Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 3(2(2(2(0(1(3(0(2(2(3(3(0(x1))))))))))))) ->
1(1(0(1(0(0(3(0(1(2(1(1(0(0(1(0(0(x1)))))))))))))))))
, 3(0(0(1(3(1(2(0(2(0(3(3(3(x1))))))))))))) ->
0(0(1(0(1(2(0(0(3(0(2(2(2(0(0(1(3(x1)))))))))))))))))
, 2(3(0(2(2(0(2(0(3(2(3(2(3(x1))))))))))))) ->
1(0(0(3(2(0(3(3(0(0(3(0(0(2(0(0(2(x1)))))))))))))))))
, 2(3(0(0(0(2(3(3(2(0(3(0(3(x1))))))))))))) ->
2(2(0(0(0(1(2(0(0(0(3(0(2(0(3(2(0(x1)))))))))))))))))
, 2(2(0(1(0(1(0(3(3(2(1(2(3(x1))))))))))))) ->
0(3(0(1(2(0(1(2(0(2(2(1(2(1(0(0(0(x1)))))))))))))))))
, 2(1(1(0(3(2(1(2(0(0(3(1(3(x1))))))))))))) ->
2(2(0(1(0(0(0(0(2(2(0(0(2(2(1(3(3(x1)))))))))))))))))
, 2(0(3(3(1(2(2(0(0(2(1(0(1(x1))))))))))))) ->
3(2(0(1(0(0(2(0(3(1(0(0(0(2(1(0(2(x1)))))))))))))))))
, 2(0(2(2(1(2(2(3(2(0(1(1(2(x1))))))))))))) ->
0(2(3(1(3(1(0(0(0(0(0(0(1(2(2(1(0(x1)))))))))))))))))
, 2(0(2(1(2(2(3(2(2(2(2(1(0(x1))))))))))))) ->
1(0(0(0(0(1(0(0(2(0(3(1(0(0(2(3(0(x1)))))))))))))))))
, 1(3(3(2(2(2(3(2(2(0(2(3(0(x1))))))))))))) ->
3(0(3(2(2(0(2(2(1(0(2(2(3(1(2(0(0(x1)))))))))))))))))
, 1(3(3(0(2(3(0(3(2(0(0(1(1(x1))))))))))))) ->
3(2(0(3(0(3(0(0(2(0(0(0(1(0(2(3(1(x1)))))))))))))))))
, 1(3(2(1(0(1(0(3(0(1(3(0(0(x1))))))))))))) ->
0(3(1(0(0(0(3(0(0(2(3(2(1(0(1(0(0(x1)))))))))))))))))
, 1(3(1(3(1(0(2(0(1(3(0(0(1(x1))))))))))))) ->
2(2(0(0(0(1(0(0(2(0(0(1(3(3(3(0(1(x1)))))))))))))))))
, 1(3(1(1(3(0(0(1(0(0(2(3(0(x1))))))))))))) ->
2(1(0(2(0(3(2(0(0(0(0(2(0(1(1(3(0(x1)))))))))))))))))
, 1(3(1(0(1(3(1(2(0(1(3(1(0(x1))))))))))))) ->
1(2(0(3(1(3(0(0(3(3(1(0(3(0(0(0(0(x1)))))))))))))))))
, 1(3(0(0(3(2(2(2(2(1(0(2(3(x1))))))))))))) ->
3(0(0(2(2(0(3(2(0(3(0(2(3(1(2(0(0(x1)))))))))))))))))
, 1(2(3(1(0(2(1(0(0(1(1(1(0(x1))))))))))))) ->
0(3(0(1(0(1(2(0(3(0(0(0(1(0(1(3(0(x1)))))))))))))))))
, 1(2(2(1(2(2(0(0(1(2(2(0(1(x1))))))))))))) ->
0(0(3(0(0(1(2(2(0(3(2(0(2(0(1(0(3(x1)))))))))))))))))
, 1(1(2(0(2(2(0(0(1(3(2(3(2(x1))))))))))))) ->
2(0(0(0(0(1(2(3(0(1(0(0(3(2(0(0(1(x1)))))))))))))))))
, 1(0(3(0(2(1(1(0(1(1(1(2(2(x1))))))))))))) ->
0(3(2(0(0(2(0(0(3(0(0(0(3(3(3(3(3(x1)))))))))))))))))
, 1(0(0(3(2(0(1(0(1(2(2(1(1(x1))))))))))))) ->
0(0(3(3(1(0(0(0(2(0(2(0(1(0(0(1(2(x1)))))))))))))))))
, 0(2(3(2(2(3(1(0(2(0(3(1(3(x1))))))))))))) ->
0(0(3(0(2(1(1(0(0(2(2(0(2(0(2(2(3(x1)))))))))))))))))
, 0(2(3(1(1(0(2(0(0(2(1(3(2(x1))))))))))))) ->
0(2(2(0(0(3(2(2(0(1(2(2(0(0(2(2(0(x1)))))))))))))))))
, 0(2(3(0(2(2(3(2(2(1(1(2(3(x1))))))))))))) ->
1(0(0(2(3(2(0(2(0(1(3(0(2(0(1(1(2(x1)))))))))))))))))
, 0(2(2(3(2(2(1(2(0(3(2(0(3(x1))))))))))))) ->
0(3(2(1(0(2(3(0(0(1(0(2(1(0(0(3(0(x1)))))))))))))))))
, 0(2(0(2(0(2(3(2(3(1(1(3(1(x1))))))))))))) ->
0(0(1(3(0(0(3(0(3(2(3(0(0(2(2(1(0(x1)))))))))))))))))
, 0(1(3(2(1(0(3(0(0(1(1(1(1(x1))))))))))))) ->
0(3(1(3(1(0(0(3(2(0(3(0(3(0(0(1(0(x1)))))))))))))))))
, 0(1(1(0(0(1(3(1(2(0(3(1(2(x1))))))))))))) ->
0(2(0(2(0(1(3(0(2(0(0(0(0(1(2(2(0(x1)))))))))))))))))
, 0(1(0(3(1(0(2(2(1(1(0(2(1(x1))))))))))))) ->
0(0(2(2(3(0(0(0(0(1(0(1(0(3(0(1(2(x1)))))))))))))))))
, 0(0(1(1(2(0(3(0(1(2(0(1(1(x1))))))))))))) ->
0(0(3(0(0(2(0(2(2(0(0(1(0(0(0(1(0(x1)))))))))))))))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ 1_0(1) -> 1
, 1_1(1) -> 154
, 1_1(2) -> 1
, 1_1(2) -> 17
, 1_1(2) -> 32
, 1_1(2) -> 33
, 1_1(2) -> 47
, 1_1(2) -> 48
, 1_1(2) -> 62
, 1_1(2) -> 63
, 1_1(2) -> 126
, 1_1(2) -> 127
, 1_1(2) -> 128
, 1_1(2) -> 151
, 1_1(2) -> 152
, 1_1(2) -> 154
, 1_1(2) -> 639
, 1_1(3) -> 2
, 1_1(5) -> 4
, 1_1(10) -> 9
, 1_1(12) -> 11
, 1_1(13) -> 12
, 1_1(14) -> 164
, 1_1(16) -> 15
, 1_1(17) -> 116
, 1_1(20) -> 19
, 1_1(22) -> 21
, 1_1(31) -> 227
, 1_1(32) -> 184
, 1_1(33) -> 32
, 1_1(47) -> 102
, 1_1(48) -> 572
, 1_1(49) -> 15
, 1_1(54) -> 53
, 1_1(61) -> 346
, 1_1(62) -> 32
, 1_1(63) -> 140
, 1_1(66) -> 65
, 1_1(69) -> 68
, 1_1(74) -> 73
, 1_1(76) -> 75
, 1_1(77) -> 51
, 1_1(88) -> 87
, 1_1(89) -> 3
, 1_1(90) -> 15
, 1_1(92) -> 91
, 1_1(98) -> 97
, 1_1(105) -> 104
, 1_1(107) -> 106
, 1_1(114) -> 113
, 1_1(119) -> 118
, 1_1(125) -> 124
, 1_1(126) -> 150
, 1_1(128) -> 185
, 1_1(136) -> 135
, 1_1(141) -> 140
, 1_1(151) -> 150
, 1_1(155) -> 64
, 1_1(170) -> 169
, 1_1(173) -> 49
, 1_1(184) -> 184
, 1_1(185) -> 184
, 1_1(189) -> 188
, 1_1(195) -> 194
, 1_1(207) -> 206
, 1_1(228) -> 227
, 1_1(325) -> 324
, 1_1(347) -> 346
, 1_1(441) -> 440
, 1_1(445) -> 444
, 1_1(484) -> 169
, 1_1(562) -> 561
, 1_1(570) -> 569
, 1_1(572) -> 750
, 1_1(630) -> 629
, 1_1(631) -> 630
, 1_1(688) -> 687
, 1_1(692) -> 1002
, 1_1(746) -> 745
, 1_1(751) -> 449
, 1_1(757) -> 756
, 1_1(760) -> 759
, 1_1(904) -> 903
, 1_1(976) -> 975
, 1_1(1071) -> 1070
, 1_1(1073) -> 1072
, 1_1(1299) -> 1298
, 0_0(1) -> 1
, 0_1(1) -> 17
, 0_1(2) -> 16
, 0_1(3) -> 1
, 0_1(3) -> 14
, 0_1(3) -> 17
, 0_1(3) -> 345
, 0_1(4) -> 3
, 0_1(6) -> 5
, 0_1(7) -> 6
, 0_1(9) -> 8
, 0_1(13) -> 1299
, 0_1(14) -> 13
, 0_1(15) -> 14
, 0_1(16) -> 76
, 0_1(17) -> 16
, 0_1(18) -> 1
, 0_1(18) -> 14
, 0_1(18) -> 17
, 0_1(18) -> 18
, 0_1(18) -> 31
, 0_1(18) -> 32
, 0_1(18) -> 33
, 0_1(18) -> 47
, 0_1(18) -> 48
, 0_1(18) -> 63
, 0_1(18) -> 85
, 0_1(18) -> 86
, 0_1(18) -> 114
, 0_1(18) -> 115
, 0_1(18) -> 116
, 0_1(18) -> 126
, 0_1(18) -> 127
, 0_1(18) -> 128
, 0_1(18) -> 151
, 0_1(18) -> 154
, 0_1(18) -> 346
, 0_1(18) -> 572
, 0_1(18) -> 636
, 0_1(18) -> 637
, 0_1(18) -> 638
, 0_1(18) -> 639
, 0_1(18) -> 692
, 0_1(18) -> 923
, 0_1(19) -> 18
, 0_1(21) -> 20
, 0_1(24) -> 23
, 0_1(25) -> 24
, 0_1(27) -> 26
, 0_1(31) -> 30
, 0_1(32) -> 31
, 0_1(33) -> 347
, 0_1(34) -> 2
, 0_1(35) -> 34
, 0_1(38) -> 37
, 0_1(41) -> 40
, 0_1(42) -> 41
, 0_1(44) -> 43
, 0_1(45) -> 44
, 0_1(47) -> 46
, 0_1(48) -> 47
, 0_1(49) -> 17
, 0_1(51) -> 50
, 0_1(52) -> 51
, 0_1(53) -> 52
, 0_1(56) -> 55
, 0_1(57) -> 56
, 0_1(58) -> 57
, 0_1(60) -> 59
, 0_1(61) -> 760
, 0_1(62) -> 61
, 0_1(64) -> 3
, 0_1(65) -> 64
, 0_1(68) -> 67
, 0_1(71) -> 70
, 0_1(76) -> 197
, 0_1(78) -> 77
, 0_1(79) -> 78
, 0_1(80) -> 79
, 0_1(81) -> 80
, 0_1(84) -> 83
, 0_1(85) -> 84
, 0_1(89) -> 1
, 0_1(89) -> 13
, 0_1(89) -> 14
, 0_1(89) -> 15
, 0_1(89) -> 16
, 0_1(89) -> 17
, 0_1(89) -> 47
, 0_1(89) -> 116
, 0_1(89) -> 126
, 0_1(89) -> 154
, 0_1(89) -> 572
, 0_1(89) -> 759
, 0_1(90) -> 17
, 0_1(91) -> 90
, 0_1(93) -> 92
, 0_1(94) -> 93
, 0_1(96) -> 95
, 0_1(99) -> 98
, 0_1(100) -> 99
, 0_1(101) -> 100
, 0_1(104) -> 1
, 0_1(106) -> 1
, 0_1(107) -> 2
, 0_1(108) -> 107
, 0_1(109) -> 108
, 0_1(110) -> 109
, 0_1(111) -> 110
, 0_1(112) -> 111
, 0_1(113) -> 112
, 0_1(114) -> 869
, 0_1(116) -> 14
, 0_1(117) -> 35
, 0_1(118) -> 117
, 0_1(120) -> 119
, 0_1(121) -> 120
, 0_1(123) -> 122
, 0_1(126) -> 125
, 0_1(127) -> 126
, 0_1(128) -> 761
, 0_1(129) -> 89
, 0_1(130) -> 1
, 0_1(133) -> 132
, 0_1(137) -> 136
, 0_1(138) -> 205
, 0_1(142) -> 3
, 0_1(143) -> 142
, 0_1(144) -> 1
, 0_1(145) -> 144
, 0_1(146) -> 145
, 0_1(148) -> 147
, 0_1(149) -> 148
, 0_1(150) -> 149
, 0_1(152) -> 151
, 0_1(154) -> 14
, 0_1(156) -> 155
, 0_1(157) -> 156
, 0_1(158) -> 157
, 0_1(160) -> 159
, 0_1(161) -> 160
, 0_1(164) -> 226
, 0_1(165) -> 54
, 0_1(166) -> 165
, 0_1(168) -> 167
, 0_1(169) -> 168
, 0_1(174) -> 173
, 0_1(176) -> 175
, 0_1(179) -> 178
, 0_1(180) -> 179
, 0_1(181) -> 180
, 0_1(182) -> 181
, 0_1(184) -> 183
, 0_1(185) -> 228
, 0_1(186) -> 17
, 0_1(187) -> 186
, 0_1(191) -> 190
, 0_1(192) -> 191
, 0_1(196) -> 195
, 0_1(198) -> 129
, 0_1(201) -> 200
, 0_1(204) -> 203
, 0_1(206) -> 66
, 0_1(209) -> 208
, 0_1(225) -> 224
, 0_1(226) -> 225
, 0_1(227) -> 226
, 0_1(323) -> 130
, 0_1(324) -> 323
, 0_1(328) -> 327
, 0_1(344) -> 343
, 0_1(346) -> 345
, 0_1(437) -> 49
, 0_1(438) -> 437
, 0_1(439) -> 438
, 0_1(440) -> 439
, 0_1(444) -> 443
, 0_1(446) -> 445
, 0_1(447) -> 446
, 0_1(450) -> 449
, 0_1(451) -> 450
, 0_1(453) -> 452
, 0_1(454) -> 453
, 0_1(456) -> 455
, 0_1(457) -> 456
, 0_1(458) -> 457
, 0_1(561) -> 2
, 0_1(563) -> 562
, 0_1(564) -> 563
, 0_1(565) -> 564
, 0_1(567) -> 566
, 0_1(569) -> 568
, 0_1(571) -> 570
, 0_1(572) -> 571
, 0_1(632) -> 631
, 0_1(633) -> 632
, 0_1(636) -> 635
, 0_1(638) -> 637
, 0_1(639) -> 126
, 0_1(675) -> 674
, 0_1(676) -> 675
, 0_1(687) -> 686
, 0_1(691) -> 690
, 0_1(692) -> 691
, 0_1(743) -> 742
, 0_1(745) -> 744
, 0_1(748) -> 747
, 0_1(750) -> 749
, 0_1(752) -> 751
, 0_1(755) -> 754
, 0_1(756) -> 755
, 0_1(758) -> 757
, 0_1(761) -> 760
, 0_1(852) -> 851
, 0_1(853) -> 852
, 0_1(861) -> 860
, 0_1(869) -> 868
, 0_1(905) -> 904
, 0_1(906) -> 905
, 0_1(921) -> 920
, 0_1(923) -> 922
, 0_1(975) -> 974
, 0_1(997) -> 996
, 0_1(999) -> 998
, 0_1(1000) -> 999
, 0_1(1001) -> 1000
, 0_1(1002) -> 1001
, 0_1(1067) -> 1066
, 0_1(1068) -> 1067
, 0_1(1069) -> 1068
, 0_1(1070) -> 1069
, 0_1(1072) -> 1071
, 0_1(1074) -> 1073
, 0_1(1294) -> 1293
, 0_1(1297) -> 1296
, 0_1(1298) -> 1297
, 2_0(1) -> 1
, 2_1(1) -> 48
, 2_1(2) -> 48
, 2_1(3) -> 48
, 2_1(11) -> 10
, 2_1(13) -> 448
, 2_1(15) -> 115
, 2_1(16) -> 141
, 2_1(17) -> 63
, 2_1(23) -> 22
, 2_1(28) -> 27
, 2_1(29) -> 28
, 2_1(30) -> 29
, 2_1(32) -> 86
, 2_1(33) -> 639
, 2_1(37) -> 36
, 2_1(46) -> 45
, 2_1(48) -> 18
, 2_1(49) -> 1
, 2_1(49) -> 32
, 2_1(49) -> 48
, 2_1(49) -> 127
, 2_1(49) -> 154
, 2_1(49) -> 639
, 2_1(49) -> 750
, 2_1(50) -> 49
, 2_1(55) -> 54
, 2_1(61) -> 60
, 2_1(62) -> 127
, 2_1(63) -> 692
, 2_1(67) -> 66
, 2_1(70) -> 69
, 2_1(72) -> 71
, 2_1(73) -> 72
, 2_1(75) -> 74
, 2_1(82) -> 81
, 2_1(83) -> 82
, 2_1(84) -> 636
, 2_1(86) -> 85
, 2_1(87) -> 86
, 2_1(89) -> 48
, 2_1(90) -> 89
, 2_1(95) -> 94
, 2_1(102) -> 101
, 2_1(103) -> 18
, 2_1(105) -> 18
, 2_1(107) -> 18
, 2_1(115) -> 114
, 2_1(116) -> 115
, 2_1(122) -> 121
, 2_1(128) -> 127
, 2_1(131) -> 130
, 2_1(132) -> 131
, 2_1(134) -> 133
, 2_1(135) -> 134
, 2_1(138) -> 137
, 2_1(139) -> 138
, 2_1(147) -> 146
, 2_1(153) -> 152
, 2_1(155) -> 48
, 2_1(162) -> 161
, 2_1(164) -> 163
, 2_1(167) -> 166
, 2_1(173) -> 48
, 2_1(175) -> 174
, 2_1(178) -> 177
, 2_1(183) -> 182
, 2_1(186) -> 2
, 2_1(199) -> 198
, 2_1(200) -> 199
, 2_1(203) -> 202
, 2_1(208) -> 207
, 2_1(226) -> 344
, 2_1(326) -> 325
, 2_1(327) -> 326
, 2_1(343) -> 342
, 2_1(345) -> 344
, 2_1(442) -> 441
, 2_1(448) -> 28
, 2_1(449) -> 64
, 2_1(452) -> 451
, 2_1(562) -> 18
, 2_1(566) -> 565
, 2_1(568) -> 567
, 2_1(629) -> 323
, 2_1(634) -> 633
, 2_1(635) -> 634
, 2_1(637) -> 636
, 2_1(639) -> 638
, 2_1(674) -> 103
, 2_1(685) -> 684
, 2_1(686) -> 685
, 2_1(689) -> 688
, 2_1(690) -> 689
, 2_1(740) -> 35
, 2_1(742) -> 741
, 2_1(744) -> 743
, 2_1(749) -> 748
, 2_1(751) -> 48
, 2_1(753) -> 752
, 2_1(759) -> 758
, 2_1(867) -> 866
, 2_1(920) -> 919
, 2_1(974) -> 91
, 2_1(998) -> 997
, 2_1(1060) -> 449
, 2_1(1293) -> 324
, 2_1(1295) -> 1294
, 2_1(1296) -> 1295
, 3_0(1) -> 1
, 3_1(1) -> 33
, 3_1(2) -> 62
, 3_1(3) -> 128
, 3_1(8) -> 7
, 3_1(13) -> 923
, 3_1(14) -> 172
, 3_1(17) -> 128
, 3_1(18) -> 128
, 3_1(26) -> 25
, 3_1(33) -> 88
, 3_1(36) -> 35
, 3_1(39) -> 38
, 3_1(40) -> 39
, 3_1(43) -> 42
, 3_1(48) -> 62
, 3_1(49) -> 33
, 3_1(50) -> 33
, 3_1(59) -> 58
, 3_1(63) -> 62
, 3_1(64) -> 18
, 3_1(76) -> 196
, 3_1(77) -> 33
, 3_1(88) -> 484
, 3_1(89) -> 1
, 3_1(89) -> 32
, 3_1(89) -> 48
, 3_1(89) -> 63
, 3_1(89) -> 87
, 3_1(89) -> 154
, 3_1(89) -> 185
, 3_1(97) -> 96
, 3_1(104) -> 103
, 3_1(105) -> 33
, 3_1(106) -> 105
, 3_1(107) -> 3
, 3_1(124) -> 123
, 3_1(125) -> 158
, 3_1(128) -> 171
, 3_1(130) -> 129
, 3_1(140) -> 139
, 3_1(142) -> 91
, 3_1(144) -> 143
, 3_1(154) -> 153
, 3_1(155) -> 2
, 3_1(159) -> 158
, 3_1(163) -> 162
, 3_1(171) -> 170
, 3_1(172) -> 171
, 3_1(173) -> 33
, 3_1(177) -> 176
, 3_1(188) -> 187
, 3_1(190) -> 189
, 3_1(193) -> 192
, 3_1(194) -> 193
, 3_1(197) -> 196
, 3_1(202) -> 201
, 3_1(205) -> 204
, 3_1(224) -> 209
, 3_1(342) -> 328
, 3_1(443) -> 442
, 3_1(448) -> 447
, 3_1(455) -> 454
, 3_1(481) -> 458
, 3_1(484) -> 481
, 3_1(561) -> 130
, 3_1(571) -> 1074
, 3_1(684) -> 676
, 3_1(741) -> 740
, 3_1(747) -> 746
, 3_1(754) -> 753
, 3_1(851) -> 20
, 3_1(860) -> 853
, 3_1(866) -> 861
, 3_1(868) -> 867
, 3_1(903) -> 155
, 3_1(919) -> 906
, 3_1(922) -> 921
, 3_1(996) -> 976
, 3_1(1066) -> 1060}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 3(2(2(2(0(1(3(0(2(2(3(3(0(x1))))))))))))) ->
1(1(0(1(0(0(3(0(1(2(1(1(0(0(1(0(0(x1)))))))))))))))))
, 3(0(0(1(3(1(2(0(2(0(3(3(3(x1))))))))))))) ->
0(0(1(0(1(2(0(0(3(0(2(2(2(0(0(1(3(x1)))))))))))))))))
, 2(3(0(2(2(0(2(0(3(2(3(2(3(x1))))))))))))) ->
1(0(0(3(2(0(3(3(0(0(3(0(0(2(0(0(2(x1)))))))))))))))))
, 2(3(0(0(0(2(3(3(2(0(3(0(3(x1))))))))))))) ->
2(2(0(0(0(1(2(0(0(0(3(0(2(0(3(2(0(x1)))))))))))))))))
, 2(2(0(1(0(1(0(3(3(2(1(2(3(x1))))))))))))) ->
0(3(0(1(2(0(1(2(0(2(2(1(2(1(0(0(0(x1)))))))))))))))))
, 2(1(1(0(3(2(1(2(0(0(3(1(3(x1))))))))))))) ->
2(2(0(1(0(0(0(0(2(2(0(0(2(2(1(3(3(x1)))))))))))))))))
, 2(0(3(3(1(2(2(0(0(2(1(0(1(x1))))))))))))) ->
3(2(0(1(0(0(2(0(3(1(0(0(0(2(1(0(2(x1)))))))))))))))))
, 2(0(2(2(1(2(2(3(2(0(1(1(2(x1))))))))))))) ->
0(2(3(1(3(1(0(0(0(0(0(0(1(2(2(1(0(x1)))))))))))))))))
, 2(0(2(1(2(2(3(2(2(2(2(1(0(x1))))))))))))) ->
1(0(0(0(0(1(0(0(2(0(3(1(0(0(2(3(0(x1)))))))))))))))))
, 1(3(3(2(2(2(3(2(2(0(2(3(0(x1))))))))))))) ->
3(0(3(2(2(0(2(2(1(0(2(2(3(1(2(0(0(x1)))))))))))))))))
, 1(3(3(0(2(3(0(3(2(0(0(1(1(x1))))))))))))) ->
3(2(0(3(0(3(0(0(2(0(0(0(1(0(2(3(1(x1)))))))))))))))))
, 1(3(2(1(0(1(0(3(0(1(3(0(0(x1))))))))))))) ->
0(3(1(0(0(0(3(0(0(2(3(2(1(0(1(0(0(x1)))))))))))))))))
, 1(3(1(3(1(0(2(0(1(3(0(0(1(x1))))))))))))) ->
2(2(0(0(0(1(0(0(2(0(0(1(3(3(3(0(1(x1)))))))))))))))))
, 1(3(1(1(3(0(0(1(0(0(2(3(0(x1))))))))))))) ->
2(1(0(2(0(3(2(0(0(0(0(2(0(1(1(3(0(x1)))))))))))))))))
, 1(3(1(0(1(3(1(2(0(1(3(1(0(x1))))))))))))) ->
1(2(0(3(1(3(0(0(3(3(1(0(3(0(0(0(0(x1)))))))))))))))))
, 1(3(0(0(3(2(2(2(2(1(0(2(3(x1))))))))))))) ->
3(0(0(2(2(0(3(2(0(3(0(2(3(1(2(0(0(x1)))))))))))))))))
, 1(2(3(1(0(2(1(0(0(1(1(1(0(x1))))))))))))) ->
0(3(0(1(0(1(2(0(3(0(0(0(1(0(1(3(0(x1)))))))))))))))))
, 1(2(2(1(2(2(0(0(1(2(2(0(1(x1))))))))))))) ->
0(0(3(0(0(1(2(2(0(3(2(0(2(0(1(0(3(x1)))))))))))))))))
, 1(1(2(0(2(2(0(0(1(3(2(3(2(x1))))))))))))) ->
2(0(0(0(0(1(2(3(0(1(0(0(3(2(0(0(1(x1)))))))))))))))))
, 1(0(3(0(2(1(1(0(1(1(1(2(2(x1))))))))))))) ->
0(3(2(0(0(2(0(0(3(0(0(0(3(3(3(3(3(x1)))))))))))))))))
, 1(0(0(3(2(0(1(0(1(2(2(1(1(x1))))))))))))) ->
0(0(3(3(1(0(0(0(2(0(2(0(1(0(0(1(2(x1)))))))))))))))))
, 0(2(3(2(2(3(1(0(2(0(3(1(3(x1))))))))))))) ->
0(0(3(0(2(1(1(0(0(2(2(0(2(0(2(2(3(x1)))))))))))))))))
, 0(2(3(1(1(0(2(0(0(2(1(3(2(x1))))))))))))) ->
0(2(2(0(0(3(2(2(0(1(2(2(0(0(2(2(0(x1)))))))))))))))))
, 0(2(3(0(2(2(3(2(2(1(1(2(3(x1))))))))))))) ->
1(0(0(2(3(2(0(2(0(1(3(0(2(0(1(1(2(x1)))))))))))))))))
, 0(2(2(3(2(2(1(2(0(3(2(0(3(x1))))))))))))) ->
0(3(2(1(0(2(3(0(0(1(0(2(1(0(0(3(0(x1)))))))))))))))))
, 0(2(0(2(0(2(3(2(3(1(1(3(1(x1))))))))))))) ->
0(0(1(3(0(0(3(0(3(2(3(0(0(2(2(1(0(x1)))))))))))))))))
, 0(1(3(2(1(0(3(0(0(1(1(1(1(x1))))))))))))) ->
0(3(1(3(1(0(0(3(2(0(3(0(3(0(0(1(0(x1)))))))))))))))))
, 0(1(1(0(0(1(3(1(2(0(3(1(2(x1))))))))))))) ->
0(2(0(2(0(1(3(0(2(0(0(0(0(1(2(2(0(x1)))))))))))))))))
, 0(1(0(3(1(0(2(2(1(1(0(2(1(x1))))))))))))) ->
0(0(2(2(3(0(0(0(0(1(0(1(0(3(0(1(2(x1)))))))))))))))))
, 0(0(1(1(2(0(3(0(1(2(0(1(1(x1))))))))))))) ->
0(0(3(0(0(2(0(2(2(0(0(1(0(0(0(1(0(x1)))))))))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 3(2(2(2(0(1(3(0(2(2(3(3(0(x1))))))))))))) ->
1(1(0(1(0(0(3(0(1(2(1(1(0(0(1(0(0(x1)))))))))))))))))
, 3(0(0(1(3(1(2(0(2(0(3(3(3(x1))))))))))))) ->
0(0(1(0(1(2(0(0(3(0(2(2(2(0(0(1(3(x1)))))))))))))))))
, 2(3(0(2(2(0(2(0(3(2(3(2(3(x1))))))))))))) ->
1(0(0(3(2(0(3(3(0(0(3(0(0(2(0(0(2(x1)))))))))))))))))
, 2(3(0(0(0(2(3(3(2(0(3(0(3(x1))))))))))))) ->
2(2(0(0(0(1(2(0(0(0(3(0(2(0(3(2(0(x1)))))))))))))))))
, 2(2(0(1(0(1(0(3(3(2(1(2(3(x1))))))))))))) ->
0(3(0(1(2(0(1(2(0(2(2(1(2(1(0(0(0(x1)))))))))))))))))
, 2(1(1(0(3(2(1(2(0(0(3(1(3(x1))))))))))))) ->
2(2(0(1(0(0(0(0(2(2(0(0(2(2(1(3(3(x1)))))))))))))))))
, 2(0(3(3(1(2(2(0(0(2(1(0(1(x1))))))))))))) ->
3(2(0(1(0(0(2(0(3(1(0(0(0(2(1(0(2(x1)))))))))))))))))
, 2(0(2(2(1(2(2(3(2(0(1(1(2(x1))))))))))))) ->
0(2(3(1(3(1(0(0(0(0(0(0(1(2(2(1(0(x1)))))))))))))))))
, 2(0(2(1(2(2(3(2(2(2(2(1(0(x1))))))))))))) ->
1(0(0(0(0(1(0(0(2(0(3(1(0(0(2(3(0(x1)))))))))))))))))
, 1(3(3(2(2(2(3(2(2(0(2(3(0(x1))))))))))))) ->
3(0(3(2(2(0(2(2(1(0(2(2(3(1(2(0(0(x1)))))))))))))))))
, 1(3(3(0(2(3(0(3(2(0(0(1(1(x1))))))))))))) ->
3(2(0(3(0(3(0(0(2(0(0(0(1(0(2(3(1(x1)))))))))))))))))
, 1(3(2(1(0(1(0(3(0(1(3(0(0(x1))))))))))))) ->
0(3(1(0(0(0(3(0(0(2(3(2(1(0(1(0(0(x1)))))))))))))))))
, 1(3(1(3(1(0(2(0(1(3(0(0(1(x1))))))))))))) ->
2(2(0(0(0(1(0(0(2(0(0(1(3(3(3(0(1(x1)))))))))))))))))
, 1(3(1(1(3(0(0(1(0(0(2(3(0(x1))))))))))))) ->
2(1(0(2(0(3(2(0(0(0(0(2(0(1(1(3(0(x1)))))))))))))))))
, 1(3(1(0(1(3(1(2(0(1(3(1(0(x1))))))))))))) ->
1(2(0(3(1(3(0(0(3(3(1(0(3(0(0(0(0(x1)))))))))))))))))
, 1(3(0(0(3(2(2(2(2(1(0(2(3(x1))))))))))))) ->
3(0(0(2(2(0(3(2(0(3(0(2(3(1(2(0(0(x1)))))))))))))))))
, 1(2(3(1(0(2(1(0(0(1(1(1(0(x1))))))))))))) ->
0(3(0(1(0(1(2(0(3(0(0(0(1(0(1(3(0(x1)))))))))))))))))
, 1(2(2(1(2(2(0(0(1(2(2(0(1(x1))))))))))))) ->
0(0(3(0(0(1(2(2(0(3(2(0(2(0(1(0(3(x1)))))))))))))))))
, 1(1(2(0(2(2(0(0(1(3(2(3(2(x1))))))))))))) ->
2(0(0(0(0(1(2(3(0(1(0(0(3(2(0(0(1(x1)))))))))))))))))
, 1(0(3(0(2(1(1(0(1(1(1(2(2(x1))))))))))))) ->
0(3(2(0(0(2(0(0(3(0(0(0(3(3(3(3(3(x1)))))))))))))))))
, 1(0(0(3(2(0(1(0(1(2(2(1(1(x1))))))))))))) ->
0(0(3(3(1(0(0(0(2(0(2(0(1(0(0(1(2(x1)))))))))))))))))
, 0(2(3(2(2(3(1(0(2(0(3(1(3(x1))))))))))))) ->
0(0(3(0(2(1(1(0(0(2(2(0(2(0(2(2(3(x1)))))))))))))))))
, 0(2(3(1(1(0(2(0(0(2(1(3(2(x1))))))))))))) ->
0(2(2(0(0(3(2(2(0(1(2(2(0(0(2(2(0(x1)))))))))))))))))
, 0(2(3(0(2(2(3(2(2(1(1(2(3(x1))))))))))))) ->
1(0(0(2(3(2(0(2(0(1(3(0(2(0(1(1(2(x1)))))))))))))))))
, 0(2(2(3(2(2(1(2(0(3(2(0(3(x1))))))))))))) ->
0(3(2(1(0(2(3(0(0(1(0(2(1(0(0(3(0(x1)))))))))))))))))
, 0(2(0(2(0(2(3(2(3(1(1(3(1(x1))))))))))))) ->
0(0(1(3(0(0(3(0(3(2(3(0(0(2(2(1(0(x1)))))))))))))))))
, 0(1(3(2(1(0(3(0(0(1(1(1(1(x1))))))))))))) ->
0(3(1(3(1(0(0(3(2(0(3(0(3(0(0(1(0(x1)))))))))))))))))
, 0(1(1(0(0(1(3(1(2(0(3(1(2(x1))))))))))))) ->
0(2(0(2(0(1(3(0(2(0(0(0(0(1(2(2(0(x1)))))))))))))))))
, 0(1(0(3(1(0(2(2(1(1(0(2(1(x1))))))))))))) ->
0(0(2(2(3(0(0(0(0(1(0(1(0(3(0(1(2(x1)))))))))))))))))
, 0(0(1(1(2(0(3(0(1(2(0(1(1(x1))))))))))))) ->
0(0(3(0(0(2(0(2(2(0(0(1(0(0(0(1(0(x1)))))))))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 3(2(2(2(0(1(3(0(2(2(3(3(0(x1))))))))))))) ->
1(1(0(1(0(0(3(0(1(2(1(1(0(0(1(0(0(x1)))))))))))))))))
, 3(0(0(1(3(1(2(0(2(0(3(3(3(x1))))))))))))) ->
0(0(1(0(1(2(0(0(3(0(2(2(2(0(0(1(3(x1)))))))))))))))))
, 2(3(0(2(2(0(2(0(3(2(3(2(3(x1))))))))))))) ->
1(0(0(3(2(0(3(3(0(0(3(0(0(2(0(0(2(x1)))))))))))))))))
, 2(3(0(0(0(2(3(3(2(0(3(0(3(x1))))))))))))) ->
2(2(0(0(0(1(2(0(0(0(3(0(2(0(3(2(0(x1)))))))))))))))))
, 2(2(0(1(0(1(0(3(3(2(1(2(3(x1))))))))))))) ->
0(3(0(1(2(0(1(2(0(2(2(1(2(1(0(0(0(x1)))))))))))))))))
, 2(1(1(0(3(2(1(2(0(0(3(1(3(x1))))))))))))) ->
2(2(0(1(0(0(0(0(2(2(0(0(2(2(1(3(3(x1)))))))))))))))))
, 2(0(3(3(1(2(2(0(0(2(1(0(1(x1))))))))))))) ->
3(2(0(1(0(0(2(0(3(1(0(0(0(2(1(0(2(x1)))))))))))))))))
, 2(0(2(2(1(2(2(3(2(0(1(1(2(x1))))))))))))) ->
0(2(3(1(3(1(0(0(0(0(0(0(1(2(2(1(0(x1)))))))))))))))))
, 2(0(2(1(2(2(3(2(2(2(2(1(0(x1))))))))))))) ->
1(0(0(0(0(1(0(0(2(0(3(1(0(0(2(3(0(x1)))))))))))))))))
, 1(3(3(2(2(2(3(2(2(0(2(3(0(x1))))))))))))) ->
3(0(3(2(2(0(2(2(1(0(2(2(3(1(2(0(0(x1)))))))))))))))))
, 1(3(3(0(2(3(0(3(2(0(0(1(1(x1))))))))))))) ->
3(2(0(3(0(3(0(0(2(0(0(0(1(0(2(3(1(x1)))))))))))))))))
, 1(3(2(1(0(1(0(3(0(1(3(0(0(x1))))))))))))) ->
0(3(1(0(0(0(3(0(0(2(3(2(1(0(1(0(0(x1)))))))))))))))))
, 1(3(1(3(1(0(2(0(1(3(0(0(1(x1))))))))))))) ->
2(2(0(0(0(1(0(0(2(0(0(1(3(3(3(0(1(x1)))))))))))))))))
, 1(3(1(1(3(0(0(1(0(0(2(3(0(x1))))))))))))) ->
2(1(0(2(0(3(2(0(0(0(0(2(0(1(1(3(0(x1)))))))))))))))))
, 1(3(1(0(1(3(1(2(0(1(3(1(0(x1))))))))))))) ->
1(2(0(3(1(3(0(0(3(3(1(0(3(0(0(0(0(x1)))))))))))))))))
, 1(3(0(0(3(2(2(2(2(1(0(2(3(x1))))))))))))) ->
3(0(0(2(2(0(3(2(0(3(0(2(3(1(2(0(0(x1)))))))))))))))))
, 1(2(3(1(0(2(1(0(0(1(1(1(0(x1))))))))))))) ->
0(3(0(1(0(1(2(0(3(0(0(0(1(0(1(3(0(x1)))))))))))))))))
, 1(2(2(1(2(2(0(0(1(2(2(0(1(x1))))))))))))) ->
0(0(3(0(0(1(2(2(0(3(2(0(2(0(1(0(3(x1)))))))))))))))))
, 1(1(2(0(2(2(0(0(1(3(2(3(2(x1))))))))))))) ->
2(0(0(0(0(1(2(3(0(1(0(0(3(2(0(0(1(x1)))))))))))))))))
, 1(0(3(0(2(1(1(0(1(1(1(2(2(x1))))))))))))) ->
0(3(2(0(0(2(0(0(3(0(0(0(3(3(3(3(3(x1)))))))))))))))))
, 1(0(0(3(2(0(1(0(1(2(2(1(1(x1))))))))))))) ->
0(0(3(3(1(0(0(0(2(0(2(0(1(0(0(1(2(x1)))))))))))))))))
, 0(2(3(2(2(3(1(0(2(0(3(1(3(x1))))))))))))) ->
0(0(3(0(2(1(1(0(0(2(2(0(2(0(2(2(3(x1)))))))))))))))))
, 0(2(3(1(1(0(2(0(0(2(1(3(2(x1))))))))))))) ->
0(2(2(0(0(3(2(2(0(1(2(2(0(0(2(2(0(x1)))))))))))))))))
, 0(2(3(0(2(2(3(2(2(1(1(2(3(x1))))))))))))) ->
1(0(0(2(3(2(0(2(0(1(3(0(2(0(1(1(2(x1)))))))))))))))))
, 0(2(2(3(2(2(1(2(0(3(2(0(3(x1))))))))))))) ->
0(3(2(1(0(2(3(0(0(1(0(2(1(0(0(3(0(x1)))))))))))))))))
, 0(2(0(2(0(2(3(2(3(1(1(3(1(x1))))))))))))) ->
0(0(1(3(0(0(3(0(3(2(3(0(0(2(2(1(0(x1)))))))))))))))))
, 0(1(3(2(1(0(3(0(0(1(1(1(1(x1))))))))))))) ->
0(3(1(3(1(0(0(3(2(0(3(0(3(0(0(1(0(x1)))))))))))))))))
, 0(1(1(0(0(1(3(1(2(0(3(1(2(x1))))))))))))) ->
0(2(0(2(0(1(3(0(2(0(0(0(0(1(2(2(0(x1)))))))))))))))))
, 0(1(0(3(1(0(2(2(1(1(0(2(1(x1))))))))))))) ->
0(0(2(2(3(0(0(0(0(1(0(1(0(3(0(1(2(x1)))))))))))))))))
, 0(0(1(1(2(0(3(0(1(2(0(1(1(x1))))))))))))) ->
0(0(3(0(0(2(0(2(2(0(0(1(0(0(0(1(0(x1)))))))))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..