Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 5(4(0(0(3(2(5(3(0(3(0(4(5(0(4(4(5(1(1(1(3(x1)))))))))))))))))))))
->
5(2(5(1(0(3(5(3(2(1(0(0(5(5(4(5(4(4(2(2(2(x1)))))))))))))))))))))
, 5(1(3(4(0(3(0(2(5(3(0(2(2(0(1(2(3(3(4(1(1(x1)))))))))))))))))))))
-> 5(0(1(1(4(2(0(1(1(2(1(4(0(4(3(1(2(0(0(2(x1))))))))))))))))))))
, 2(1(5(5(3(0(1(3(3(3(1(2(0(5(2(0(3(5(2(2(2(x1)))))))))))))))))))))
-> 3(0(3(3(4(0(1(4(5(1(3(3(3(4(1(2(1(3(2(1(x1))))))))))))))))))))
, 3(3(4(3(3(4(3(0(2(5(3(1(4(5(2(5(2(4(3(5(x1)))))))))))))))))))) ->
5(2(5(0(5(0(1(1(1(3(2(4(4(0(3(2(4(1(5(x1)))))))))))))))))))
, 0(3(0(2(2(2(5(5(2(4(4(3(5(1(0(0(0(3(3(x1))))))))))))))))))) ->
3(3(1(3(4(5(5(2(0(4(2(3(1(1(5(1(2(3(x1))))))))))))))))))
, 2(2(1(3(4(0(1(1(4(2(2(2(0(4(4(2(4(4(x1)))))))))))))))))) ->
4(3(4(4(5(5(0(1(0(1(3(2(5(5(1(1(4(4(x1))))))))))))))))))
, 5(5(3(5(0(5(3(5(2(3(1(3(3(4(0(2(x1)))))))))))))))) ->
5(2(4(2(4(4(0(5(5(1(3(4(0(4(0(x1)))))))))))))))
, 3(5(5(0(2(2(0(0(3(5(1(3(3(5(3(5(x1)))))))))))))))) ->
3(1(4(2(0(3(4(0(4(1(5(4(2(5(x1))))))))))))))
, 3(5(3(3(1(2(4(0(4(3(5(4(2(1(x1)))))))))))))) ->
5(2(0(1(4(4(3(3(3(5(3(4(1(2(x1))))))))))))))
, 2(0(3(0(2(3(1(0(0(3(0(3(5(3(x1)))))))))))))) ->
3(4(0(2(1(4(4(4(0(5(5(5(2(x1)))))))))))))
, 3(5(3(3(3(2(3(0(2(4(2(1(3(x1))))))))))))) ->
5(1(3(1(4(0(0(1(5(0(4(5(x1))))))))))))
, 2(5(5(3(5(3(1(3(1(2(5(0(0(x1))))))))))))) ->
2(5(5(5(0(4(5(5(1(1(3(2(2(x1)))))))))))))
, 2(5(2(4(1(5(3(3(1(0(2(5(3(x1))))))))))))) ->
2(3(1(3(3(5(1(2(0(3(2(3(0(x1)))))))))))))
, 0(5(3(5(1(0(5(1(2(4(4(5(0(x1))))))))))))) ->
0(3(1(0(4(5(5(2(5(5(2(4(0(x1)))))))))))))
, 3(3(3(4(3(0(0(4(4(5(0(5(x1)))))))))))) ->
3(1(5(5(0(3(1(0(5(2(5(x1)))))))))))
, 3(0(2(4(5(2(1(2(0(2(5(1(x1)))))))))))) ->
3(1(3(0(5(0(2(2(4(0(4(x1)))))))))))
, 2(5(5(0(1(1(5(1(4(2(3(3(x1)))))))))))) ->
4(2(3(0(3(0(0(2(3(2(3(x1)))))))))))
, 1(5(5(2(4(2(4(0(3(3(0(x1))))))))))) ->
1(3(5(4(5(5(5(3(2(4(2(x1)))))))))))
, 4(4(3(2(0(1(1(4(0(2(x1)))))))))) ->
2(3(4(0(0(1(2(1(3(4(x1))))))))))
, 2(0(4(2(3(3(3(5(4(2(x1)))))))))) ->
3(4(4(2(0(2(3(3(5(2(x1))))))))))
, 5(3(5(4(4(2(2(2(1(x1))))))))) -> 5(0(3(0(0(4(5(2(1(x1)))))))))
, 5(0(4(0(0(1(3(5(0(x1))))))))) -> 5(0(0(0(3(5(5(3(2(x1)))))))))
, 2(1(4(0(4(1(5(0(2(x1))))))))) -> 3(3(2(2(3(0(3(3(4(x1)))))))))
, 2(4(0(2(3(0(0(2(x1)))))))) -> 2(4(0(3(4(4(2(x1)))))))
, 2(0(4(3(5(3(3(1(x1)))))))) -> 2(1(2(2(2(0(3(1(x1))))))))
, 0(5(3(1(4(3(x1)))))) -> 1(4(0(5(2(x1)))))
, 0(0(1(2(2(3(x1)))))) -> 4(0(2(2(3(x1)))))
, 5(3(5(0(1(x1))))) -> 5(2(3(0(x1))))
, 2(0(0(3(x1)))) -> 3(4(1(x1)))
, 0(1(0(2(x1)))) -> 3(4(4(x1)))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ 2_0(1) -> 1
, 2_0(2) -> 1
, 2_0(3) -> 1
, 2_0(4) -> 1
, 2_0(5) -> 1
, 2_0(6) -> 1
, 2_1(1) -> 26
, 2_1(2) -> 26
, 2_1(3) -> 26
, 2_1(4) -> 26
, 2_1(5) -> 26
, 2_1(6) -> 26
, 2_1(8) -> 7
, 2_1(15) -> 14
, 2_1(24) -> 24
, 2_1(25) -> 24
, 2_1(26) -> 25
, 2_1(27) -> 25
, 2_1(28) -> 25
, 2_1(29) -> 26
, 2_1(31) -> 30
, 2_1(35) -> 34
, 2_1(42) -> 41
, 2_1(44) -> 26
, 2_1(45) -> 26
, 2_1(46) -> 26
, 2_1(47) -> 26
, 2_1(59) -> 58
, 2_1(62) -> 61
, 2_1(64) -> 63
, 2_1(73) -> 72
, 2_1(77) -> 25
, 2_1(78) -> 77
, 2_1(80) -> 138
, 2_1(81) -> 26
, 2_1(82) -> 26
, 2_1(83) -> 25
, 2_1(84) -> 24
, 2_1(88) -> 87
, 2_1(91) -> 90
, 2_1(96) -> 261
, 2_1(97) -> 96
, 2_1(99) -> 26
, 2_1(109) -> 108
, 2_1(112) -> 61
, 2_1(113) -> 26
, 2_1(114) -> 26
, 2_1(116) -> 115
, 2_1(123) -> 25
, 2_1(125) -> 1
, 2_1(125) -> 26
, 2_1(125) -> 196
, 2_1(125) -> 256
, 2_1(126) -> 256
, 2_1(127) -> 26
, 2_1(128) -> 26
, 2_1(130) -> 129
, 2_1(137) -> 224
, 2_1(150) -> 149
, 2_1(151) -> 25
, 2_1(156) -> 193
, 2_1(167) -> 1
, 2_1(167) -> 26
, 2_1(167) -> 138
, 2_1(167) -> 196
, 2_1(167) -> 256
, 2_1(176) -> 215
, 2_1(183) -> 182
, 2_1(186) -> 185
, 2_1(187) -> 26
, 2_1(188) -> 26
, 2_1(189) -> 26
, 2_1(190) -> 1
, 2_1(194) -> 193
, 2_1(203) -> 26
, 2_1(204) -> 1
, 2_1(206) -> 25
, 2_1(207) -> 206
, 2_1(208) -> 207
, 2_1(210) -> 98
, 2_1(216) -> 215
, 2_1(217) -> 26
, 2_1(218) -> 26
, 2_1(225) -> 4
, 2_1(225) -> 113
, 2_1(225) -> 114
, 2_1(231) -> 230
, 2_1(232) -> 25
, 2_1(234) -> 233
, 2_1(236) -> 235
, 2_1(242) -> 1
, 2_1(246) -> 26
, 2_1(247) -> 246
, 2_1(248) -> 247
, 2_1(249) -> 25
, 2_1(250) -> 1
, 2_1(254) -> 26
, 2_1(255) -> 254
, 2_1(256) -> 255
, 2_1(257) -> 256
, 2_1(259) -> 26
, 2_1(269) -> 1
, 2_1(6825) -> 1
, 2_2(47) -> 6839
, 2_2(187) -> 6839
, 2_2(232) -> 6839
, 2_2(246) -> 6839
, 2_2(247) -> 6839
, 2_2(248) -> 6839
, 2_2(249) -> 6839
, 2_2(269) -> 6839
, 2_2(3057) -> 3056
, 2_2(3058) -> 3057
, 2_2(6825) -> 6839
, 2_2(6838) -> 6837
, 2_2(7127) -> 7126
, 0_0(1) -> 2
, 0_0(2) -> 2
, 0_0(3) -> 2
, 0_0(4) -> 2
, 0_0(5) -> 2
, 0_0(6) -> 2
, 0_1(1) -> 126
, 0_1(2) -> 126
, 0_1(3) -> 126
, 0_1(4) -> 126
, 0_1(5) -> 126
, 0_1(6) -> 126
, 0_1(11) -> 10
, 0_1(17) -> 16
, 0_1(18) -> 17
, 0_1(24) -> 7
, 0_1(25) -> 260
, 0_1(26) -> 43
, 0_1(27) -> 7
, 0_1(28) -> 126
, 0_1(29) -> 7
, 0_1(32) -> 31
, 0_1(38) -> 37
, 0_1(43) -> 42
, 0_1(44) -> 126
, 0_1(45) -> 44
, 0_1(46) -> 7
, 0_1(47) -> 1
, 0_1(49) -> 48
, 0_1(66) -> 65
, 0_1(68) -> 67
, 0_1(76) -> 75
, 0_1(77) -> 7
, 0_1(78) -> 126
, 0_1(80) -> 201
, 0_1(81) -> 126
, 0_1(82) -> 7
, 0_1(83) -> 7
, 0_1(89) -> 88
, 0_1(96) -> 7
, 0_1(99) -> 7
, 0_1(104) -> 103
, 0_1(106) -> 105
, 0_1(113) -> 7
, 0_1(114) -> 209
, 0_1(119) -> 118
, 0_1(123) -> 7
, 0_1(125) -> 124
, 0_1(127) -> 126
, 0_1(128) -> 7
, 0_1(131) -> 130
, 0_1(134) -> 133
, 0_1(139) -> 64
, 0_1(149) -> 148
, 0_1(150) -> 7
, 0_1(151) -> 7
, 0_1(155) -> 154
, 0_1(157) -> 201
, 0_1(162) -> 161
, 0_1(163) -> 162
, 0_1(165) -> 177
, 0_1(166) -> 165
, 0_1(167) -> 7
, 0_1(171) -> 170
, 0_1(184) -> 183
, 0_1(186) -> 126
, 0_1(187) -> 2
, 0_1(187) -> 126
, 0_1(187) -> 201
, 0_1(188) -> 7
, 0_1(189) -> 7
, 0_1(190) -> 189
, 0_1(199) -> 198
, 0_1(202) -> 201
, 0_1(203) -> 7
, 0_1(204) -> 203
, 0_1(206) -> 205
, 0_1(207) -> 7
, 0_1(208) -> 7
, 0_1(212) -> 211
, 0_1(214) -> 213
, 0_1(215) -> 214
, 0_1(216) -> 183
, 0_1(217) -> 126
, 0_1(218) -> 7
, 0_1(220) -> 154
, 0_1(225) -> 7
, 0_1(228) -> 227
, 0_1(229) -> 228
, 0_1(232) -> 1
, 0_1(235) -> 234
, 0_1(239) -> 238
, 0_1(240) -> 239
, 0_1(242) -> 27
, 0_1(243) -> 242
, 0_1(246) -> 1
, 0_1(247) -> 1
, 0_1(248) -> 1
, 0_1(249) -> 1
, 0_1(250) -> 249
, 0_1(252) -> 251
, 0_1(254) -> 7
, 0_1(258) -> 257
, 0_1(259) -> 126
, 0_1(261) -> 260
, 0_1(269) -> 1
, 0_1(6825) -> 1
, 0_2(28) -> 7128
, 0_2(83) -> 7128
, 0_2(151) -> 7128
, 0_2(189) -> 7128
, 0_2(254) -> 7128
, 0_2(3060) -> 3059
, 1_0(1) -> 3
, 1_0(2) -> 3
, 1_0(3) -> 3
, 1_0(4) -> 3
, 1_0(5) -> 3
, 1_0(6) -> 3
, 1_1(1) -> 62
, 1_1(2) -> 62
, 1_1(3) -> 62
, 1_1(4) -> 62
, 1_1(5) -> 62
, 1_1(6) -> 62
, 1_1(10) -> 9
, 1_1(16) -> 15
, 1_1(24) -> 62
, 1_1(25) -> 95
, 1_1(26) -> 95
, 1_1(28) -> 27
, 1_1(29) -> 28
, 1_1(33) -> 32
, 1_1(34) -> 33
, 1_1(36) -> 35
, 1_1(41) -> 40
, 1_1(44) -> 62
, 1_1(50) -> 49
, 1_1(53) -> 52
, 1_1(58) -> 57
, 1_1(60) -> 59
, 1_1(61) -> 229
, 1_1(62) -> 111
, 1_1(69) -> 68
, 1_1(70) -> 69
, 1_1(71) -> 70
, 1_1(78) -> 62
, 1_1(80) -> 79
, 1_1(81) -> 62
, 1_1(83) -> 82
, 1_1(93) -> 92
, 1_1(94) -> 93
, 1_1(96) -> 95
, 1_1(97) -> 231
, 1_1(105) -> 104
, 1_1(107) -> 106
, 1_1(112) -> 111
, 1_1(113) -> 112
, 1_1(114) -> 112
, 1_1(122) -> 121
, 1_1(125) -> 112
, 1_1(127) -> 62
, 1_1(128) -> 127
, 1_1(136) -> 135
, 1_1(137) -> 112
, 1_1(140) -> 139
, 1_1(150) -> 111
, 1_1(151) -> 150
, 1_1(158) -> 63
, 1_1(160) -> 159
, 1_1(164) -> 163
, 1_1(167) -> 62
, 1_1(175) -> 174
, 1_1(176) -> 175
, 1_1(178) -> 177
, 1_1(182) -> 181
, 1_1(188) -> 62
, 1_1(189) -> 188
, 1_1(190) -> 62
, 1_1(201) -> 200
, 1_1(204) -> 62
, 1_1(206) -> 62
, 1_1(207) -> 62
, 1_1(217) -> 3
, 1_1(217) -> 62
, 1_1(217) -> 79
, 1_1(217) -> 270
, 1_1(225) -> 62
, 1_1(230) -> 229
, 1_1(232) -> 231
, 1_1(242) -> 62
, 1_1(247) -> 62
, 1_1(249) -> 62
, 1_1(250) -> 62
, 1_1(254) -> 167
, 1_1(259) -> 2
, 1_1(259) -> 126
, 1_1(259) -> 201
, 1_1(269) -> 62
, 1_1(6825) -> 62
, 1_2(44) -> 266
, 1_2(46) -> 268
, 1_2(78) -> 266
, 1_2(97) -> 4006
, 1_2(114) -> 268
, 1_2(127) -> 270
, 1_2(137) -> 268
, 1_2(188) -> 268
, 1_2(232) -> 270
, 1_2(244) -> 270
, 1_2(249) -> 268
, 1_2(269) -> 266
, 1_2(4005) -> 266
, 4_0(1) -> 4
, 4_0(2) -> 4
, 4_0(3) -> 4
, 4_0(4) -> 4
, 4_0(5) -> 4
, 4_0(6) -> 4
, 4_1(1) -> 114
, 4_1(2) -> 114
, 4_1(3) -> 114
, 4_1(4) -> 114
, 4_1(5) -> 114
, 4_1(6) -> 114
, 4_1(7) -> 125
, 4_1(21) -> 20
, 4_1(23) -> 22
, 4_1(24) -> 23
, 4_1(25) -> 1
, 4_1(26) -> 137
, 4_1(27) -> 114
, 4_1(28) -> 1
, 4_1(29) -> 1
, 4_1(30) -> 29
, 4_1(37) -> 36
, 4_1(39) -> 38
, 4_1(43) -> 2
, 4_1(43) -> 126
, 4_1(44) -> 1
, 4_1(45) -> 1
, 4_1(46) -> 1
, 4_1(47) -> 1
, 4_1(48) -> 47
, 4_1(51) -> 50
, 4_1(57) -> 56
, 4_1(62) -> 78
, 4_1(74) -> 73
, 4_1(75) -> 74
, 4_1(77) -> 1
, 4_1(78) -> 114
, 4_1(79) -> 78
, 4_1(80) -> 166
, 4_1(81) -> 1
, 4_1(82) -> 1
, 4_1(83) -> 1
, 4_1(84) -> 1
, 4_1(85) -> 84
, 4_1(90) -> 89
, 4_1(95) -> 147
, 4_1(96) -> 1
, 4_1(97) -> 114
, 4_1(98) -> 1
, 4_1(98) -> 25
, 4_1(98) -> 26
, 4_1(98) -> 138
, 4_1(99) -> 1
, 4_1(100) -> 99
, 4_1(101) -> 100
, 4_1(109) -> 171
, 4_1(112) -> 44
, 4_1(113) -> 1
, 4_1(114) -> 113
, 4_1(115) -> 8
, 4_1(117) -> 116
, 4_1(118) -> 117
, 4_1(123) -> 1
, 4_1(124) -> 123
, 4_1(125) -> 1
, 4_1(126) -> 125
, 4_1(127) -> 1
, 4_1(128) -> 1
, 4_1(129) -> 128
, 4_1(133) -> 132
, 4_1(135) -> 134
, 4_1(137) -> 253
, 4_1(138) -> 137
, 4_1(141) -> 140
, 4_1(142) -> 141
, 4_1(148) -> 44
, 4_1(151) -> 1
, 4_1(152) -> 151
, 4_1(153) -> 152
, 4_1(154) -> 153
, 4_1(157) -> 166
, 4_1(158) -> 114
, 4_1(161) -> 160
, 4_1(167) -> 114
, 4_1(172) -> 171
, 4_1(187) -> 1
, 4_1(188) -> 1
, 4_1(189) -> 1
, 4_1(190) -> 1
, 4_1(191) -> 190
, 4_1(201) -> 259
, 4_1(203) -> 1
, 4_1(204) -> 1
, 4_1(205) -> 1
, 4_1(206) -> 1
, 4_1(207) -> 1
, 4_1(208) -> 1
, 4_1(209) -> 208
, 4_1(217) -> 114
, 4_1(218) -> 1
, 4_1(220) -> 219
, 4_1(225) -> 114
, 4_1(227) -> 226
, 4_1(231) -> 24
, 4_1(232) -> 1
, 4_1(233) -> 148
, 4_1(241) -> 240
, 4_1(242) -> 1
, 4_1(246) -> 1
, 4_1(247) -> 1
, 4_1(248) -> 1
, 4_1(249) -> 1
, 4_1(250) -> 1
, 4_1(251) -> 167
, 4_1(254) -> 1
, 4_1(255) -> 1
, 4_1(259) -> 114
, 4_1(260) -> 2
, 4_1(260) -> 126
, 4_1(269) -> 1
, 4_1(270) -> 1
, 4_1(6825) -> 1
, 4_2(24) -> 3062
, 4_2(25) -> 3062
, 4_2(78) -> 3062
, 4_2(84) -> 3062
, 4_2(97) -> 3062
, 4_2(207) -> 3062
, 4_2(208) -> 3062
, 4_2(225) -> 3062
, 4_2(247) -> 3062
, 4_2(248) -> 3062
, 4_2(255) -> 3062
, 4_2(266) -> 265
, 4_2(268) -> 267
, 4_2(270) -> 269
, 4_2(4006) -> 4005
, 4_2(6829) -> 6828
, 4_2(6839) -> 6838
, 3_0(1) -> 5
, 3_0(2) -> 5
, 3_0(3) -> 5
, 3_0(4) -> 5
, 3_0(5) -> 5
, 3_0(6) -> 5
, 3_1(1) -> 97
, 3_1(2) -> 97
, 3_1(3) -> 97
, 3_1(4) -> 97
, 3_1(5) -> 97
, 3_1(6) -> 97
, 3_1(7) -> 186
, 3_1(12) -> 11
, 3_1(14) -> 13
, 3_1(23) -> 97
, 3_1(24) -> 1
, 3_1(25) -> 176
, 3_1(26) -> 176
, 3_1(40) -> 39
, 3_1(44) -> 1
, 3_1(44) -> 26
, 3_1(44) -> 61
, 3_1(44) -> 256
, 3_1(46) -> 45
, 3_1(47) -> 46
, 3_1(54) -> 53
, 3_1(55) -> 54
, 3_1(56) -> 55
, 3_1(61) -> 60
, 3_1(62) -> 258
, 3_1(72) -> 71
, 3_1(77) -> 76
, 3_1(78) -> 1
, 3_1(78) -> 26
, 3_1(78) -> 256
, 3_1(80) -> 237
, 3_1(81) -> 2
, 3_1(81) -> 126
, 3_1(82) -> 81
, 3_1(84) -> 83
, 3_1(92) -> 91
, 3_1(96) -> 216
, 3_1(97) -> 250
, 3_1(99) -> 98
, 3_1(108) -> 107
, 3_1(113) -> 2
, 3_1(113) -> 126
, 3_1(113) -> 252
, 3_1(114) -> 2
, 3_1(114) -> 126
, 3_1(114) -> 232
, 3_1(123) -> 122
, 3_1(125) -> 122
, 3_1(126) -> 186
, 3_1(127) -> 5
, 3_1(127) -> 97
, 3_1(127) -> 186
, 3_1(127) -> 237
, 3_1(127) -> 243
, 3_1(127) -> 250
, 3_1(132) -> 131
, 3_1(137) -> 232
, 3_1(143) -> 142
, 3_1(144) -> 143
, 3_1(145) -> 144
, 3_1(147) -> 146
, 3_1(149) -> 176
, 3_1(157) -> 237
, 3_1(159) -> 158
, 3_1(177) -> 167
, 3_1(179) -> 178
, 3_1(180) -> 179
, 3_1(185) -> 184
, 3_1(188) -> 187
, 3_1(200) -> 199
, 3_1(203) -> 128
, 3_1(205) -> 186
, 3_1(206) -> 1
, 3_1(207) -> 1
, 3_1(208) -> 122
, 3_1(209) -> 186
, 3_1(211) -> 210
, 3_1(213) -> 212
, 3_1(218) -> 217
, 3_1(224) -> 223
, 3_1(226) -> 225
, 3_1(232) -> 250
, 3_1(237) -> 236
, 3_1(238) -> 27
, 3_1(244) -> 243
, 3_1(246) -> 44
, 3_1(247) -> 1
, 3_1(249) -> 248
, 3_1(253) -> 252
, 3_1(261) -> 176
, 3_1(6825) -> 1
, 3_2(265) -> 41
, 3_2(267) -> 256
, 3_2(269) -> 25
, 3_2(269) -> 26
, 3_2(3055) -> 61
, 3_2(3056) -> 3055
, 3_2(3059) -> 3058
, 3_2(3061) -> 3060
, 3_2(3062) -> 3061
, 3_2(4005) -> 26
, 3_2(6825) -> 127
, 3_2(6837) -> 6836
, 3_2(7128) -> 7127
, 5_0(1) -> 6
, 5_0(2) -> 6
, 5_0(3) -> 6
, 5_0(4) -> 6
, 5_0(5) -> 6
, 5_0(6) -> 6
, 5_1(1) -> 80
, 5_1(2) -> 80
, 5_1(3) -> 80
, 5_1(4) -> 80
, 5_1(5) -> 80
, 5_1(6) -> 80
, 5_1(7) -> 6
, 5_1(7) -> 7
, 5_1(7) -> 80
, 5_1(7) -> 120
, 5_1(7) -> 244
, 5_1(9) -> 8
, 5_1(13) -> 12
, 5_1(19) -> 18
, 5_1(20) -> 19
, 5_1(22) -> 21
, 5_1(24) -> 157
, 5_1(25) -> 157
, 5_1(26) -> 157
, 5_1(44) -> 80
, 5_1(52) -> 51
, 5_1(61) -> 241
, 5_1(63) -> 5
, 5_1(63) -> 97
, 5_1(63) -> 186
, 5_1(63) -> 237
, 5_1(63) -> 250
, 5_1(63) -> 3060
, 5_1(65) -> 64
, 5_1(67) -> 66
, 5_1(77) -> 157
, 5_1(78) -> 80
, 5_1(80) -> 244
, 5_1(81) -> 80
, 5_1(86) -> 85
, 5_1(87) -> 86
, 5_1(95) -> 94
, 5_1(96) -> 80
, 5_1(97) -> 7
, 5_1(98) -> 157
, 5_1(102) -> 101
, 5_1(103) -> 102
, 5_1(110) -> 109
, 5_1(111) -> 110
, 5_1(113) -> 80
, 5_1(114) -> 80
, 5_1(120) -> 119
, 5_1(121) -> 120
, 5_1(127) -> 80
, 5_1(137) -> 136
, 5_1(138) -> 202
, 5_1(146) -> 145
, 5_1(156) -> 155
, 5_1(157) -> 156
, 5_1(165) -> 164
, 5_1(166) -> 19
, 5_1(168) -> 167
, 5_1(169) -> 168
, 5_1(170) -> 169
, 5_1(173) -> 172
, 5_1(174) -> 173
, 5_1(176) -> 245
, 5_1(181) -> 180
, 5_1(185) -> 6
, 5_1(185) -> 7
, 5_1(185) -> 80
, 5_1(192) -> 191
, 5_1(193) -> 192
, 5_1(195) -> 194
, 5_1(196) -> 195
, 5_1(197) -> 128
, 5_1(198) -> 197
, 5_1(205) -> 204
, 5_1(206) -> 157
, 5_1(207) -> 80
, 5_1(218) -> 80
, 5_1(219) -> 218
, 5_1(221) -> 220
, 5_1(222) -> 221
, 5_1(223) -> 222
, 5_1(224) -> 80
, 5_1(244) -> 220
, 5_1(245) -> 244
, 5_1(246) -> 80
, 5_1(247) -> 80
, 5_1(254) -> 80
, 5_1(255) -> 80
, 5_1(6825) -> 80
, 5_1(6828) -> 1
, 5_2(6828) -> 6825
, 5_2(6834) -> 6829
, 5_2(6835) -> 6834
, 5_2(6836) -> 6835
, 5_2(7126) -> 7}
Hurray, we answered YES(?,O(n^1))Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(4(0(0(3(2(5(3(0(3(0(4(5(0(4(4(5(1(1(1(3(x1)))))))))))))))))))))
->
5(2(5(1(0(3(5(3(2(1(0(0(5(5(4(5(4(4(2(2(2(x1)))))))))))))))))))))
, 5(1(3(4(0(3(0(2(5(3(0(2(2(0(1(2(3(3(4(1(1(x1)))))))))))))))))))))
-> 5(0(1(1(4(2(0(1(1(2(1(4(0(4(3(1(2(0(0(2(x1))))))))))))))))))))
, 2(1(5(5(3(0(1(3(3(3(1(2(0(5(2(0(3(5(2(2(2(x1)))))))))))))))))))))
-> 3(0(3(3(4(0(1(4(5(1(3(3(3(4(1(2(1(3(2(1(x1))))))))))))))))))))
, 3(3(4(3(3(4(3(0(2(5(3(1(4(5(2(5(2(4(3(5(x1)))))))))))))))))))) ->
5(2(5(0(5(0(1(1(1(3(2(4(4(0(3(2(4(1(5(x1)))))))))))))))))))
, 0(3(0(2(2(2(5(5(2(4(4(3(5(1(0(0(0(3(3(x1))))))))))))))))))) ->
3(3(1(3(4(5(5(2(0(4(2(3(1(1(5(1(2(3(x1))))))))))))))))))
, 2(2(1(3(4(0(1(1(4(2(2(2(0(4(4(2(4(4(x1)))))))))))))))))) ->
4(3(4(4(5(5(0(1(0(1(3(2(5(5(1(1(4(4(x1))))))))))))))))))
, 5(5(3(5(0(5(3(5(2(3(1(3(3(4(0(2(x1)))))))))))))))) ->
5(2(4(2(4(4(0(5(5(1(3(4(0(4(0(x1)))))))))))))))
, 3(5(5(0(2(2(0(0(3(5(1(3(3(5(3(5(x1)))))))))))))))) ->
3(1(4(2(0(3(4(0(4(1(5(4(2(5(x1))))))))))))))
, 3(5(3(3(1(2(4(0(4(3(5(4(2(1(x1)))))))))))))) ->
5(2(0(1(4(4(3(3(3(5(3(4(1(2(x1))))))))))))))
, 2(0(3(0(2(3(1(0(0(3(0(3(5(3(x1)))))))))))))) ->
3(4(0(2(1(4(4(4(0(5(5(5(2(x1)))))))))))))
, 3(5(3(3(3(2(3(0(2(4(2(1(3(x1))))))))))))) ->
5(1(3(1(4(0(0(1(5(0(4(5(x1))))))))))))
, 2(5(5(3(5(3(1(3(1(2(5(0(0(x1))))))))))))) ->
2(5(5(5(0(4(5(5(1(1(3(2(2(x1)))))))))))))
, 2(5(2(4(1(5(3(3(1(0(2(5(3(x1))))))))))))) ->
2(3(1(3(3(5(1(2(0(3(2(3(0(x1)))))))))))))
, 0(5(3(5(1(0(5(1(2(4(4(5(0(x1))))))))))))) ->
0(3(1(0(4(5(5(2(5(5(2(4(0(x1)))))))))))))
, 3(3(3(4(3(0(0(4(4(5(0(5(x1)))))))))))) ->
3(1(5(5(0(3(1(0(5(2(5(x1)))))))))))
, 3(0(2(4(5(2(1(2(0(2(5(1(x1)))))))))))) ->
3(1(3(0(5(0(2(2(4(0(4(x1)))))))))))
, 2(5(5(0(1(1(5(1(4(2(3(3(x1)))))))))))) ->
4(2(3(0(3(0(0(2(3(2(3(x1)))))))))))
, 1(5(5(2(4(2(4(0(3(3(0(x1))))))))))) ->
1(3(5(4(5(5(5(3(2(4(2(x1)))))))))))
, 4(4(3(2(0(1(1(4(0(2(x1)))))))))) ->
2(3(4(0(0(1(2(1(3(4(x1))))))))))
, 2(0(4(2(3(3(3(5(4(2(x1)))))))))) ->
3(4(4(2(0(2(3(3(5(2(x1))))))))))
, 5(3(5(4(4(2(2(2(1(x1))))))))) -> 5(0(3(0(0(4(5(2(1(x1)))))))))
, 5(0(4(0(0(1(3(5(0(x1))))))))) -> 5(0(0(0(3(5(5(3(2(x1)))))))))
, 2(1(4(0(4(1(5(0(2(x1))))))))) -> 3(3(2(2(3(0(3(3(4(x1)))))))))
, 2(4(0(2(3(0(0(2(x1)))))))) -> 2(4(0(3(4(4(2(x1)))))))
, 2(0(4(3(5(3(3(1(x1)))))))) -> 2(1(2(2(2(0(3(1(x1))))))))
, 0(5(3(1(4(3(x1)))))) -> 1(4(0(5(2(x1)))))
, 0(0(1(2(2(3(x1)))))) -> 4(0(2(2(3(x1)))))
, 5(3(5(0(1(x1))))) -> 5(2(3(0(x1))))
, 2(0(0(3(x1)))) -> 3(4(1(x1)))
, 0(1(0(2(x1)))) -> 3(4(4(x1)))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(4(0(0(3(2(5(3(0(3(0(4(5(0(4(4(5(1(1(1(3(x1)))))))))))))))))))))
->
5(2(5(1(0(3(5(3(2(1(0(0(5(5(4(5(4(4(2(2(2(x1)))))))))))))))))))))
, 5(1(3(4(0(3(0(2(5(3(0(2(2(0(1(2(3(3(4(1(1(x1)))))))))))))))))))))
-> 5(0(1(1(4(2(0(1(1(2(1(4(0(4(3(1(2(0(0(2(x1))))))))))))))))))))
, 2(1(5(5(3(0(1(3(3(3(1(2(0(5(2(0(3(5(2(2(2(x1)))))))))))))))))))))
-> 3(0(3(3(4(0(1(4(5(1(3(3(3(4(1(2(1(3(2(1(x1))))))))))))))))))))
, 3(3(4(3(3(4(3(0(2(5(3(1(4(5(2(5(2(4(3(5(x1)))))))))))))))))))) ->
5(2(5(0(5(0(1(1(1(3(2(4(4(0(3(2(4(1(5(x1)))))))))))))))))))
, 0(3(0(2(2(2(5(5(2(4(4(3(5(1(0(0(0(3(3(x1))))))))))))))))))) ->
3(3(1(3(4(5(5(2(0(4(2(3(1(1(5(1(2(3(x1))))))))))))))))))
, 2(2(1(3(4(0(1(1(4(2(2(2(0(4(4(2(4(4(x1)))))))))))))))))) ->
4(3(4(4(5(5(0(1(0(1(3(2(5(5(1(1(4(4(x1))))))))))))))))))
, 5(5(3(5(0(5(3(5(2(3(1(3(3(4(0(2(x1)))))))))))))))) ->
5(2(4(2(4(4(0(5(5(1(3(4(0(4(0(x1)))))))))))))))
, 3(5(5(0(2(2(0(0(3(5(1(3(3(5(3(5(x1)))))))))))))))) ->
3(1(4(2(0(3(4(0(4(1(5(4(2(5(x1))))))))))))))
, 3(5(3(3(1(2(4(0(4(3(5(4(2(1(x1)))))))))))))) ->
5(2(0(1(4(4(3(3(3(5(3(4(1(2(x1))))))))))))))
, 2(0(3(0(2(3(1(0(0(3(0(3(5(3(x1)))))))))))))) ->
3(4(0(2(1(4(4(4(0(5(5(5(2(x1)))))))))))))
, 3(5(3(3(3(2(3(0(2(4(2(1(3(x1))))))))))))) ->
5(1(3(1(4(0(0(1(5(0(4(5(x1))))))))))))
, 2(5(5(3(5(3(1(3(1(2(5(0(0(x1))))))))))))) ->
2(5(5(5(0(4(5(5(1(1(3(2(2(x1)))))))))))))
, 2(5(2(4(1(5(3(3(1(0(2(5(3(x1))))))))))))) ->
2(3(1(3(3(5(1(2(0(3(2(3(0(x1)))))))))))))
, 0(5(3(5(1(0(5(1(2(4(4(5(0(x1))))))))))))) ->
0(3(1(0(4(5(5(2(5(5(2(4(0(x1)))))))))))))
, 3(3(3(4(3(0(0(4(4(5(0(5(x1)))))))))))) ->
3(1(5(5(0(3(1(0(5(2(5(x1)))))))))))
, 3(0(2(4(5(2(1(2(0(2(5(1(x1)))))))))))) ->
3(1(3(0(5(0(2(2(4(0(4(x1)))))))))))
, 2(5(5(0(1(1(5(1(4(2(3(3(x1)))))))))))) ->
4(2(3(0(3(0(0(2(3(2(3(x1)))))))))))
, 1(5(5(2(4(2(4(0(3(3(0(x1))))))))))) ->
1(3(5(4(5(5(5(3(2(4(2(x1)))))))))))
, 4(4(3(2(0(1(1(4(0(2(x1)))))))))) ->
2(3(4(0(0(1(2(1(3(4(x1))))))))))
, 2(0(4(2(3(3(3(5(4(2(x1)))))))))) ->
3(4(4(2(0(2(3(3(5(2(x1))))))))))
, 5(3(5(4(4(2(2(2(1(x1))))))))) -> 5(0(3(0(0(4(5(2(1(x1)))))))))
, 5(0(4(0(0(1(3(5(0(x1))))))))) -> 5(0(0(0(3(5(5(3(2(x1)))))))))
, 2(1(4(0(4(1(5(0(2(x1))))))))) -> 3(3(2(2(3(0(3(3(4(x1)))))))))
, 2(4(0(2(3(0(0(2(x1)))))))) -> 2(4(0(3(4(4(2(x1)))))))
, 2(0(4(3(5(3(3(1(x1)))))))) -> 2(1(2(2(2(0(3(1(x1))))))))
, 0(5(3(1(4(3(x1)))))) -> 1(4(0(5(2(x1)))))
, 0(0(1(2(2(3(x1)))))) -> 4(0(2(2(3(x1)))))
, 5(3(5(0(1(x1))))) -> 5(2(3(0(x1))))
, 2(0(0(3(x1)))) -> 3(4(1(x1)))
, 0(1(0(2(x1)))) -> 3(4(4(x1)))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 5(4(0(0(3(2(5(3(0(3(0(4(5(0(4(4(5(1(1(1(3(x1)))))))))))))))))))))
->
5(2(5(1(0(3(5(3(2(1(0(0(5(5(4(5(4(4(2(2(2(x1)))))))))))))))))))))
, 5(1(3(4(0(3(0(2(5(3(0(2(2(0(1(2(3(3(4(1(1(x1)))))))))))))))))))))
-> 5(0(1(1(4(2(0(1(1(2(1(4(0(4(3(1(2(0(0(2(x1))))))))))))))))))))
, 2(1(5(5(3(0(1(3(3(3(1(2(0(5(2(0(3(5(2(2(2(x1)))))))))))))))))))))
-> 3(0(3(3(4(0(1(4(5(1(3(3(3(4(1(2(1(3(2(1(x1))))))))))))))))))))
, 3(3(4(3(3(4(3(0(2(5(3(1(4(5(2(5(2(4(3(5(x1)))))))))))))))))))) ->
5(2(5(0(5(0(1(1(1(3(2(4(4(0(3(2(4(1(5(x1)))))))))))))))))))
, 0(3(0(2(2(2(5(5(2(4(4(3(5(1(0(0(0(3(3(x1))))))))))))))))))) ->
3(3(1(3(4(5(5(2(0(4(2(3(1(1(5(1(2(3(x1))))))))))))))))))
, 2(2(1(3(4(0(1(1(4(2(2(2(0(4(4(2(4(4(x1)))))))))))))))))) ->
4(3(4(4(5(5(0(1(0(1(3(2(5(5(1(1(4(4(x1))))))))))))))))))
, 5(5(3(5(0(5(3(5(2(3(1(3(3(4(0(2(x1)))))))))))))))) ->
5(2(4(2(4(4(0(5(5(1(3(4(0(4(0(x1)))))))))))))))
, 3(5(5(0(2(2(0(0(3(5(1(3(3(5(3(5(x1)))))))))))))))) ->
3(1(4(2(0(3(4(0(4(1(5(4(2(5(x1))))))))))))))
, 3(5(3(3(1(2(4(0(4(3(5(4(2(1(x1)))))))))))))) ->
5(2(0(1(4(4(3(3(3(5(3(4(1(2(x1))))))))))))))
, 2(0(3(0(2(3(1(0(0(3(0(3(5(3(x1)))))))))))))) ->
3(4(0(2(1(4(4(4(0(5(5(5(2(x1)))))))))))))
, 3(5(3(3(3(2(3(0(2(4(2(1(3(x1))))))))))))) ->
5(1(3(1(4(0(0(1(5(0(4(5(x1))))))))))))
, 2(5(5(3(5(3(1(3(1(2(5(0(0(x1))))))))))))) ->
2(5(5(5(0(4(5(5(1(1(3(2(2(x1)))))))))))))
, 2(5(2(4(1(5(3(3(1(0(2(5(3(x1))))))))))))) ->
2(3(1(3(3(5(1(2(0(3(2(3(0(x1)))))))))))))
, 0(5(3(5(1(0(5(1(2(4(4(5(0(x1))))))))))))) ->
0(3(1(0(4(5(5(2(5(5(2(4(0(x1)))))))))))))
, 3(3(3(4(3(0(0(4(4(5(0(5(x1)))))))))))) ->
3(1(5(5(0(3(1(0(5(2(5(x1)))))))))))
, 3(0(2(4(5(2(1(2(0(2(5(1(x1)))))))))))) ->
3(1(3(0(5(0(2(2(4(0(4(x1)))))))))))
, 2(5(5(0(1(1(5(1(4(2(3(3(x1)))))))))))) ->
4(2(3(0(3(0(0(2(3(2(3(x1)))))))))))
, 1(5(5(2(4(2(4(0(3(3(0(x1))))))))))) ->
1(3(5(4(5(5(5(3(2(4(2(x1)))))))))))
, 4(4(3(2(0(1(1(4(0(2(x1)))))))))) ->
2(3(4(0(0(1(2(1(3(4(x1))))))))))
, 2(0(4(2(3(3(3(5(4(2(x1)))))))))) ->
3(4(4(2(0(2(3(3(5(2(x1))))))))))
, 5(3(5(4(4(2(2(2(1(x1))))))))) -> 5(0(3(0(0(4(5(2(1(x1)))))))))
, 5(0(4(0(0(1(3(5(0(x1))))))))) -> 5(0(0(0(3(5(5(3(2(x1)))))))))
, 2(1(4(0(4(1(5(0(2(x1))))))))) -> 3(3(2(2(3(0(3(3(4(x1)))))))))
, 2(4(0(2(3(0(0(2(x1)))))))) -> 2(4(0(3(4(4(2(x1)))))))
, 2(0(4(3(5(3(3(1(x1)))))))) -> 2(1(2(2(2(0(3(1(x1))))))))
, 0(5(3(1(4(3(x1)))))) -> 1(4(0(5(2(x1)))))
, 0(0(1(2(2(3(x1)))))) -> 4(0(2(2(3(x1)))))
, 5(3(5(0(1(x1))))) -> 5(2(3(0(x1))))
, 2(0(0(3(x1)))) -> 3(4(1(x1)))
, 0(1(0(2(x1)))) -> 3(4(4(x1)))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..