Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 3(0(2(3(0(1(0(3(3(0(0(1(0(x1))))))))))))) ->
3(0(0(1(2(2(3(3(3(2(0(1(2(0(3(3(2(x1)))))))))))))))))
, 2(3(2(1(1(1(3(2(3(2(3(2(1(x1))))))))))))) ->
2(2(2(0(3(2(2(0(2(3(2(3(0(2(2(0(2(x1)))))))))))))))))
, 2(3(2(0(3(0(1(3(2(2(2(0(2(x1))))))))))))) ->
2(1(2(2(3(0(0(1(3(2(2(3(2(2(3(3(2(x1)))))))))))))))))
, 2(3(1(1(0(2(3(1(2(3(3(1(1(x1))))))))))))) ->
2(2(2(1(2(1(1(2(0(2(0(0(3(0(1(3(3(x1)))))))))))))))))
, 2(2(1(0(2(1(2(1(1(0(1(2(0(x1))))))))))))) ->
2(2(0(2(0(3(1(2(2(0(1(2(2(2(2(2(2(x1)))))))))))))))))
, 2(2(0(3(0(1(0(2(3(2(3(1(2(x1))))))))))))) ->
2(2(0(2(2(2(1(0(0(3(1(3(1(3(3(2(2(x1)))))))))))))))))
, 2(2(0(0(3(0(2(2(3(0(1(3(3(x1))))))))))))) ->
2(2(1(1(0(1(2(1(2(0(2(2(2(0(2(2(2(x1)))))))))))))))))
, 2(2(0(0(1(0(2(3(0(3(0(1(0(x1))))))))))))) ->
2(2(2(1(0(2(0(1(3(1(3(0(3(3(3(3(2(x1)))))))))))))))))
, 2(1(1(3(3(3(0(3(0(3(0(0(2(x1))))))))))))) ->
2(0(2(2(0(2(1(3(3(3(2(3(3(2(3(3(2(x1)))))))))))))))))
, 2(1(1(3(3(0(3(2(3(2(1(1(3(x1))))))))))))) ->
2(3(2(3(2(2(3(3(2(1(2(2(3(3(0(1(3(x1)))))))))))))))))
, 2(1(1(2(0(1(1(3(0(2(3(0(1(x1))))))))))))) ->
2(2(3(3(3(3(3(2(1(0(1(2(2(3(3(2(2(x1)))))))))))))))))
, 2(1(0(3(0(3(0(3(3(0(2(1(1(x1))))))))))))) ->
2(2(0(1(2(1(1(0(2(2(2(3(2(3(0(2(2(x1)))))))))))))))))
, 2(1(0(2(2(0(0(1(3(2(0(3(3(x1))))))))))))) ->
2(0(2(2(1(3(2(1(1(1(2(2(1(3(3(3(3(x1)))))))))))))))))
, 2(0(0(2(3(0(3(1(0(0(2(1(3(x1))))))))))))) ->
2(0(2(1(2(2(2(2(3(2(3(1(3(3(1(3(1(x1)))))))))))))))))
, 2(0(0(1(3(0(3(1(3(0(1(2(1(x1))))))))))))) ->
2(2(3(3(0(1(0(0(3(3(3(1(0(2(2(1(2(x1)))))))))))))))))
, 1(3(1(0(1(1(3(2(2(1(1(2(1(x1))))))))))))) ->
1(2(3(2(3(2(1(2(2(2(2(2(2(0(1(2(2(x1)))))))))))))))))
, 1(0(2(3(0(3(2(3(2(2(3(2(3(x1))))))))))))) ->
1(3(2(2(1(2(2(2(3(3(2(2(3(1(2(1(2(x1)))))))))))))))))
, 1(0(0(1(2(2(2(3(2(3(2(0(1(x1))))))))))))) ->
1(2(1(0(2(2(1(2(1(0(3(3(2(2(2(3(3(x1)))))))))))))))))
, 0(3(0(3(1(0(1(2(2(0(3(1(3(x1))))))))))))) ->
2(3(2(2(3(0(3(0(3(3(2(2(1(2(2(0(3(x1)))))))))))))))))
, 0(3(0(3(0(2(3(0(0(3(1(2(1(x1))))))))))))) ->
3(1(1(2(2(3(0(1(2(2(2(2(3(2(2(2(0(x1)))))))))))))))))
, 0(2(3(3(1(0(3(3(0(2(3(1(1(x1))))))))))))) ->
2(1(3(2(2(2(0(2(2(2(3(3(2(2(2(0(3(x1)))))))))))))))))
, 0(2(2(0(0(3(1(0(3(2(1(3(0(x1))))))))))))) ->
3(1(2(2(1(3(3(2(2(3(0(2(2(1(1(1(0(x1)))))))))))))))))
, 0(1(2(1(1(1(2(2(0(1(3(2(0(x1))))))))))))) ->
2(3(2(0(1(2(3(0(3(3(2(1(3(3(1(3(3(x1)))))))))))))))))
, 0(1(2(0(1(1(0(2(2(1(2(0(2(x1))))))))))))) ->
2(0(3(3(2(2(1(0(3(3(3(3(2(2(2(3(3(x1)))))))))))))))))
, 0(1(0(0(3(3(2(1(2(0(1(2(3(x1))))))))))))) ->
3(2(2(1(2(2(0(3(0(2(2(2(1(2(2(3(1(x1)))))))))))))))))
, 0(0(2(0(3(1(3(2(1(0(0(2(3(x1))))))))))))) ->
0(2(2(2(1(3(3(3(2(2(0(3(1(3(2(1(2(x1)))))))))))))))))
, 0(0(0(3(3(1(1(1(3(3(1(3(2(x1))))))))))))) ->
3(0(2(1(0(3(3(3(1(2(2(2(1(2(1(2(2(x1)))))))))))))))))
, 0(0(0(1(1(1(2(3(3(1(3(3(2(x1))))))))))))) ->
0(2(2(1(0(1(2(3(0(0(3(2(2(3(1(2(2(x1)))))))))))))))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ 2_0(1) -> 1
, 2_1(1) -> 17
, 2_1(2) -> 17
, 2_1(6) -> 5
, 2_1(7) -> 6
, 2_1(11) -> 10
, 2_1(14) -> 13
, 2_1(15) -> 44
, 2_1(17) -> 70
, 2_1(18) -> 1
, 2_1(18) -> 17
, 2_1(18) -> 32
, 2_1(18) -> 70
, 2_1(18) -> 124
, 2_1(18) -> 227
, 2_1(18) -> 228
, 2_1(18) -> 229
, 2_1(18) -> 322
, 2_1(19) -> 18
, 2_1(20) -> 19
, 2_1(23) -> 22
, 2_1(24) -> 23
, 2_1(26) -> 25
, 2_1(28) -> 27
, 2_1(31) -> 30
, 2_1(32) -> 31
, 2_1(33) -> 17
, 2_1(34) -> 33
, 2_1(35) -> 34
, 2_1(41) -> 40
, 2_1(42) -> 41
, 2_1(44) -> 43
, 2_1(46) -> 45
, 2_1(49) -> 48
, 2_1(51) -> 50
, 2_1(55) -> 153
, 2_1(56) -> 217
, 2_1(59) -> 58
, 2_1(63) -> 62
, 2_1(64) -> 63
, 2_1(67) -> 66
, 2_1(68) -> 67
, 2_1(69) -> 68
, 2_1(70) -> 69
, 2_1(71) -> 59
, 2_1(72) -> 71
, 2_1(79) -> 135
, 2_1(85) -> 84
, 2_1(87) -> 86
, 2_1(89) -> 88
, 2_1(90) -> 89
, 2_1(91) -> 90
, 2_1(93) -> 92
, 2_1(101) -> 17
, 2_1(102) -> 101
, 2_1(103) -> 102
, 2_1(105) -> 104
, 2_1(110) -> 109
, 2_1(112) -> 17
, 2_1(113) -> 112
, 2_1(114) -> 17
, 2_1(115) -> 114
, 2_1(116) -> 115
, 2_1(119) -> 118
, 2_1(121) -> 120
, 2_1(122) -> 121
, 2_1(131) -> 130
, 2_1(135) -> 134
, 2_1(137) -> 136
, 2_1(141) -> 140
, 2_1(142) -> 141
, 2_1(143) -> 142
, 2_1(145) -> 144
, 2_1(149) -> 148
, 2_1(153) -> 152
, 2_1(154) -> 153
, 2_1(158) -> 157
, 2_1(159) -> 158
, 2_1(160) -> 159
, 2_1(161) -> 160
, 2_1(163) -> 162
, 2_1(168) -> 322
, 2_1(178) -> 177
, 2_1(179) -> 178
, 2_1(180) -> 17
, 2_1(181) -> 180
, 2_1(183) -> 182
, 2_1(185) -> 184
, 2_1(187) -> 186
, 2_1(188) -> 187
, 2_1(189) -> 188
, 2_1(190) -> 189
, 2_1(191) -> 190
, 2_1(192) -> 191
, 2_1(193) -> 401
, 2_1(194) -> 70
, 2_1(195) -> 194
, 2_1(196) -> 195
, 2_1(198) -> 197
, 2_1(199) -> 198
, 2_1(200) -> 199
, 2_1(203) -> 202
, 2_1(204) -> 203
, 2_1(205) -> 399
, 2_1(206) -> 17
, 2_1(208) -> 207
, 2_1(209) -> 208
, 2_1(211) -> 210
, 2_1(216) -> 215
, 2_1(217) -> 216
, 2_1(218) -> 113
, 2_1(225) -> 224
, 2_1(226) -> 225
, 2_1(227) -> 241
, 2_1(228) -> 227
, 2_1(229) -> 228
, 2_1(230) -> 17
, 2_1(231) -> 17
, 2_1(232) -> 231
, 2_1(233) -> 232
, 2_1(237) -> 236
, 2_1(238) -> 237
, 2_1(239) -> 238
, 2_1(240) -> 239
, 2_1(243) -> 242
, 2_1(244) -> 243
, 2_1(245) -> 244
, 2_1(247) -> 246
, 2_1(248) -> 247
, 2_1(249) -> 248
, 2_1(250) -> 230
, 2_1(251) -> 250
, 2_1(258) -> 257
, 2_1(259) -> 258
, 2_1(268) -> 267
, 2_1(269) -> 268
, 2_1(292) -> 291
, 2_1(297) -> 296
, 2_1(302) -> 301
, 2_1(303) -> 302
, 2_1(310) -> 309
, 2_1(311) -> 310
, 2_1(318) -> 317
, 2_1(319) -> 318
, 2_1(320) -> 319
, 2_1(322) -> 321
, 2_1(375) -> 17
, 2_1(376) -> 375
, 2_1(377) -> 376
, 2_1(378) -> 377
, 2_1(383) -> 382
, 2_1(384) -> 383
, 2_1(388) -> 3
, 2_1(398) -> 397
, 2_1(399) -> 398
, 2_1(400) -> 399
, 2_1(438) -> 437
, 2_1(443) -> 442
, 2_1(444) -> 443
, 3_0(1) -> 1
, 3_1(1) -> 57
, 3_1(2) -> 1
, 3_1(2) -> 32
, 3_1(2) -> 57
, 3_1(2) -> 146
, 3_1(2) -> 229
, 3_1(8) -> 7
, 3_1(9) -> 8
, 3_1(10) -> 9
, 3_1(15) -> 100
, 3_1(16) -> 15
, 3_1(17) -> 16
, 3_1(18) -> 57
, 3_1(22) -> 21
, 3_1(27) -> 26
, 3_1(29) -> 28
, 3_1(36) -> 35
, 3_1(40) -> 39
, 3_1(43) -> 42
, 3_1(44) -> 111
, 3_1(54) -> 53
, 3_1(55) -> 299
, 3_1(56) -> 156
, 3_1(57) -> 56
, 3_1(58) -> 16
, 3_1(61) -> 60
, 3_1(70) -> 80
, 3_1(76) -> 75
, 3_1(77) -> 298
, 3_1(78) -> 77
, 3_1(80) -> 79
, 3_1(96) -> 95
, 3_1(98) -> 97
, 3_1(100) -> 99
, 3_1(101) -> 57
, 3_1(102) -> 57
, 3_1(107) -> 106
, 3_1(108) -> 107
, 3_1(109) -> 108
, 3_1(111) -> 110
, 3_1(112) -> 18
, 3_1(114) -> 113
, 3_1(117) -> 116
, 3_1(118) -> 117
, 3_1(123) -> 122
, 3_1(124) -> 123
, 3_1(125) -> 168
, 3_1(126) -> 19
, 3_1(127) -> 126
, 3_1(128) -> 127
, 3_1(129) -> 128
, 3_1(130) -> 129
, 3_1(144) -> 143
, 3_1(146) -> 145
, 3_1(148) -> 147
, 3_1(156) -> 155
, 3_1(162) -> 161
, 3_1(164) -> 163
, 3_1(166) -> 165
, 3_1(167) -> 166
, 3_1(173) -> 172
, 3_1(174) -> 173
, 3_1(175) -> 174
, 3_1(178) -> 387
, 3_1(179) -> 444
, 3_1(180) -> 57
, 3_1(182) -> 181
, 3_1(184) -> 183
, 3_1(193) -> 444
, 3_1(194) -> 180
, 3_1(201) -> 200
, 3_1(202) -> 201
, 3_1(205) -> 204
, 3_1(213) -> 306
, 3_1(214) -> 213
, 3_1(215) -> 214
, 3_1(216) -> 42
, 3_1(219) -> 218
, 3_1(221) -> 220
, 3_1(223) -> 222
, 3_1(224) -> 223
, 3_1(230) -> 168
, 3_1(231) -> 1
, 3_1(231) -> 124
, 3_1(231) -> 229
, 3_1(234) -> 233
, 3_1(240) -> 249
, 3_1(241) -> 240
, 3_1(242) -> 33
, 3_1(256) -> 255
, 3_1(257) -> 256
, 3_1(260) -> 259
, 3_1(291) -> 57
, 3_1(293) -> 292
, 3_1(295) -> 294
, 3_1(296) -> 295
, 3_1(299) -> 298
, 3_1(300) -> 101
, 3_1(301) -> 300
, 3_1(306) -> 305
, 3_1(316) -> 315
, 3_1(375) -> 16
, 3_1(376) -> 57
, 3_1(380) -> 379
, 3_1(381) -> 380
, 3_1(382) -> 381
, 3_1(386) -> 385
, 3_1(394) -> 393
, 3_1(395) -> 394
, 3_1(396) -> 395
, 3_1(439) -> 438
, 3_1(442) -> 441
, 1_0(1) -> 1
, 1_1(1) -> 125
, 1_1(2) -> 125
, 1_1(5) -> 4
, 1_1(13) -> 12
, 1_1(15) -> 78
, 1_1(17) -> 179
, 1_1(33) -> 18
, 1_1(39) -> 38
, 1_1(45) -> 20
, 1_1(47) -> 46
, 1_1(48) -> 47
, 1_1(56) -> 55
, 1_1(57) -> 125
, 1_1(62) -> 61
, 1_1(66) -> 65
, 1_1(70) -> 193
, 1_1(73) -> 72
, 1_1(77) -> 76
, 1_1(79) -> 78
, 1_1(81) -> 19
, 1_1(82) -> 81
, 1_1(84) -> 83
, 1_1(86) -> 85
, 1_1(95) -> 94
, 1_1(97) -> 96
, 1_1(106) -> 105
, 1_1(112) -> 125
, 1_1(120) -> 119
, 1_1(125) -> 270
, 1_1(132) -> 131
, 1_1(134) -> 133
, 1_1(136) -> 58
, 1_1(138) -> 137
, 1_1(139) -> 138
, 1_1(147) -> 103
, 1_1(150) -> 149
, 1_1(151) -> 150
, 1_1(152) -> 151
, 1_1(155) -> 154
, 1_1(156) -> 154
, 1_1(157) -> 102
, 1_1(165) -> 164
, 1_1(168) -> 167
, 1_1(170) -> 169
, 1_1(176) -> 175
, 1_1(178) -> 205
, 1_1(180) -> 1
, 1_1(180) -> 125
, 1_1(180) -> 167
, 1_1(180) -> 271
, 1_1(182) -> 125
, 1_1(186) -> 185
, 1_1(194) -> 125
, 1_1(197) -> 196
, 1_1(206) -> 181
, 1_1(210) -> 209
, 1_1(212) -> 211
, 1_1(227) -> 226
, 1_1(229) -> 271
, 1_1(230) -> 2
, 1_1(231) -> 230
, 1_1(236) -> 235
, 1_1(242) -> 125
, 1_1(255) -> 251
, 1_1(270) -> 269
, 1_1(271) -> 270
, 1_1(291) -> 290
, 1_1(298) -> 297
, 1_1(304) -> 303
, 1_1(309) -> 233
, 1_1(321) -> 320
, 1_1(379) -> 378
, 1_1(387) -> 386
, 1_1(389) -> 388
, 1_1(397) -> 396
, 1_1(401) -> 400
, 1_1(435) -> 377
, 1_1(437) -> 436
, 0_0(1) -> 1
, 0_1(1) -> 229
, 0_1(3) -> 2
, 0_1(4) -> 3
, 0_1(12) -> 11
, 0_1(15) -> 14
, 0_1(17) -> 32
, 0_1(21) -> 20
, 0_1(25) -> 24
, 0_1(30) -> 29
, 0_1(33) -> 229
, 0_1(37) -> 36
, 0_1(38) -> 37
, 0_1(50) -> 49
, 0_1(52) -> 51
, 0_1(53) -> 52
, 0_1(55) -> 54
, 0_1(57) -> 229
, 0_1(58) -> 19
, 0_1(60) -> 59
, 0_1(65) -> 64
, 0_1(69) -> 91
, 0_1(70) -> 146
, 0_1(74) -> 73
, 0_1(75) -> 74
, 0_1(83) -> 82
, 0_1(88) -> 87
, 0_1(92) -> 45
, 0_1(94) -> 93
, 0_1(99) -> 98
, 0_1(101) -> 18
, 0_1(104) -> 103
, 0_1(123) -> 52
, 0_1(125) -> 124
, 0_1(133) -> 132
, 0_1(140) -> 139
, 0_1(169) -> 127
, 0_1(171) -> 170
, 0_1(172) -> 171
, 0_1(177) -> 176
, 0_1(180) -> 229
, 0_1(193) -> 192
, 0_1(206) -> 229
, 0_1(207) -> 206
, 0_1(213) -> 212
, 0_1(220) -> 219
, 0_1(222) -> 221
, 0_1(235) -> 234
, 0_1(246) -> 245
, 0_1(267) -> 260
, 0_1(290) -> 113
, 0_1(294) -> 293
, 0_1(305) -> 304
, 0_1(315) -> 311
, 0_1(317) -> 316
, 0_1(375) -> 1
, 0_1(375) -> 229
, 0_1(385) -> 384
, 0_1(393) -> 389
, 0_1(436) -> 435
, 0_1(440) -> 439
, 0_1(441) -> 440}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 3(0(2(3(0(1(0(3(3(0(0(1(0(x1))))))))))))) ->
3(0(0(1(2(2(3(3(3(2(0(1(2(0(3(3(2(x1)))))))))))))))))
, 2(3(2(1(1(1(3(2(3(2(3(2(1(x1))))))))))))) ->
2(2(2(0(3(2(2(0(2(3(2(3(0(2(2(0(2(x1)))))))))))))))))
, 2(3(2(0(3(0(1(3(2(2(2(0(2(x1))))))))))))) ->
2(1(2(2(3(0(0(1(3(2(2(3(2(2(3(3(2(x1)))))))))))))))))
, 2(3(1(1(0(2(3(1(2(3(3(1(1(x1))))))))))))) ->
2(2(2(1(2(1(1(2(0(2(0(0(3(0(1(3(3(x1)))))))))))))))))
, 2(2(1(0(2(1(2(1(1(0(1(2(0(x1))))))))))))) ->
2(2(0(2(0(3(1(2(2(0(1(2(2(2(2(2(2(x1)))))))))))))))))
, 2(2(0(3(0(1(0(2(3(2(3(1(2(x1))))))))))))) ->
2(2(0(2(2(2(1(0(0(3(1(3(1(3(3(2(2(x1)))))))))))))))))
, 2(2(0(0(3(0(2(2(3(0(1(3(3(x1))))))))))))) ->
2(2(1(1(0(1(2(1(2(0(2(2(2(0(2(2(2(x1)))))))))))))))))
, 2(2(0(0(1(0(2(3(0(3(0(1(0(x1))))))))))))) ->
2(2(2(1(0(2(0(1(3(1(3(0(3(3(3(3(2(x1)))))))))))))))))
, 2(1(1(3(3(3(0(3(0(3(0(0(2(x1))))))))))))) ->
2(0(2(2(0(2(1(3(3(3(2(3(3(2(3(3(2(x1)))))))))))))))))
, 2(1(1(3(3(0(3(2(3(2(1(1(3(x1))))))))))))) ->
2(3(2(3(2(2(3(3(2(1(2(2(3(3(0(1(3(x1)))))))))))))))))
, 2(1(1(2(0(1(1(3(0(2(3(0(1(x1))))))))))))) ->
2(2(3(3(3(3(3(2(1(0(1(2(2(3(3(2(2(x1)))))))))))))))))
, 2(1(0(3(0(3(0(3(3(0(2(1(1(x1))))))))))))) ->
2(2(0(1(2(1(1(0(2(2(2(3(2(3(0(2(2(x1)))))))))))))))))
, 2(1(0(2(2(0(0(1(3(2(0(3(3(x1))))))))))))) ->
2(0(2(2(1(3(2(1(1(1(2(2(1(3(3(3(3(x1)))))))))))))))))
, 2(0(0(2(3(0(3(1(0(0(2(1(3(x1))))))))))))) ->
2(0(2(1(2(2(2(2(3(2(3(1(3(3(1(3(1(x1)))))))))))))))))
, 2(0(0(1(3(0(3(1(3(0(1(2(1(x1))))))))))))) ->
2(2(3(3(0(1(0(0(3(3(3(1(0(2(2(1(2(x1)))))))))))))))))
, 1(3(1(0(1(1(3(2(2(1(1(2(1(x1))))))))))))) ->
1(2(3(2(3(2(1(2(2(2(2(2(2(0(1(2(2(x1)))))))))))))))))
, 1(0(2(3(0(3(2(3(2(2(3(2(3(x1))))))))))))) ->
1(3(2(2(1(2(2(2(3(3(2(2(3(1(2(1(2(x1)))))))))))))))))
, 1(0(0(1(2(2(2(3(2(3(2(0(1(x1))))))))))))) ->
1(2(1(0(2(2(1(2(1(0(3(3(2(2(2(3(3(x1)))))))))))))))))
, 0(3(0(3(1(0(1(2(2(0(3(1(3(x1))))))))))))) ->
2(3(2(2(3(0(3(0(3(3(2(2(1(2(2(0(3(x1)))))))))))))))))
, 0(3(0(3(0(2(3(0(0(3(1(2(1(x1))))))))))))) ->
3(1(1(2(2(3(0(1(2(2(2(2(3(2(2(2(0(x1)))))))))))))))))
, 0(2(3(3(1(0(3(3(0(2(3(1(1(x1))))))))))))) ->
2(1(3(2(2(2(0(2(2(2(3(3(2(2(2(0(3(x1)))))))))))))))))
, 0(2(2(0(0(3(1(0(3(2(1(3(0(x1))))))))))))) ->
3(1(2(2(1(3(3(2(2(3(0(2(2(1(1(1(0(x1)))))))))))))))))
, 0(1(2(1(1(1(2(2(0(1(3(2(0(x1))))))))))))) ->
2(3(2(0(1(2(3(0(3(3(2(1(3(3(1(3(3(x1)))))))))))))))))
, 0(1(2(0(1(1(0(2(2(1(2(0(2(x1))))))))))))) ->
2(0(3(3(2(2(1(0(3(3(3(3(2(2(2(3(3(x1)))))))))))))))))
, 0(1(0(0(3(3(2(1(2(0(1(2(3(x1))))))))))))) ->
3(2(2(1(2(2(0(3(0(2(2(2(1(2(2(3(1(x1)))))))))))))))))
, 0(0(2(0(3(1(3(2(1(0(0(2(3(x1))))))))))))) ->
0(2(2(2(1(3(3(3(2(2(0(3(1(3(2(1(2(x1)))))))))))))))))
, 0(0(0(3(3(1(1(1(3(3(1(3(2(x1))))))))))))) ->
3(0(2(1(0(3(3(3(1(2(2(2(1(2(1(2(2(x1)))))))))))))))))
, 0(0(0(1(1(1(2(3(3(1(3(3(2(x1))))))))))))) ->
0(2(2(1(0(1(2(3(0(0(3(2(2(3(1(2(2(x1)))))))))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 3(0(2(3(0(1(0(3(3(0(0(1(0(x1))))))))))))) ->
3(0(0(1(2(2(3(3(3(2(0(1(2(0(3(3(2(x1)))))))))))))))))
, 2(3(2(1(1(1(3(2(3(2(3(2(1(x1))))))))))))) ->
2(2(2(0(3(2(2(0(2(3(2(3(0(2(2(0(2(x1)))))))))))))))))
, 2(3(2(0(3(0(1(3(2(2(2(0(2(x1))))))))))))) ->
2(1(2(2(3(0(0(1(3(2(2(3(2(2(3(3(2(x1)))))))))))))))))
, 2(3(1(1(0(2(3(1(2(3(3(1(1(x1))))))))))))) ->
2(2(2(1(2(1(1(2(0(2(0(0(3(0(1(3(3(x1)))))))))))))))))
, 2(2(1(0(2(1(2(1(1(0(1(2(0(x1))))))))))))) ->
2(2(0(2(0(3(1(2(2(0(1(2(2(2(2(2(2(x1)))))))))))))))))
, 2(2(0(3(0(1(0(2(3(2(3(1(2(x1))))))))))))) ->
2(2(0(2(2(2(1(0(0(3(1(3(1(3(3(2(2(x1)))))))))))))))))
, 2(2(0(0(3(0(2(2(3(0(1(3(3(x1))))))))))))) ->
2(2(1(1(0(1(2(1(2(0(2(2(2(0(2(2(2(x1)))))))))))))))))
, 2(2(0(0(1(0(2(3(0(3(0(1(0(x1))))))))))))) ->
2(2(2(1(0(2(0(1(3(1(3(0(3(3(3(3(2(x1)))))))))))))))))
, 2(1(1(3(3(3(0(3(0(3(0(0(2(x1))))))))))))) ->
2(0(2(2(0(2(1(3(3(3(2(3(3(2(3(3(2(x1)))))))))))))))))
, 2(1(1(3(3(0(3(2(3(2(1(1(3(x1))))))))))))) ->
2(3(2(3(2(2(3(3(2(1(2(2(3(3(0(1(3(x1)))))))))))))))))
, 2(1(1(2(0(1(1(3(0(2(3(0(1(x1))))))))))))) ->
2(2(3(3(3(3(3(2(1(0(1(2(2(3(3(2(2(x1)))))))))))))))))
, 2(1(0(3(0(3(0(3(3(0(2(1(1(x1))))))))))))) ->
2(2(0(1(2(1(1(0(2(2(2(3(2(3(0(2(2(x1)))))))))))))))))
, 2(1(0(2(2(0(0(1(3(2(0(3(3(x1))))))))))))) ->
2(0(2(2(1(3(2(1(1(1(2(2(1(3(3(3(3(x1)))))))))))))))))
, 2(0(0(2(3(0(3(1(0(0(2(1(3(x1))))))))))))) ->
2(0(2(1(2(2(2(2(3(2(3(1(3(3(1(3(1(x1)))))))))))))))))
, 2(0(0(1(3(0(3(1(3(0(1(2(1(x1))))))))))))) ->
2(2(3(3(0(1(0(0(3(3(3(1(0(2(2(1(2(x1)))))))))))))))))
, 1(3(1(0(1(1(3(2(2(1(1(2(1(x1))))))))))))) ->
1(2(3(2(3(2(1(2(2(2(2(2(2(0(1(2(2(x1)))))))))))))))))
, 1(0(2(3(0(3(2(3(2(2(3(2(3(x1))))))))))))) ->
1(3(2(2(1(2(2(2(3(3(2(2(3(1(2(1(2(x1)))))))))))))))))
, 1(0(0(1(2(2(2(3(2(3(2(0(1(x1))))))))))))) ->
1(2(1(0(2(2(1(2(1(0(3(3(2(2(2(3(3(x1)))))))))))))))))
, 0(3(0(3(1(0(1(2(2(0(3(1(3(x1))))))))))))) ->
2(3(2(2(3(0(3(0(3(3(2(2(1(2(2(0(3(x1)))))))))))))))))
, 0(3(0(3(0(2(3(0(0(3(1(2(1(x1))))))))))))) ->
3(1(1(2(2(3(0(1(2(2(2(2(3(2(2(2(0(x1)))))))))))))))))
, 0(2(3(3(1(0(3(3(0(2(3(1(1(x1))))))))))))) ->
2(1(3(2(2(2(0(2(2(2(3(3(2(2(2(0(3(x1)))))))))))))))))
, 0(2(2(0(0(3(1(0(3(2(1(3(0(x1))))))))))))) ->
3(1(2(2(1(3(3(2(2(3(0(2(2(1(1(1(0(x1)))))))))))))))))
, 0(1(2(1(1(1(2(2(0(1(3(2(0(x1))))))))))))) ->
2(3(2(0(1(2(3(0(3(3(2(1(3(3(1(3(3(x1)))))))))))))))))
, 0(1(2(0(1(1(0(2(2(1(2(0(2(x1))))))))))))) ->
2(0(3(3(2(2(1(0(3(3(3(3(2(2(2(3(3(x1)))))))))))))))))
, 0(1(0(0(3(3(2(1(2(0(1(2(3(x1))))))))))))) ->
3(2(2(1(2(2(0(3(0(2(2(2(1(2(2(3(1(x1)))))))))))))))))
, 0(0(2(0(3(1(3(2(1(0(0(2(3(x1))))))))))))) ->
0(2(2(2(1(3(3(3(2(2(0(3(1(3(2(1(2(x1)))))))))))))))))
, 0(0(0(3(3(1(1(1(3(3(1(3(2(x1))))))))))))) ->
3(0(2(1(0(3(3(3(1(2(2(2(1(2(1(2(2(x1)))))))))))))))))
, 0(0(0(1(1(1(2(3(3(1(3(3(2(x1))))))))))))) ->
0(2(2(1(0(1(2(3(0(0(3(2(2(3(1(2(2(x1)))))))))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 3(0(2(3(0(1(0(3(3(0(0(1(0(x1))))))))))))) ->
3(0(0(1(2(2(3(3(3(2(0(1(2(0(3(3(2(x1)))))))))))))))))
, 2(3(2(1(1(1(3(2(3(2(3(2(1(x1))))))))))))) ->
2(2(2(0(3(2(2(0(2(3(2(3(0(2(2(0(2(x1)))))))))))))))))
, 2(3(2(0(3(0(1(3(2(2(2(0(2(x1))))))))))))) ->
2(1(2(2(3(0(0(1(3(2(2(3(2(2(3(3(2(x1)))))))))))))))))
, 2(3(1(1(0(2(3(1(2(3(3(1(1(x1))))))))))))) ->
2(2(2(1(2(1(1(2(0(2(0(0(3(0(1(3(3(x1)))))))))))))))))
, 2(2(1(0(2(1(2(1(1(0(1(2(0(x1))))))))))))) ->
2(2(0(2(0(3(1(2(2(0(1(2(2(2(2(2(2(x1)))))))))))))))))
, 2(2(0(3(0(1(0(2(3(2(3(1(2(x1))))))))))))) ->
2(2(0(2(2(2(1(0(0(3(1(3(1(3(3(2(2(x1)))))))))))))))))
, 2(2(0(0(3(0(2(2(3(0(1(3(3(x1))))))))))))) ->
2(2(1(1(0(1(2(1(2(0(2(2(2(0(2(2(2(x1)))))))))))))))))
, 2(2(0(0(1(0(2(3(0(3(0(1(0(x1))))))))))))) ->
2(2(2(1(0(2(0(1(3(1(3(0(3(3(3(3(2(x1)))))))))))))))))
, 2(1(1(3(3(3(0(3(0(3(0(0(2(x1))))))))))))) ->
2(0(2(2(0(2(1(3(3(3(2(3(3(2(3(3(2(x1)))))))))))))))))
, 2(1(1(3(3(0(3(2(3(2(1(1(3(x1))))))))))))) ->
2(3(2(3(2(2(3(3(2(1(2(2(3(3(0(1(3(x1)))))))))))))))))
, 2(1(1(2(0(1(1(3(0(2(3(0(1(x1))))))))))))) ->
2(2(3(3(3(3(3(2(1(0(1(2(2(3(3(2(2(x1)))))))))))))))))
, 2(1(0(3(0(3(0(3(3(0(2(1(1(x1))))))))))))) ->
2(2(0(1(2(1(1(0(2(2(2(3(2(3(0(2(2(x1)))))))))))))))))
, 2(1(0(2(2(0(0(1(3(2(0(3(3(x1))))))))))))) ->
2(0(2(2(1(3(2(1(1(1(2(2(1(3(3(3(3(x1)))))))))))))))))
, 2(0(0(2(3(0(3(1(0(0(2(1(3(x1))))))))))))) ->
2(0(2(1(2(2(2(2(3(2(3(1(3(3(1(3(1(x1)))))))))))))))))
, 2(0(0(1(3(0(3(1(3(0(1(2(1(x1))))))))))))) ->
2(2(3(3(0(1(0(0(3(3(3(1(0(2(2(1(2(x1)))))))))))))))))
, 1(3(1(0(1(1(3(2(2(1(1(2(1(x1))))))))))))) ->
1(2(3(2(3(2(1(2(2(2(2(2(2(0(1(2(2(x1)))))))))))))))))
, 1(0(2(3(0(3(2(3(2(2(3(2(3(x1))))))))))))) ->
1(3(2(2(1(2(2(2(3(3(2(2(3(1(2(1(2(x1)))))))))))))))))
, 1(0(0(1(2(2(2(3(2(3(2(0(1(x1))))))))))))) ->
1(2(1(0(2(2(1(2(1(0(3(3(2(2(2(3(3(x1)))))))))))))))))
, 0(3(0(3(1(0(1(2(2(0(3(1(3(x1))))))))))))) ->
2(3(2(2(3(0(3(0(3(3(2(2(1(2(2(0(3(x1)))))))))))))))))
, 0(3(0(3(0(2(3(0(0(3(1(2(1(x1))))))))))))) ->
3(1(1(2(2(3(0(1(2(2(2(2(3(2(2(2(0(x1)))))))))))))))))
, 0(2(3(3(1(0(3(3(0(2(3(1(1(x1))))))))))))) ->
2(1(3(2(2(2(0(2(2(2(3(3(2(2(2(0(3(x1)))))))))))))))))
, 0(2(2(0(0(3(1(0(3(2(1(3(0(x1))))))))))))) ->
3(1(2(2(1(3(3(2(2(3(0(2(2(1(1(1(0(x1)))))))))))))))))
, 0(1(2(1(1(1(2(2(0(1(3(2(0(x1))))))))))))) ->
2(3(2(0(1(2(3(0(3(3(2(1(3(3(1(3(3(x1)))))))))))))))))
, 0(1(2(0(1(1(0(2(2(1(2(0(2(x1))))))))))))) ->
2(0(3(3(2(2(1(0(3(3(3(3(2(2(2(3(3(x1)))))))))))))))))
, 0(1(0(0(3(3(2(1(2(0(1(2(3(x1))))))))))))) ->
3(2(2(1(2(2(0(3(0(2(2(2(1(2(2(3(1(x1)))))))))))))))))
, 0(0(2(0(3(1(3(2(1(0(0(2(3(x1))))))))))))) ->
0(2(2(2(1(3(3(3(2(2(0(3(1(3(2(1(2(x1)))))))))))))))))
, 0(0(0(3(3(1(1(1(3(3(1(3(2(x1))))))))))))) ->
3(0(2(1(0(3(3(3(1(2(2(2(1(2(1(2(2(x1)))))))))))))))))
, 0(0(0(1(1(1(2(3(3(1(3(3(2(x1))))))))))))) ->
0(2(2(1(0(1(2(3(0(0(3(2(2(3(1(2(2(x1)))))))))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..