 256
, 1_1(259) -> 258
, 1_1(267) -> 73
, 1_1(271) -> 270
, 1_1(282) -> 281
, 1_1(286) -> 39
, 1_1(287) -> 161
, 1_1(290) -> 289
, 1_1(292) -> 145
, 1_1(293) -> 292
, 1_1(297) -> 235
, 1_1(313) -> 39
, 1_2(60) -> 323
, 1_2(88) -> 383
, 1_2(321) -> 383
, 1_2(323) -> 322
, 1_2(325) -> 324
, 1_2(326) -> 241
, 1_2(327) -> 326
, 1_2(328) -> 58
, 1_2(328) -> 88
, 1_2(328) -> 300
, 1_2(328) -> 378
, 1_2(329) -> 328
, 1_2(374) -> 273
, 1_2(375) -> 374
, 1_2(379) -> 280
, 1_2(381) -> 383
, 1_2(383) -> 382
, 2_0(1) -> 1
, 2_1(1) -> 116
, 2_1(2) -> 57
, 2_1(10) -> 9
, 2_1(11) -> 10
, 2_1(17) -> 16
, 2_1(26) -> 25
, 2_1(28) -> 27
, 2_1(39) -> 116
, 2_1(40) -> 116
, 2_1(41) -> 40
, 2_1(58) -> 57
, 2_1(74) -> 101
, 2_1(75) -> 2
, 2_1(88) -> 116
, 2_1(89) -> 116
, 2_1(97) -> 96
, 2_1(100) -> 99
, 2_1(101) -> 100
, 2_1(102) -> 21
, 2_1(111) -> 110
, 2_1(113) -> 112
, 2_1(115) -> 114
, 2_1(116) -> 234
, 2_1(123) -> 122
, 2_1(125) -> 124
, 2_1(129) -> 291
, 2_1(130) -> 280
, 2_1(136) -> 135
, 2_1(145) -> 1
, 2_1(145) -> 20
, 2_1(145) -> 38
, 2_1(145) -> 57
, 2_1(145) -> 116
, 2_1(145) -> 234
, 2_1(145) -> 258
, 2_1(145) -> 291
, 2_1(145) -> 309
, 2_1(146) -> 145
, 2_1(161) -> 116
, 2_1(167) -> 166
, 2_1(169) -> 168
, 2_1(180) -> 179
, 2_1(193) -> 192
, 2_1(200) -> 199
, 2_1(202) -> 201
, 2_1(207) -> 257
, 2_1(208) -> 57
, 2_1(210) -> 209
, 2_1(211) -> 210
, 2_1(212) -> 211
, 2_1(221) -> 220
, 2_1(235) -> 116
, 2_1(237) -> 236
, 2_1(240) -> 239
, 2_1(245) -> 244
, 2_1(246) -> 245
, 2_1(266) -> 100
, 2_1(267) -> 266
, 2_1(274) -> 39
, 2_1(277) -> 276
, 2_1(281) -> 59
, 2_1(285) -> 284
, 2_1(287) -> 252
, 2_1(321) -> 116
, 2_1(328) -> 116
, 2_1(381) -> 116
, 2_2(157) -> 327
, 2_2(171) -> 327
, 2_2(235) -> 329
, 2_2(316) -> 101
, 2_2(316) -> 114
, 2_2(316) -> 116
, 2_2(316) -> 234
, 2_2(316) -> 291
, 2_2(321) -> 377
, 2_2(322) -> 329
, 2_2(378) -> 377
, 2_2(381) -> 377
, 2_2(382) -> 329
, 4_0(1) -> 1
, 4_1(1) -> 20
, 4_1(2) -> 157
, 4_1(6) -> 5
, 4_1(13) -> 12
, 4_1(20) -> 74
, 4_1(23) -> 22
, 4_1(25) -> 24
, 4_1(38) -> 171
, 4_1(39) -> 258
, 4_1(41) -> 20
, 4_1(44) -> 43
, 4_1(52) -> 51
, 4_1(54) -> 53
, 4_1(55) -> 54
, 4_1(56) -> 55
, 4_1(57) -> 314
, 4_1(58) -> 258
, 4_1(59) -> 1
, 4_1(59) -> 20
, 4_1(59) -> 116
, 4_1(59) -> 171
, 4_1(59) -> 258
, 4_1(63) -> 62
, 4_1(69) -> 68
, 4_1(75) -> 20
, 4_1(76) -> 75
, 4_1(77) -> 76
, 4_1(78) -> 77
, 4_1(79) -> 78
, 4_1(81) -> 80
, 4_1(84) -> 83
, 4_1(86) -> 85
, 4_1(88) -> 20
, 4_1(93) -> 92
, 4_1(99) -> 98
, 4_1(109) -> 108
, 4_1(115) -> 267
, 4_1(116) -> 115
, 4_1(117) -> 2
, 4_1(126) -> 125
, 4_1(130) -> 1
, 4_1(130) -> 116
, 4_1(130) -> 129
, 4_1(131) -> 59
, 4_1(134) -> 133
, 4_1(144) -> 1
, 4_1(144) -> 116
, 4_1(145) -> 115
, 4_1(152) -> 151
, 4_1(154) -> 153
, 4_1(157) -> 315
, 4_1(158) -> 157
, 4_1(159) -> 157
, 4_1(161) -> 20
, 4_1(165) -> 164
, 4_1(170) -> 169
, 4_1(174) -> 173
, 4_1(175) -> 174
, 4_1(184) -> 183
, 4_1(185) -> 157
, 4_1(187) -> 186
, 4_1(194) -> 193
, 4_1(197) -> 157
, 4_1(204) -> 203
, 4_1(207) -> 309
, 4_1(222) -> 221
, 4_1(227) -> 172
, 4_1(234) -> 294
, 4_1(241) -> 240
, 4_1(247) -> 246
, 4_1(250) -> 249
, 4_1(258) -> 157
, 4_1(260) -> 259
, 4_1(263) -> 262
, 4_1(266) -> 265
, 4_1(272) -> 271
, 4_1(275) -> 20
, 4_1(279) -> 278
, 4_1(283) -> 282
, 4_1(286) -> 169
, 4_1(288) -> 117
, 4_1(311) -> 310
, 4_1(315) -> 2
, 4_2(116) -> 325
, 4_2(145) -> 325
, 4_2(318) -> 317
, 4_2(319) -> 318
, 4_2(324) -> 284
, 4_2(377) -> 376
, 4_2(378) -> 380
, 3_0(1) -> 1
, 3_1(1) -> 38
, 3_1(4) -> 3
, 3_1(29) -> 28
, 3_1(32) -> 31
, 3_1(38) -> 37
, 3_1(39) -> 38
, 3_1(42) -> 41
, 3_1(61) -> 60
, 3_1(66) -> 65
, 3_1(71) -> 70
, 3_1(83) -> 82
, 3_1(88) -> 272
, 3_1(89) -> 38
, 3_1(90) -> 89
, 3_1(106) -> 105
, 3_1(107) -> 106
, 3_1(110) -> 109
, 3_1(115) -> 286
, 3_1(116) -> 226
, 3_1(118) -> 117
, 3_1(119) -> 118
, 3_1(121) -> 120
, 3_1(127) -> 126
, 3_1(132) -> 131
, 3_1(133) -> 132
, 3_1(138) -> 137
, 3_1(139) -> 138
, 3_1(143) -> 142
, 3_1(144) -> 143
, 3_1(148) -> 147
, 3_1(150) -> 149
, 3_1(153) -> 152
, 3_1(160) -> 2
, 3_1(162) -> 161
, 3_1(164) -> 163
, 3_1(171) -> 170
, 3_1(172) -> 145
, 3_1(190) -> 189
, 3_1(195) -> 194
, 3_1(196) -> 195
, 3_1(197) -> 1
, 3_1(197) -> 38
, 3_1(199) -> 198
, 3_1(203) -> 202
, 3_1(205) -> 204
, 3_1(207) -> 263
, 3_1(214) -> 213
, 3_1(216) -> 215
, 3_1(219) -> 218
, 3_1(225) -> 224
, 3_1(230) -> 229
, 3_1(236) -> 235
, 3_1(238) -> 237
, 3_1(249) -> 248
, 3_1(255) -> 254
, 3_1(258) -> 39
, 3_1(265) -> 264
, 3_1(270) -> 269
, 3_1(273) -> 272
, 3_1(278) -> 277
, 3_1(280) -> 279
, 3_1(286) -> 285
, 3_1(310) -> 88
, 3_1(312) -> 311
, 3_1(314) -> 313
, 3_1(328) -> 38
, 3_2(376) -> 375
, 3_2(380) -> 379
, 5_0(1) -> 1
, 5_1(1) -> 159
, 5_1(2) -> 1
, 5_1(2) -> 19
, 5_1(2) -> 20
, 5_1(2) -> 37
, 5_1(2) -> 38
, 5_1(2) -> 101
, 5_1(2) -> 115
, 5_1(2) -> 116
, 5_1(2) -> 159
, 5_1(2) -> 258
, 5_1(2) -> 263
, 5_1(2) -> 280
, 5_1(2) -> 314
, 5_1(2) -> 325
, 5_1(2) -> 327
, 5_1(5) -> 4
, 5_1(7) -> 6
, 5_1(8) -> 7
, 5_1(18) -> 17
, 5_1(20) -> 19
, 5_1(27) -> 26
, 5_1(35) -> 34
, 5_1(36) -> 35
, 5_1(40) -> 39
, 5_1(43) -> 42
, 5_1(50) -> 49
, 5_1(51) -> 50
, 5_1(57) -> 233
, 5_1(58) -> 87
, 5_1(59) -> 38
, 5_1(70) -> 69
, 5_1(80) -> 79
, 5_1(82) -> 81
, 5_1(87) -> 86
, 5_1(88) -> 39
, 5_1(94) -> 93
, 5_1(103) -> 102
, 5_1(112) -> 111
, 5_1(124) -> 123
, 5_1(130) -> 185
, 5_1(131) -> 38
, 5_1(140) -> 139
, 5_1(141) -> 140
, 5_1(144) -> 2
, 5_1(145) -> 159
, 5_1(147) -> 146
, 5_1(151) -> 150
, 5_1(157) -> 156
, 5_1(159) -> 158
, 5_1(160) -> 39
, 5_1(166) -> 165
, 5_1(186) -> 39
, 5_1(188) -> 187
, 5_1(191) -> 190
, 5_1(197) -> 39
, 5_1(198) -> 197
, 5_1(207) -> 287
, 5_1(208) -> 145
, 5_1(215) -> 214
, 5_1(216) -> 288
, 5_1(217) -> 89
, 5_1(220) -> 219
, 5_1(224) -> 223
, 5_1(228) -> 227
, 5_1(231) -> 230
, 5_1(233) -> 232
, 5_1(234) -> 233
, 5_1(239) -> 238
, 5_1(244) -> 75
, 5_1(250) -> 312
, 5_1(251) -> 3
, 5_1(261) -> 260
, 5_1(262) -> 261
, 5_1(264) -> 160
, 5_1(269) -> 268
, 5_1(289) -> 2
, 5_1(294) -> 293
, 5_1(297) -> 86
, 5_1(300) -> 297
, 5_1(309) -> 258
, 5_1(320) -> 310
, 5_2(2) -> 319
, 5_2(309) -> 319}
Hurray, we answered YES(?,O(n^1))Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(3(4(2(5(2(5(1(1(5(3(5(1(5(0(4(1(0(2(2(0(x1)))))))))))))))))))))
-> 5(0(3(5(4(5(5(1(2(2(1(4(0(0(1(2(5(1(5(4(x1))))))))))))))))))))
, 2(4(4(3(3(3(5(2(3(0(2(5(1(3(3(0(4(3(4(0(1(x1)))))))))))))))))))))
-> 5(1(1(4(1(4(2(5(2(3(0(1(3(1(1(5(5(1(3(3(x1))))))))))))))))))))
, 1(2(4(1(0(2(1(5(0(0(5(1(4(0(4(5(3(1(2(5(0(x1)))))))))))))))))))))
->
1(0(2(3(5(4(1(1(1(1(1(5(5(4(1(4(4(4(1(2(0(x1)))))))))))))))))))))
, 4(0(0(1(2(4(0(2(4(1(2(1(0(4(3(1(1(0(2(x1))))))))))))))))))) ->
4(0(3(1(4(1(0(3(1(0(4(5(3(0(0(1(4(4(x1))))))))))))))))))
, 2(4(5(2(3(2(5(1(4(1(3(5(0(0(1(1(3(1(4(x1))))))))))))))))))) ->
5(2(4(4(4(4(5(4(5(3(4(1(4(5(5(0(x1))))))))))))))))
, 1(0(3(1(1(2(2(0(3(3(2(0(0(1(1(5(3(5(2(x1))))))))))))))))))) ->
0(1(3(1(1(4(5(0(1(2(1(4(2(2(2(4(4(x1)))))))))))))))))
, 5(4(3(4(3(4(5(2(2(0(5(0(4(3(4(0(2(2(x1)))))))))))))))))) ->
5(1(2(5(1(1(3(3(0(4(3(2(5(2(1(2(4(2(x1))))))))))))))))))
, 5(3(3(3(5(0(2(1(0(0(4(5(1(3(2(0(0(x1))))))))))))))))) ->
5(4(3(3(0(3(1(2(5(2(4(3(1(1(4(1(x1))))))))))))))))
, 2(5(4(3(0(1(2(2(5(2(3(4(3(3(5(0(2(x1))))))))))))))))) ->
4(4(3(3(4(0(2(1(3(3(5(5(0(3(3(1(4(x1)))))))))))))))))
, 2(0(2(3(5(1(1(5(4(4(3(4(2(2(2(4(5(x1))))))))))))))))) ->
2(2(5(3(0(3(5(4(3(4(0(1(5(4(5(5(x1))))))))))))))))
, 3(1(0(2(5(0(0(4(1(3(0(1(3(4(2(3(x1)))))))))))))))) ->
5(3(0(3(1(3(4(5(2(1(2(4(3(4(3(x1)))))))))))))))
, 3(0(0(4(1(4(0(1(4(4(0(4(4(5(5(0(x1)))))))))))))))) ->
2(3(0(4(4(1(1(1(0(2(0(0(1(4(0(5(1(x1)))))))))))))))))
, 4(1(0(5(1(2(5(5(3(4(2(1(3(0(0(x1))))))))))))))) ->
1(5(4(5(0(3(5(1(2(4(3(3(0(2(x1))))))))))))))
, 3(5(0(2(5(3(2(2(1(0(3(0(0(2(x1)))))))))))))) ->
3(5(3(2(1(2(3(4(3(1(1(0(5(x1)))))))))))))
, 2(3(0(4(3(3(1(1(0(2(1(4(5(5(x1)))))))))))))) ->
2(5(0(2(2(2(0(3(5(3(0(4(5(x1)))))))))))))
, 0(5(3(3(0(1(4(5(4(4(1(1(3(0(x1)))))))))))))) ->
0(1(5(0(3(5(2(4(0(5(3(1(3(2(x1))))))))))))))
, 4(0(3(4(0(4(3(0(2(3(0(5(2(x1))))))))))))) ->
2(3(4(5(1(3(5(0(5(5(2(2(x1))))))))))))
, 3(5(1(4(4(1(2(2(5(2(3(4(4(x1))))))))))))) ->
0(0(3(2(3(5(2(4(0(1(0(0(4(5(x1))))))))))))))
, 5(2(1(4(2(2(1(2(4(1(2(0(x1)))))))))))) ->
5(2(5(2(2(4(1(3(4(0(4(x1)))))))))))
, 3(3(5(5(5(5(2(4(1(0(1(5(x1)))))))))))) ->
5(0(5(1(1(1(3(0(1(2(0(5(x1))))))))))))
, 1(3(1(1(1(3(0(2(0(0(3(0(x1)))))))))))) ->
1(3(1(4(5(5(4(3(0(5(x1))))))))))
, 4(0(0(1(0(4(3(3(0(2(2(x1))))))))))) ->
5(3(5(3(4(2(4(4(2(x1)))))))))
, 2(1(2(1(3(2(4(4(0(0(3(x1))))))))))) ->
5(1(0(5(3(1(4(3(0(3(x1))))))))))
, 1(3(1(1(0(0(2(0(3(4(0(x1))))))))))) ->
1(2(0(0(2(3(4(3(2(1(x1))))))))))
, 4(3(5(5(2(5(3(3(0(1(x1)))))))))) ->
4(2(1(4(0(2(3(3(4(2(x1))))))))))
, 4(2(0(2(5(2(2(3(1(0(x1)))))))))) -> 5(0(5(1(2(5(0(5(x1))))))))
, 3(3(2(4(2(3(4(3(3(x1))))))))) -> 5(4(4(5(0(4(3(x1)))))))
, 3(0(5(0(5(0(3(3(x1)))))))) -> 5(5(1(0(2(4(1(x1)))))))
, 2(0(2(2(4(3(1(0(x1)))))))) -> 2(1(1(5(4(2(2(x1)))))))
, 1(2(3(3(3(5(1(1(x1)))))))) -> 1(5(0(1(5(0(1(x1)))))))
, 2(1(1(3(5(5(3(x1))))))) -> 1(3(5(4(0(5(x1))))))
, 0(3(5(4(5(3(0(x1))))))) -> 0(3(4(3(5(0(4(x1)))))))
, 0(3(1(2(1(1(0(x1))))))) -> 1(1(3(4(2(0(x1))))))
, 2(4(1(1(3(5(x1)))))) -> 2(0(4(4(5(x1)))))
, 0(3(4(5(3(0(x1)))))) -> 0(3(5(1(0(2(x1))))))
, 5(3(3(4(5(x1))))) -> 5(4(1(5(x1))))
, 2(1(0(1(0(x1))))) -> 1(3(4(0(x1))))
, 4(2(4(0(x1)))) -> 0(0(1(1(x1))))
, 2(3(3(4(x1)))) -> 4(1(4(x1)))
, 0(1(0(0(x1)))) -> 1(1(2(x1)))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(3(4(2(5(2(5(1(1(5(3(5(1(5(0(4(1(0(2(2(0(x1)))))))))))))))))))))
-> 5(0(3(5(4(5(5(1(2(2(1(4(0(0(1(2(5(1(5(4(x1))))))))))))))))))))
, 2(4(4(3(3(3(5(2(3(0(2(5(1(3(3(0(4(3(4(0(1(x1)))))))))))))))))))))
-> 5(1(1(4(1(4(2(5(2(3(0(1(3(1(1(5(5(1(3(3(x1))))))))))))))))))))
, 1(2(4(1(0(2(1(5(0(0(5(1(4(0(4(5(3(1(2(5(0(x1)))))))))))))))))))))
->
1(0(2(3(5(4(1(1(1(1(1(5(5(4(1(4(4(4(1(2(0(x1)))))))))))))))))))))
, 4(0(0(1(2(4(0(2(4(1(2(1(0(4(3(1(1(0(2(x1))))))))))))))))))) ->
4(0(3(1(4(1(0(3(1(0(4(5(3(0(0(1(4(4(x1))))))))))))))))))
, 2(4(5(2(3(2(5(1(4(1(3(5(0(0(1(1(3(1(4(x1))))))))))))))))))) ->
5(2(4(4(4(4(5(4(5(3(4(1(4(5(5(0(x1))))))))))))))))
, 1(0(3(1(1(2(2(0(3(3(2(0(0(1(1(5(3(5(2(x1))))))))))))))))))) ->
0(1(3(1(1(4(5(0(1(2(1(4(2(2(2(4(4(x1)))))))))))))))))
, 5(4(3(4(3(4(5(2(2(0(5(0(4(3(4(0(2(2(x1)))))))))))))))))) ->
5(1(2(5(1(1(3(3(0(4(3(2(5(2(1(2(4(2(x1))))))))))))))))))
, 5(3(3(3(5(0(2(1(0(0(4(5(1(3(2(0(0(x1))))))))))))))))) ->
5(4(3(3(0(3(1(2(5(2(4(3(1(1(4(1(x1))))))))))))))))
, 2(5(4(3(0(1(2(2(5(2(3(4(3(3(5(0(2(x1))))))))))))))))) ->
4(4(3(3(4(0(2(1(3(3(5(5(0(3(3(1(4(x1)))))))))))))))))
, 2(0(2(3(5(1(1(5(4(4(3(4(2(2(2(4(5(x1))))))))))))))))) ->
2(2(5(3(0(3(5(4(3(4(0(1(5(4(5(5(x1))))))))))))))))
, 3(1(0(2(5(0(0(4(1(3(0(1(3(4(2(3(x1)))))))))))))))) ->
5(3(0(3(1(3(4(5(2(1(2(4(3(4(3(x1)))))))))))))))
, 3(0(0(4(1(4(0(1(4(4(0(4(4(5(5(0(x1)))))))))))))))) ->
2(3(0(4(4(1(1(1(0(2(0(0(1(4(0(5(1(x1)))))))))))))))))
, 4(1(0(5(1(2(5(5(3(4(2(1(3(0(0(x1))))))))))))))) ->
1(5(4(5(0(3(5(1(2(4(3(3(0(2(x1))))))))))))))
, 3(5(0(2(5(3(2(2(1(0(3(0(0(2(x1)))))))))))))) ->
3(5(3(2(1(2(3(4(3(1(1(0(5(x1)))))))))))))
, 2(3(0(4(3(3(1(1(0(2(1(4(5(5(x1)))))))))))))) ->
2(5(0(2(2(2(0(3(5(3(0(4(5(x1)))))))))))))
, 0(5(3(3(0(1(4(5(4(4(1(1(3(0(x1)))))))))))))) ->
0(1(5(0(3(5(2(4(0(5(3(1(3(2(x1))))))))))))))
, 4(0(3(4(0(4(3(0(2(3(0(5(2(x1))))))))))))) ->
2(3(4(5(1(3(5(0(5(5(2(2(x1))))))))))))
, 3(5(1(4(4(1(2(2(5(2(3(4(4(x1))))))))))))) ->
0(0(3(2(3(5(2(4(0(1(0(0(4(5(x1))))))))))))))
, 5(2(1(4(2(2(1(2(4(1(2(0(x1)))))))))))) ->
5(2(5(2(2(4(1(3(4(0(4(x1)))))))))))
, 3(3(5(5(5(5(2(4(1(0(1(5(x1)))))))))))) ->
5(0(5(1(1(1(3(0(1(2(0(5(x1))))))))))))
, 1(3(1(1(1(3(0(2(0(0(3(0(x1)))))))))))) ->
1(3(1(4(5(5(4(3(0(5(x1))))))))))
, 4(0(0(1(0(4(3(3(0(2(2(x1))))))))))) ->
5(3(5(3(4(2(4(4(2(x1)))))))))
, 2(1(2(1(3(2(4(4(0(0(3(x1))))))))))) ->
5(1(0(5(3(1(4(3(0(3(x1))))))))))
, 1(3(1(1(0(0(2(0(3(4(0(x1))))))))))) ->
1(2(0(0(2(3(4(3(2(1(x1))))))))))
, 4(3(5(5(2(5(3(3(0(1(x1)))))))))) ->
4(2(1(4(0(2(3(3(4(2(x1))))))))))
, 4(2(0(2(5(2(2(3(1(0(x1)))))))))) -> 5(0(5(1(2(5(0(5(x1))))))))
, 3(3(2(4(2(3(4(3(3(x1))))))))) -> 5(4(4(5(0(4(3(x1)))))))
, 3(0(5(0(5(0(3(3(x1)))))))) -> 5(5(1(0(2(4(1(x1)))))))
, 2(0(2(2(4(3(1(0(x1)))))))) -> 2(1(1(5(4(2(2(x1)))))))
, 1(2(3(3(3(5(1(1(x1)))))))) -> 1(5(0(1(5(0(1(x1)))))))
, 2(1(1(3(5(5(3(x1))))))) -> 1(3(5(4(0(5(x1))))))
, 0(3(5(4(5(3(0(x1))))))) -> 0(3(4(3(5(0(4(x1)))))))
, 0(3(1(2(1(1(0(x1))))))) -> 1(1(3(4(2(0(x1))))))
, 2(4(1(1(3(5(x1)))))) -> 2(0(4(4(5(x1)))))
, 0(3(4(5(3(0(x1)))))) -> 0(3(5(1(0(2(x1))))))
, 5(3(3(4(5(x1))))) -> 5(4(1(5(x1))))
, 2(1(0(1(0(x1))))) -> 1(3(4(0(x1))))
, 4(2(4(0(x1)))) -> 0(0(1(1(x1))))
, 2(3(3(4(x1)))) -> 4(1(4(x1)))
, 0(1(0(0(x1)))) -> 1(1(2(x1)))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(3(4(2(5(2(5(1(1(5(3(5(1(5(0(4(1(0(2(2(0(x1)))))))))))))))))))))
-> 5(0(3(5(4(5(5(1(2(2(1(4(0(0(1(2(5(1(5(4(x1))))))))))))))))))))
, 2(4(4(3(3(3(5(2(3(0(2(5(1(3(3(0(4(3(4(0(1(x1)))))))))))))))))))))
-> 5(1(1(4(1(4(2(5(2(3(0(1(3(1(1(5(5(1(3(3(x1))))))))))))))))))))
, 1(2(4(1(0(2(1(5(0(0(5(1(4(0(4(5(3(1(2(5(0(x1)))))))))))))))))))))
->
1(0(2(3(5(4(1(1(1(1(1(5(5(4(1(4(4(4(1(2(0(x1)))))))))))))))))))))
, 4(0(0(1(2(4(0(2(4(1(2(1(0(4(3(1(1(0(2(x1))))))))))))))))))) ->
4(0(3(1(4(1(0(3(1(0(4(5(3(0(0(1(4(4(x1))))))))))))))))))
, 2(4(5(2(3(2(5(1(4(1(3(5(0(0(1(1(3(1(4(x1))))))))))))))))))) ->
5(2(4(4(4(4(5(4(5(3(4(1(4(5(5(0(x1))))))))))))))))
, 1(0(3(1(1(2(2(0(3(3(2(0(0(1(1(5(3(5(2(x1))))))))))))))))))) ->
0(1(3(1(1(4(5(0(1(2(1(4(2(2(2(4(4(x1)))))))))))))))))
, 5(4(3(4(3(4(5(2(2(0(5(0(4(3(4(0(2(2(x1)))))))))))))))))) ->
5(1(2(5(1(1(3(3(0(4(3(2(5(2(1(2(4(2(x1))))))))))))))))))
, 5(3(3(3(5(0(2(1(0(0(4(5(1(3(2(0(0(x1))))))))))))))))) ->
5(4(3(3(0(3(1(2(5(2(4(3(1(1(4(1(x1))))))))))))))))
, 2(5(4(3(0(1(2(2(5(2(3(4(3(3(5(0(2(x1))))))))))))))))) ->
4(4(3(3(4(0(2(1(3(3(5(5(0(3(3(1(4(x1)))))))))))))))))
, 2(0(2(3(5(1(1(5(4(4(3(4(2(2(2(4(5(x1))))))))))))))))) ->
2(2(5(3(0(3(5(4(3(4(0(1(5(4(5(5(x1))))))))))))))))
, 3(1(0(2(5(0(0(4(1(3(0(1(3(4(2(3(x1)))))))))))))))) ->
5(3(0(3(1(3(4(5(2(1(2(4(3(4(3(x1)))))))))))))))
, 3(0(0(4(1(4(0(1(4(4(0(4(4(5(5(0(x1)))))))))))))))) ->
2(3(0(4(4(1(1(1(0(2(0(0(1(4(0(5(1(x1)))))))))))))))))
, 4(1(0(5(1(2(5(5(3(4(2(1(3(0(0(x1))))))))))))))) ->
1(5(4(5(0(3(5(1(2(4(3(3(0(2(x1))))))))))))))
, 3(5(0(2(5(3(2(2(1(0(3(0(0(2(x1)))))))))))))) ->
3(5(3(2(1(2(3(4(3(1(1(0(5(x1)))))))))))))
, 2(3(0(4(3(3(1(1(0(2(1(4(5(5(x1)))))))))))))) ->
2(5(0(2(2(2(0(3(5(3(0(4(5(x1)))))))))))))
, 0(5(3(3(0(1(4(5(4(4(1(1(3(0(x1)))))))))))))) ->
0(1(5(0(3(5(2(4(0(5(3(1(3(2(x1))))))))))))))
, 4(0(3(4(0(4(3(0(2(3(0(5(2(x1))))))))))))) ->
2(3(4(5(1(3(5(0(5(5(2(2(x1))))))))))))
, 3(5(1(4(4(1(2(2(5(2(3(4(4(x1))))))))))))) ->
0(0(3(2(3(5(2(4(0(1(0(0(4(5(x1))))))))))))))
, 5(2(1(4(2(2(1(2(4(1(2(0(x1)))))))))))) ->
5(2(5(2(2(4(1(3(4(0(4(x1)))))))))))
, 3(3(5(5(5(5(2(4(1(0(1(5(x1)))))))))))) ->
5(0(5(1(1(1(3(0(1(2(0(5(x1))))))))))))
, 1(3(1(1(1(3(0(2(0(0(3(0(x1)))))))))))) ->
1(3(1(4(5(5(4(3(0(5(x1))))))))))
, 4(0(0(1(0(4(3(3(0(2(2(x1))))))))))) ->
5(3(5(3(4(2(4(4(2(x1)))))))))
, 2(1(2(1(3(2(4(4(0(0(3(x1))))))))))) ->
5(1(0(5(3(1(4(3(0(3(x1))))))))))
, 1(3(1(1(0(0(2(0(3(4(0(x1))))))))))) ->
1(2(0(0(2(3(4(3(2(1(x1))))))))))
, 4(3(5(5(2(5(3(3(0(1(x1)))))))))) ->
4(2(1(4(0(2(3(3(4(2(x1))))))))))
, 4(2(0(2(5(2(2(3(1(0(x1)))))))))) -> 5(0(5(1(2(5(0(5(x1))))))))
, 3(3(2(4(2(3(4(3(3(x1))))))))) -> 5(4(4(5(0(4(3(x1)))))))
, 3(0(5(0(5(0(3(3(x1)))))))) -> 5(5(1(0(2(4(1(x1)))))))
, 2(0(2(2(4(3(1(0(x1)))))))) -> 2(1(1(5(4(2(2(x1)))))))
, 1(2(3(3(3(5(1(1(x1)))))))) -> 1(5(0(1(5(0(1(x1)))))))
, 2(1(1(3(5(5(3(x1))))))) -> 1(3(5(4(0(5(x1))))))
, 0(3(5(4(5(3(0(x1))))))) -> 0(3(4(3(5(0(4(x1)))))))
, 0(3(1(2(1(1(0(x1))))))) -> 1(1(3(4(2(0(x1))))))
, 2(4(1(1(3(5(x1)))))) -> 2(0(4(4(5(x1)))))
, 0(3(4(5(3(0(x1)))))) -> 0(3(5(1(0(2(x1))))))
, 5(3(3(4(5(x1))))) -> 5(4(1(5(x1))))
, 2(1(0(1(0(x1))))) -> 1(3(4(0(x1))))
, 4(2(4(0(x1)))) -> 0(0(1(1(x1))))
, 2(3(3(4(x1)))) -> 4(1(4(x1)))
, 0(1(0(0(x1)))) -> 1(1(2(x1)))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..