Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ 3(2(0(3(2(0(2(3(1(0(3(2(3(x1))))))))))))) ->
2(1(1(1(3(2(2(0(0(2(3(2(1(2(2(1(3(x1)))))))))))))))))
, 3(1(2(1(2(3(0(2(1(2(1(2(3(x1))))))))))))) ->
0(0(2(2(2(3(1(0(1(3(2(2(0(1(2(2(2(x1)))))))))))))))))
, 3(0(1(2(2(3(3(2(2(2(0(1(3(x1))))))))))))) ->
3(1(2(2(0(2(2(0(2(2(1(3(0(0(2(2(1(x1)))))))))))))))))
, 2(3(2(0(0(0(0(0(3(1(0(2(3(x1))))))))))))) ->
2(3(0(0(2(2(2(1(1(1(3(2(1(3(1(3(2(x1)))))))))))))))))
, 2(3(0(0(1(2(1(2(3(0(2(1(1(x1))))))))))))) ->
2(2(2(0(1(3(3(0(3(2(0(2(2(0(0(2(2(x1)))))))))))))))))
, 2(2(1(1(3(1(3(2(0(1(0(0(1(x1))))))))))))) ->
0(0(0(2(2(1(3(0(3(0(0(2(2(3(0(1(1(x1)))))))))))))))))
, 2(2(1(1(2(0(1(1(0(3(3(0(1(x1))))))))))))) ->
0(2(2(1(0(0(0(1(2(2(0(2(3(1(2(2(0(x1)))))))))))))))))
, 2(2(1(0(2(3(3(3(0(1(1(1(1(x1))))))))))))) ->
2(0(2(3(1(2(0(2(2(3(2(2(3(2(2(2(2(x1)))))))))))))))))
, 2(2(0(2(3(2(3(3(1(1(1(3(3(x1))))))))))))) ->
2(2(2(2(2(3(3(3(1(1(3(2(3(2(2(2(2(x1)))))))))))))))))
, 2(1(2(3(1(2(3(3(2(3(3(1(1(x1))))))))))))) ->
2(2(3(0(0(2(2(1(2(0(1(0(2(0(3(1(2(x1)))))))))))))))))
, 2(1(1(3(3(0(1(0(0(0(2(1(3(x1))))))))))))) ->
2(0(2(2(1(3(0(2(1(2(3(2(0(0(2(3(0(x1)))))))))))))))))
, 2(1(1(3(2(3(3(1(0(0(1(2(0(x1))))))))))))) ->
2(3(3(1(2(2(2(1(1(2(2(1(0(3(2(2(3(x1)))))))))))))))))
, 2(1(1(2(2(3(0(0(3(3(1(3(2(x1))))))))))))) ->
2(1(3(1(0(2(0(3(2(3(2(2(3(2(0(2(2(x1)))))))))))))))))
, 2(1(1(2(1(1(1(1(1(2(0(3(0(x1))))))))))))) ->
2(1(1(1(0(0(2(0(2(2(0(1(3(2(0(1(0(x1)))))))))))))))))
, 2(1(0(3(3(0(0(3(1(1(2(3(2(x1))))))))))))) ->
2(1(1(3(1(0(0(2(2(2(1(3(1(1(3(1(2(x1)))))))))))))))))
, 2(0(3(3(1(0(3(1(2(2(2(2(1(x1))))))))))))) ->
2(2(3(1(0(1(2(2(3(2(2(0(0(1(1(2(2(x1)))))))))))))))))
, 2(0(1(1(1(3(2(0(0(0(1(0(1(x1))))))))))))) ->
2(1(2(2(2(2(2(0(2(3(2(0(2(1(0(0(0(x1)))))))))))))))))
, 2(0(1(0(2(2(0(3(0(0(3(3(0(x1))))))))))))) ->
2(0(2(0(2(3(1(1(2(3(1(2(2(2(0(2(0(x1)))))))))))))))))
, 2(0(0(2(3(2(3(2(1(0(3(2(1(x1))))))))))))) ->
2(0(0(0(0(0(2(2(2(2(1(3(2(2(3(2(1(x1)))))))))))))))))
, 2(0(0(1(2(0(3(2(3(2(2(3(2(x1))))))))))))) ->
2(0(2(3(0(2(2(1(3(2(2(0(0(0(2(0(2(x1)))))))))))))))))
, 1(3(3(3(2(2(3(1(2(2(3(3(1(x1))))))))))))) ->
2(1(2(1(2(3(0(2(2(0(0(2(2(2(1(3(1(x1)))))))))))))))))
, 1(3(3(2(2(0(1(1(1(1(2(0(3(x1))))))))))))) ->
1(2(2(2(3(2(0(2(1(1(2(2(1(3(1(2(1(x1)))))))))))))))))
, 1(3(3(1(0(1(3(2(2(2(0(0(3(x1))))))))))))) ->
0(2(1(2(2(0(0(0(2(2(2(0(1(2(2(0(1(x1)))))))))))))))))
, 1(3(0(1(1(1(2(3(1(3(0(2(2(x1))))))))))))) ->
0(2(0(2(2(0(1(1(2(2(2(3(2(0(2(2(1(x1)))))))))))))))))
, 1(2(2(1(0(0(1(0(3(2(1(2(3(x1))))))))))))) ->
1(2(2(1(3(3(0(2(2(0(2(2(2(0(0(2(1(x1)))))))))))))))))
, 0(3(0(2(0(0(2(1(2(3(1(3(2(x1))))))))))))) ->
1(0(2(2(1(1(3(0(2(0(0(0(2(2(0(3(2(x1)))))))))))))))))
, 0(1(2(2(0(2(2(3(0(1(1(1(3(x1))))))))))))) ->
0(2(2(2(1(3(1(2(3(0(2(0(0(2(2(1(1(x1)))))))))))))))))
, 0(1(0(2(1(0(3(2(0(3(0(2(0(x1))))))))))))) ->
0(3(3(2(2(3(2(2(2(0(1(0(2(0(3(2(0(x1)))))))))))))))))
, 0(0(2(3(2(1(0(2(1(2(0(3(0(x1))))))))))))) ->
3(2(2(2(2(3(3(3(2(2(3(0(2(2(2(0(0(x1)))))))))))))))))
, 0(0(0(0(0(1(2(2(1(0(3(2(3(x1))))))))))))) ->
1(1(2(2(3(0(2(2(0(1(2(0(2(2(1(3(2(x1)))))))))))))))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ 3_0(1) -> 1
, 3_1(1) -> 17
, 3_1(2) -> 135
, 3_1(6) -> 5
, 3_1(12) -> 11
, 3_1(18) -> 17
, 3_1(23) -> 22
, 3_1(27) -> 26
, 3_1(33) -> 63
, 3_1(34) -> 1
, 3_1(34) -> 17
, 3_1(34) -> 87
, 3_1(34) -> 104
, 3_1(34) -> 148
, 3_1(34) -> 217
, 3_1(45) -> 44
, 3_1(48) -> 240
, 3_1(49) -> 263
, 3_1(50) -> 2
, 3_1(59) -> 58
, 3_1(62) -> 61
, 3_1(68) -> 67
, 3_1(69) -> 68
, 3_1(71) -> 70
, 3_1(81) -> 80
, 3_1(83) -> 82
, 3_1(88) -> 87
, 3_1(101) -> 100
, 3_1(103) -> 348
, 3_1(104) -> 148
, 3_1(105) -> 17
, 3_1(107) -> 106
, 3_1(113) -> 112
, 3_1(114) -> 123
, 3_1(116) -> 115
, 3_1(119) -> 118
, 3_1(120) -> 119
, 3_1(121) -> 120
, 3_1(124) -> 64
, 3_1(136) -> 135
, 3_1(139) -> 138
, 3_1(144) -> 143
, 3_1(149) -> 50
, 3_1(150) -> 2
, 3_1(160) -> 159
, 3_1(162) -> 3
, 3_1(163) -> 2
, 3_1(167) -> 166
, 3_1(169) -> 168
, 3_1(172) -> 171
, 3_1(181) -> 180
, 3_1(184) -> 4
, 3_1(192) -> 191
, 3_1(193) -> 61
, 3_1(194) -> 2
, 3_1(199) -> 198
, 3_1(212) -> 211
, 3_1(220) -> 219
, 3_1(224) -> 223
, 3_1(238) -> 237
, 3_1(245) -> 244
, 3_1(250) -> 171
, 3_1(254) -> 253
, 3_1(264) -> 2
, 3_1(268) -> 267
, 3_1(277) -> 276
, 3_1(289) -> 180
, 3_1(290) -> 87
, 3_1(300) -> 299
, 3_1(302) -> 301
, 3_1(303) -> 302
, 3_1(317) -> 316
, 3_1(327) -> 326
, 3_1(330) -> 329
, 3_1(336) -> 18
, 3_1(337) -> 336
, 3_1(340) -> 339
, 3_1(353) -> 352
, 3_1(354) -> 353
, 3_1(355) -> 354
, 3_1(358) -> 357
, 3_1(365) -> 364
, 2_0(1) -> 1
, 2_1(1) -> 33
, 2_1(2) -> 1
, 2_1(2) -> 16
, 2_1(2) -> 17
, 2_1(2) -> 32
, 2_1(2) -> 33
, 2_1(2) -> 47
, 2_1(2) -> 48
, 2_1(2) -> 49
, 2_1(2) -> 63
, 2_1(2) -> 102
, 2_1(2) -> 103
, 2_1(2) -> 147
, 2_1(2) -> 156
, 2_1(2) -> 161
, 2_1(2) -> 181
, 2_1(2) -> 226
, 2_1(2) -> 239
, 2_1(2) -> 246
, 2_1(2) -> 289
, 2_1(2) -> 335
, 2_1(2) -> 346
, 2_1(2) -> 348
, 2_1(2) -> 361
, 2_1(3) -> 2
, 2_1(4) -> 33
, 2_1(7) -> 6
, 2_1(8) -> 7
, 2_1(11) -> 10
, 2_1(13) -> 12
, 2_1(14) -> 259
, 2_1(15) -> 14
, 2_1(16) -> 15
, 2_1(17) -> 161
, 2_1(20) -> 19
, 2_1(21) -> 20
, 2_1(22) -> 21
, 2_1(28) -> 27
, 2_1(29) -> 28
, 2_1(31) -> 116
, 2_1(32) -> 31
, 2_1(33) -> 32
, 2_1(34) -> 33
, 2_1(35) -> 2
, 2_1(36) -> 35
, 2_1(37) -> 36
, 2_1(39) -> 38
, 2_1(40) -> 39
, 2_1(42) -> 41
, 2_1(43) -> 42
, 2_1(46) -> 300
, 2_1(47) -> 259
, 2_1(48) -> 47
, 2_1(49) -> 48
, 2_1(50) -> 33
, 2_1(53) -> 52
, 2_1(54) -> 53
, 2_1(55) -> 54
, 2_1(60) -> 59
, 2_1(62) -> 373
, 2_1(63) -> 239
, 2_1(64) -> 2
, 2_1(65) -> 64
, 2_1(68) -> 2
, 2_1(69) -> 2
, 2_1(72) -> 71
, 2_1(74) -> 73
, 2_1(75) -> 74
, 2_1(76) -> 172
, 2_1(78) -> 77
, 2_1(79) -> 78
, 2_1(86) -> 85
, 2_1(87) -> 86
, 2_1(89) -> 335
, 2_1(90) -> 18
, 2_1(91) -> 90
, 2_1(92) -> 2
, 2_1(97) -> 96
, 2_1(98) -> 97
, 2_1(100) -> 99
, 2_1(102) -> 359
, 2_1(103) -> 102
, 2_1(104) -> 103
, 2_1(106) -> 105
, 2_1(109) -> 108
, 2_1(111) -> 110
, 2_1(112) -> 111
, 2_1(114) -> 113
, 2_1(115) -> 114
, 2_1(117) -> 65
, 2_1(118) -> 117
, 2_1(124) -> 2
, 2_1(127) -> 126
, 2_1(128) -> 127
, 2_1(130) -> 129
, 2_1(134) -> 133
, 2_1(135) -> 147
, 2_1(137) -> 106
, 2_1(141) -> 140
, 2_1(143) -> 142
, 2_1(145) -> 144
, 2_1(148) -> 147
, 2_1(149) -> 48
, 2_1(150) -> 2
, 2_1(151) -> 150
, 2_1(152) -> 151
, 2_1(153) -> 152
, 2_1(156) -> 155
, 2_1(157) -> 156
, 2_1(161) -> 160
, 2_1(162) -> 2
, 2_1(163) -> 2
, 2_1(165) -> 164
, 2_1(168) -> 167
, 2_1(169) -> 296
, 2_1(170) -> 169
, 2_1(171) -> 170
, 2_1(172) -> 226
, 2_1(175) -> 174
, 2_1(177) -> 176
, 2_1(178) -> 177
, 2_1(180) -> 170
, 2_1(182) -> 181
, 2_1(188) -> 187
, 2_1(189) -> 188
, 2_1(190) -> 189
, 2_1(193) -> 373
, 2_1(194) -> 2
, 2_1(197) -> 196
, 2_1(198) -> 197
, 2_1(200) -> 199
, 2_1(201) -> 200
, 2_1(205) -> 3
, 2_1(206) -> 205
, 2_1(207) -> 206
, 2_1(208) -> 207
, 2_1(209) -> 208
, 2_1(211) -> 210
, 2_1(213) -> 212
, 2_1(215) -> 214
, 2_1(216) -> 246
, 2_1(217) -> 361
, 2_1(219) -> 218
, 2_1(223) -> 222
, 2_1(226) -> 225
, 2_1(227) -> 226
, 2_1(228) -> 227
, 2_1(233) -> 232
, 2_1(234) -> 233
, 2_1(235) -> 234
, 2_1(236) -> 235
, 2_1(238) -> 296
, 2_1(239) -> 238
, 2_1(240) -> 239
, 2_1(242) -> 241
, 2_1(243) -> 242
, 2_1(245) -> 307
, 2_1(246) -> 245
, 2_1(247) -> 246
, 2_1(250) -> 226
, 2_1(251) -> 250
, 2_1(252) -> 2
, 2_1(253) -> 252
, 2_1(254) -> 2
, 2_1(256) -> 255
, 2_1(257) -> 256
, 2_1(260) -> 259
, 2_1(261) -> 260
, 2_1(262) -> 261
, 2_1(264) -> 2
, 2_1(265) -> 264
, 2_1(266) -> 265
, 2_1(267) -> 266
, 2_1(269) -> 268
, 2_1(271) -> 270
, 2_1(274) -> 273
, 2_1(275) -> 274
, 2_1(277) -> 12
, 2_1(279) -> 278
, 2_1(280) -> 279
, 2_1(284) -> 283
, 2_1(285) -> 284
, 2_1(286) -> 285
, 2_1(289) -> 288
, 2_1(290) -> 289
, 2_1(292) -> 291
, 2_1(293) -> 292
, 2_1(297) -> 296
, 2_1(298) -> 297
, 2_1(299) -> 298
, 2_1(301) -> 2
, 2_1(302) -> 2
, 2_1(303) -> 2
, 2_1(305) -> 304
, 2_1(306) -> 305
, 2_1(308) -> 307
, 2_1(309) -> 308
, 2_1(310) -> 309
, 2_1(313) -> 312
, 2_1(314) -> 313
, 2_1(319) -> 318
, 2_1(323) -> 322
, 2_1(324) -> 323
, 2_1(325) -> 91
, 2_1(329) -> 328
, 2_1(332) -> 331
, 2_1(335) -> 334
, 2_1(336) -> 2
, 2_1(337) -> 2
, 2_1(338) -> 337
, 2_1(339) -> 338
, 2_1(341) -> 340
, 2_1(342) -> 341
, 2_1(343) -> 342
, 2_1(347) -> 346
, 2_1(349) -> 34
, 2_1(350) -> 349
, 2_1(351) -> 350
, 2_1(352) -> 351
, 2_1(356) -> 355
, 2_1(357) -> 356
, 2_1(360) -> 359
, 2_1(361) -> 360
, 2_1(362) -> 2
, 2_1(363) -> 362
, 2_1(364) -> 363
, 2_1(367) -> 366
, 2_1(368) -> 367
, 2_1(371) -> 370
, 2_1(372) -> 187
, 2_1(373) -> 372
, 0_0(1) -> 1
, 0_1(1) -> 104
, 0_1(2) -> 290
, 0_1(9) -> 8
, 0_1(10) -> 9
, 0_1(17) -> 347
, 0_1(18) -> 1
, 0_1(18) -> 16
, 0_1(18) -> 17
, 0_1(18) -> 32
, 0_1(18) -> 33
, 0_1(18) -> 47
, 0_1(18) -> 49
, 0_1(18) -> 104
, 0_1(18) -> 135
, 0_1(18) -> 182
, 0_1(18) -> 263
, 0_1(18) -> 276
, 0_1(18) -> 290
, 0_1(18) -> 334
, 0_1(19) -> 18
, 0_1(25) -> 24
, 0_1(30) -> 29
, 0_1(32) -> 76
, 0_1(33) -> 251
, 0_1(34) -> 104
, 0_1(38) -> 37
, 0_1(41) -> 40
, 0_1(46) -> 45
, 0_1(47) -> 46
, 0_1(48) -> 311
, 0_1(49) -> 290
, 0_1(50) -> 34
, 0_1(51) -> 50
, 0_1(52) -> 51
, 0_1(63) -> 324
, 0_1(66) -> 65
, 0_1(69) -> 34
, 0_1(70) -> 69
, 0_1(72) -> 320
, 0_1(73) -> 72
, 0_1(76) -> 75
, 0_1(77) -> 19
, 0_1(82) -> 81
, 0_1(84) -> 83
, 0_1(85) -> 84
, 0_1(89) -> 88
, 0_1(93) -> 92
, 0_1(94) -> 93
, 0_1(95) -> 94
, 0_1(99) -> 98
, 0_1(103) -> 228
, 0_1(104) -> 217
, 0_1(105) -> 2
, 0_1(110) -> 109
, 0_1(124) -> 34
, 0_1(125) -> 124
, 0_1(126) -> 125
, 0_1(131) -> 130
, 0_1(133) -> 132
, 0_1(135) -> 134
, 0_1(136) -> 182
, 0_1(140) -> 139
, 0_1(146) -> 145
, 0_1(147) -> 146
, 0_1(149) -> 34
, 0_1(150) -> 2
, 0_1(159) -> 158
, 0_1(162) -> 34
, 0_1(163) -> 2
, 0_1(164) -> 163
, 0_1(166) -> 165
, 0_1(173) -> 5
, 0_1(174) -> 173
, 0_1(176) -> 175
, 0_1(179) -> 178
, 0_1(183) -> 182
, 0_1(186) -> 185
, 0_1(187) -> 186
, 0_1(194) -> 2
, 0_1(195) -> 194
, 0_1(202) -> 201
, 0_1(203) -> 202
, 0_1(210) -> 209
, 0_1(214) -> 213
, 0_1(217) -> 216
, 0_1(218) -> 106
, 0_1(228) -> 217
, 0_1(229) -> 105
, 0_1(230) -> 229
, 0_1(231) -> 230
, 0_1(232) -> 231
, 0_1(241) -> 107
, 0_1(248) -> 247
, 0_1(249) -> 248
, 0_1(250) -> 249
, 0_1(254) -> 2
, 0_1(255) -> 254
, 0_1(258) -> 257
, 0_1(259) -> 258
, 0_1(264) -> 2
, 0_1(270) -> 269
, 0_1(281) -> 280
, 0_1(282) -> 281
, 0_1(283) -> 282
, 0_1(287) -> 286
, 0_1(290) -> 216
, 0_1(291) -> 90
, 0_1(294) -> 293
, 0_1(303) -> 2
, 0_1(304) -> 303
, 0_1(307) -> 306
, 0_1(309) -> 330
, 0_1(311) -> 310
, 0_1(312) -> 264
, 0_1(318) -> 317
, 0_1(320) -> 319
, 0_1(321) -> 320
, 0_1(322) -> 321
, 0_1(331) -> 330
, 0_1(333) -> 332
, 0_1(334) -> 333
, 0_1(337) -> 2
, 0_1(344) -> 343
, 0_1(346) -> 345
, 0_1(348) -> 347
, 0_1(359) -> 358
, 0_1(360) -> 72
, 0_1(366) -> 365
, 0_1(369) -> 368
, 0_1(372) -> 371
, 1_0(1) -> 1
, 1_1(1) -> 49
, 1_1(2) -> 2
, 1_1(3) -> 2
, 1_1(4) -> 3
, 1_1(5) -> 4
, 1_1(14) -> 13
, 1_1(17) -> 16
, 1_1(18) -> 204
, 1_1(24) -> 23
, 1_1(26) -> 25
, 1_1(31) -> 30
, 1_1(32) -> 204
, 1_1(33) -> 136
, 1_1(34) -> 2
, 1_1(35) -> 34
, 1_1(44) -> 43
, 1_1(48) -> 277
, 1_1(49) -> 89
, 1_1(50) -> 2
, 1_1(56) -> 55
, 1_1(57) -> 56
, 1_1(58) -> 57
, 1_1(61) -> 60
, 1_1(63) -> 62
, 1_1(64) -> 2
, 1_1(67) -> 66
, 1_1(68) -> 2
, 1_1(69) -> 2
, 1_1(80) -> 79
, 1_1(91) -> 2
, 1_1(92) -> 91
, 1_1(96) -> 95
, 1_1(102) -> 101
, 1_1(104) -> 183
, 1_1(108) -> 107
, 1_1(122) -> 121
, 1_1(123) -> 122
, 1_1(124) -> 2
, 1_1(129) -> 128
, 1_1(132) -> 131
, 1_1(134) -> 157
, 1_1(135) -> 193
, 1_1(138) -> 137
, 1_1(142) -> 141
, 1_1(150) -> 149
, 1_1(154) -> 153
, 1_1(155) -> 154
, 1_1(158) -> 157
, 1_1(162) -> 2
, 1_1(163) -> 162
, 1_1(180) -> 179
, 1_1(185) -> 184
, 1_1(191) -> 190
, 1_1(193) -> 192
, 1_1(194) -> 124
, 1_1(196) -> 195
, 1_1(204) -> 203
, 1_1(216) -> 215
, 1_1(221) -> 220
, 1_1(222) -> 221
, 1_1(225) -> 224
, 1_1(237) -> 236
, 1_1(244) -> 243
, 1_1(252) -> 205
, 1_1(254) -> 1
, 1_1(263) -> 262
, 1_1(264) -> 1
, 1_1(264) -> 16
, 1_1(264) -> 49
, 1_1(264) -> 104
, 1_1(264) -> 136
, 1_1(264) -> 204
, 1_1(264) -> 216
, 1_1(264) -> 217
, 1_1(264) -> 347
, 1_1(272) -> 271
, 1_1(273) -> 272
, 1_1(276) -> 275
, 1_1(278) -> 90
, 1_1(288) -> 287
, 1_1(295) -> 294
, 1_1(296) -> 295
, 1_1(301) -> 266
, 1_1(302) -> 2
, 1_1(303) -> 2
, 1_1(315) -> 314
, 1_1(316) -> 315
, 1_1(326) -> 325
, 1_1(328) -> 327
, 1_1(336) -> 2
, 1_1(337) -> 2
, 1_1(345) -> 344
, 1_1(347) -> 157
, 1_1(362) -> 264
, 1_1(370) -> 369}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
TIMEOUT
Statistics:
Number of monomials: 0
Last formula building started for bound 0
Last SAT solving started for bound 0Tool EDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 3(2(0(3(2(0(2(3(1(0(3(2(3(x1))))))))))))) ->
2(1(1(1(3(2(2(0(0(2(3(2(1(2(2(1(3(x1)))))))))))))))))
, 3(1(2(1(2(3(0(2(1(2(1(2(3(x1))))))))))))) ->
0(0(2(2(2(3(1(0(1(3(2(2(0(1(2(2(2(x1)))))))))))))))))
, 3(0(1(2(2(3(3(2(2(2(0(1(3(x1))))))))))))) ->
3(1(2(2(0(2(2(0(2(2(1(3(0(0(2(2(1(x1)))))))))))))))))
, 2(3(2(0(0(0(0(0(3(1(0(2(3(x1))))))))))))) ->
2(3(0(0(2(2(2(1(1(1(3(2(1(3(1(3(2(x1)))))))))))))))))
, 2(3(0(0(1(2(1(2(3(0(2(1(1(x1))))))))))))) ->
2(2(2(0(1(3(3(0(3(2(0(2(2(0(0(2(2(x1)))))))))))))))))
, 2(2(1(1(3(1(3(2(0(1(0(0(1(x1))))))))))))) ->
0(0(0(2(2(1(3(0(3(0(0(2(2(3(0(1(1(x1)))))))))))))))))
, 2(2(1(1(2(0(1(1(0(3(3(0(1(x1))))))))))))) ->
0(2(2(1(0(0(0(1(2(2(0(2(3(1(2(2(0(x1)))))))))))))))))
, 2(2(1(0(2(3(3(3(0(1(1(1(1(x1))))))))))))) ->
2(0(2(3(1(2(0(2(2(3(2(2(3(2(2(2(2(x1)))))))))))))))))
, 2(2(0(2(3(2(3(3(1(1(1(3(3(x1))))))))))))) ->
2(2(2(2(2(3(3(3(1(1(3(2(3(2(2(2(2(x1)))))))))))))))))
, 2(1(2(3(1(2(3(3(2(3(3(1(1(x1))))))))))))) ->
2(2(3(0(0(2(2(1(2(0(1(0(2(0(3(1(2(x1)))))))))))))))))
, 2(1(1(3(3(0(1(0(0(0(2(1(3(x1))))))))))))) ->
2(0(2(2(1(3(0(2(1(2(3(2(0(0(2(3(0(x1)))))))))))))))))
, 2(1(1(3(2(3(3(1(0(0(1(2(0(x1))))))))))))) ->
2(3(3(1(2(2(2(1(1(2(2(1(0(3(2(2(3(x1)))))))))))))))))
, 2(1(1(2(2(3(0(0(3(3(1(3(2(x1))))))))))))) ->
2(1(3(1(0(2(0(3(2(3(2(2(3(2(0(2(2(x1)))))))))))))))))
, 2(1(1(2(1(1(1(1(1(2(0(3(0(x1))))))))))))) ->
2(1(1(1(0(0(2(0(2(2(0(1(3(2(0(1(0(x1)))))))))))))))))
, 2(1(0(3(3(0(0(3(1(1(2(3(2(x1))))))))))))) ->
2(1(1(3(1(0(0(2(2(2(1(3(1(1(3(1(2(x1)))))))))))))))))
, 2(0(3(3(1(0(3(1(2(2(2(2(1(x1))))))))))))) ->
2(2(3(1(0(1(2(2(3(2(2(0(0(1(1(2(2(x1)))))))))))))))))
, 2(0(1(1(1(3(2(0(0(0(1(0(1(x1))))))))))))) ->
2(1(2(2(2(2(2(0(2(3(2(0(2(1(0(0(0(x1)))))))))))))))))
, 2(0(1(0(2(2(0(3(0(0(3(3(0(x1))))))))))))) ->
2(0(2(0(2(3(1(1(2(3(1(2(2(2(0(2(0(x1)))))))))))))))))
, 2(0(0(2(3(2(3(2(1(0(3(2(1(x1))))))))))))) ->
2(0(0(0(0(0(2(2(2(2(1(3(2(2(3(2(1(x1)))))))))))))))))
, 2(0(0(1(2(0(3(2(3(2(2(3(2(x1))))))))))))) ->
2(0(2(3(0(2(2(1(3(2(2(0(0(0(2(0(2(x1)))))))))))))))))
, 1(3(3(3(2(2(3(1(2(2(3(3(1(x1))))))))))))) ->
2(1(2(1(2(3(0(2(2(0(0(2(2(2(1(3(1(x1)))))))))))))))))
, 1(3(3(2(2(0(1(1(1(1(2(0(3(x1))))))))))))) ->
1(2(2(2(3(2(0(2(1(1(2(2(1(3(1(2(1(x1)))))))))))))))))
, 1(3(3(1(0(1(3(2(2(2(0(0(3(x1))))))))))))) ->
0(2(1(2(2(0(0(0(2(2(2(0(1(2(2(0(1(x1)))))))))))))))))
, 1(3(0(1(1(1(2(3(1(3(0(2(2(x1))))))))))))) ->
0(2(0(2(2(0(1(1(2(2(2(3(2(0(2(2(1(x1)))))))))))))))))
, 1(2(2(1(0(0(1(0(3(2(1(2(3(x1))))))))))))) ->
1(2(2(1(3(3(0(2(2(0(2(2(2(0(0(2(1(x1)))))))))))))))))
, 0(3(0(2(0(0(2(1(2(3(1(3(2(x1))))))))))))) ->
1(0(2(2(1(1(3(0(2(0(0(0(2(2(0(3(2(x1)))))))))))))))))
, 0(1(2(2(0(2(2(3(0(1(1(1(3(x1))))))))))))) ->
0(2(2(2(1(3(1(2(3(0(2(0(0(2(2(1(1(x1)))))))))))))))))
, 0(1(0(2(1(0(3(2(0(3(0(2(0(x1))))))))))))) ->
0(3(3(2(2(3(2(2(2(0(1(0(2(0(3(2(0(x1)))))))))))))))))
, 0(0(2(3(2(1(0(2(1(2(0(3(0(x1))))))))))))) ->
3(2(2(2(2(3(3(3(2(2(3(0(2(2(2(0(0(x1)))))))))))))))))
, 0(0(0(0(0(1(2(2(1(0(3(2(3(x1))))))))))))) ->
1(1(2(2(3(0(2(2(0(1(2(0(2(2(1(3(2(x1)))))))))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool IDA
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 3(2(0(3(2(0(2(3(1(0(3(2(3(x1))))))))))))) ->
2(1(1(1(3(2(2(0(0(2(3(2(1(2(2(1(3(x1)))))))))))))))))
, 3(1(2(1(2(3(0(2(1(2(1(2(3(x1))))))))))))) ->
0(0(2(2(2(3(1(0(1(3(2(2(0(1(2(2(2(x1)))))))))))))))))
, 3(0(1(2(2(3(3(2(2(2(0(1(3(x1))))))))))))) ->
3(1(2(2(0(2(2(0(2(2(1(3(0(0(2(2(1(x1)))))))))))))))))
, 2(3(2(0(0(0(0(0(3(1(0(2(3(x1))))))))))))) ->
2(3(0(0(2(2(2(1(1(1(3(2(1(3(1(3(2(x1)))))))))))))))))
, 2(3(0(0(1(2(1(2(3(0(2(1(1(x1))))))))))))) ->
2(2(2(0(1(3(3(0(3(2(0(2(2(0(0(2(2(x1)))))))))))))))))
, 2(2(1(1(3(1(3(2(0(1(0(0(1(x1))))))))))))) ->
0(0(0(2(2(1(3(0(3(0(0(2(2(3(0(1(1(x1)))))))))))))))))
, 2(2(1(1(2(0(1(1(0(3(3(0(1(x1))))))))))))) ->
0(2(2(1(0(0(0(1(2(2(0(2(3(1(2(2(0(x1)))))))))))))))))
, 2(2(1(0(2(3(3(3(0(1(1(1(1(x1))))))))))))) ->
2(0(2(3(1(2(0(2(2(3(2(2(3(2(2(2(2(x1)))))))))))))))))
, 2(2(0(2(3(2(3(3(1(1(1(3(3(x1))))))))))))) ->
2(2(2(2(2(3(3(3(1(1(3(2(3(2(2(2(2(x1)))))))))))))))))
, 2(1(2(3(1(2(3(3(2(3(3(1(1(x1))))))))))))) ->
2(2(3(0(0(2(2(1(2(0(1(0(2(0(3(1(2(x1)))))))))))))))))
, 2(1(1(3(3(0(1(0(0(0(2(1(3(x1))))))))))))) ->
2(0(2(2(1(3(0(2(1(2(3(2(0(0(2(3(0(x1)))))))))))))))))
, 2(1(1(3(2(3(3(1(0(0(1(2(0(x1))))))))))))) ->
2(3(3(1(2(2(2(1(1(2(2(1(0(3(2(2(3(x1)))))))))))))))))
, 2(1(1(2(2(3(0(0(3(3(1(3(2(x1))))))))))))) ->
2(1(3(1(0(2(0(3(2(3(2(2(3(2(0(2(2(x1)))))))))))))))))
, 2(1(1(2(1(1(1(1(1(2(0(3(0(x1))))))))))))) ->
2(1(1(1(0(0(2(0(2(2(0(1(3(2(0(1(0(x1)))))))))))))))))
, 2(1(0(3(3(0(0(3(1(1(2(3(2(x1))))))))))))) ->
2(1(1(3(1(0(0(2(2(2(1(3(1(1(3(1(2(x1)))))))))))))))))
, 2(0(3(3(1(0(3(1(2(2(2(2(1(x1))))))))))))) ->
2(2(3(1(0(1(2(2(3(2(2(0(0(1(1(2(2(x1)))))))))))))))))
, 2(0(1(1(1(3(2(0(0(0(1(0(1(x1))))))))))))) ->
2(1(2(2(2(2(2(0(2(3(2(0(2(1(0(0(0(x1)))))))))))))))))
, 2(0(1(0(2(2(0(3(0(0(3(3(0(x1))))))))))))) ->
2(0(2(0(2(3(1(1(2(3(1(2(2(2(0(2(0(x1)))))))))))))))))
, 2(0(0(2(3(2(3(2(1(0(3(2(1(x1))))))))))))) ->
2(0(0(0(0(0(2(2(2(2(1(3(2(2(3(2(1(x1)))))))))))))))))
, 2(0(0(1(2(0(3(2(3(2(2(3(2(x1))))))))))))) ->
2(0(2(3(0(2(2(1(3(2(2(0(0(0(2(0(2(x1)))))))))))))))))
, 1(3(3(3(2(2(3(1(2(2(3(3(1(x1))))))))))))) ->
2(1(2(1(2(3(0(2(2(0(0(2(2(2(1(3(1(x1)))))))))))))))))
, 1(3(3(2(2(0(1(1(1(1(2(0(3(x1))))))))))))) ->
1(2(2(2(3(2(0(2(1(1(2(2(1(3(1(2(1(x1)))))))))))))))))
, 1(3(3(1(0(1(3(2(2(2(0(0(3(x1))))))))))))) ->
0(2(1(2(2(0(0(0(2(2(2(0(1(2(2(0(1(x1)))))))))))))))))
, 1(3(0(1(1(1(2(3(1(3(0(2(2(x1))))))))))))) ->
0(2(0(2(2(0(1(1(2(2(2(3(2(0(2(2(1(x1)))))))))))))))))
, 1(2(2(1(0(0(1(0(3(2(1(2(3(x1))))))))))))) ->
1(2(2(1(3(3(0(2(2(0(2(2(2(0(0(2(1(x1)))))))))))))))))
, 0(3(0(2(0(0(2(1(2(3(1(3(2(x1))))))))))))) ->
1(0(2(2(1(1(3(0(2(0(0(0(2(2(0(3(2(x1)))))))))))))))))
, 0(1(2(2(0(2(2(3(0(1(1(1(3(x1))))))))))))) ->
0(2(2(2(1(3(1(2(3(0(2(0(0(2(2(1(1(x1)))))))))))))))))
, 0(1(0(2(1(0(3(2(0(3(0(2(0(x1))))))))))))) ->
0(3(3(2(2(3(2(2(2(0(1(0(2(0(3(2(0(x1)))))))))))))))))
, 0(0(2(3(2(1(0(2(1(2(0(3(0(x1))))))))))))) ->
3(2(2(2(2(3(3(3(2(2(3(0(2(2(2(0(0(x1)))))))))))))))))
, 0(0(0(0(0(1(2(2(1(0(3(2(3(x1))))))))))))) ->
1(1(2(2(3(0(2(2(0(1(2(0(2(2(1(3(2(x1)))))))))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool TRI
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ 3(2(0(3(2(0(2(3(1(0(3(2(3(x1))))))))))))) ->
2(1(1(1(3(2(2(0(0(2(3(2(1(2(2(1(3(x1)))))))))))))))))
, 3(1(2(1(2(3(0(2(1(2(1(2(3(x1))))))))))))) ->
0(0(2(2(2(3(1(0(1(3(2(2(0(1(2(2(2(x1)))))))))))))))))
, 3(0(1(2(2(3(3(2(2(2(0(1(3(x1))))))))))))) ->
3(1(2(2(0(2(2(0(2(2(1(3(0(0(2(2(1(x1)))))))))))))))))
, 2(3(2(0(0(0(0(0(3(1(0(2(3(x1))))))))))))) ->
2(3(0(0(2(2(2(1(1(1(3(2(1(3(1(3(2(x1)))))))))))))))))
, 2(3(0(0(1(2(1(2(3(0(2(1(1(x1))))))))))))) ->
2(2(2(0(1(3(3(0(3(2(0(2(2(0(0(2(2(x1)))))))))))))))))
, 2(2(1(1(3(1(3(2(0(1(0(0(1(x1))))))))))))) ->
0(0(0(2(2(1(3(0(3(0(0(2(2(3(0(1(1(x1)))))))))))))))))
, 2(2(1(1(2(0(1(1(0(3(3(0(1(x1))))))))))))) ->
0(2(2(1(0(0(0(1(2(2(0(2(3(1(2(2(0(x1)))))))))))))))))
, 2(2(1(0(2(3(3(3(0(1(1(1(1(x1))))))))))))) ->
2(0(2(3(1(2(0(2(2(3(2(2(3(2(2(2(2(x1)))))))))))))))))
, 2(2(0(2(3(2(3(3(1(1(1(3(3(x1))))))))))))) ->
2(2(2(2(2(3(3(3(1(1(3(2(3(2(2(2(2(x1)))))))))))))))))
, 2(1(2(3(1(2(3(3(2(3(3(1(1(x1))))))))))))) ->
2(2(3(0(0(2(2(1(2(0(1(0(2(0(3(1(2(x1)))))))))))))))))
, 2(1(1(3(3(0(1(0(0(0(2(1(3(x1))))))))))))) ->
2(0(2(2(1(3(0(2(1(2(3(2(0(0(2(3(0(x1)))))))))))))))))
, 2(1(1(3(2(3(3(1(0(0(1(2(0(x1))))))))))))) ->
2(3(3(1(2(2(2(1(1(2(2(1(0(3(2(2(3(x1)))))))))))))))))
, 2(1(1(2(2(3(0(0(3(3(1(3(2(x1))))))))))))) ->
2(1(3(1(0(2(0(3(2(3(2(2(3(2(0(2(2(x1)))))))))))))))))
, 2(1(1(2(1(1(1(1(1(2(0(3(0(x1))))))))))))) ->
2(1(1(1(0(0(2(0(2(2(0(1(3(2(0(1(0(x1)))))))))))))))))
, 2(1(0(3(3(0(0(3(1(1(2(3(2(x1))))))))))))) ->
2(1(1(3(1(0(0(2(2(2(1(3(1(1(3(1(2(x1)))))))))))))))))
, 2(0(3(3(1(0(3(1(2(2(2(2(1(x1))))))))))))) ->
2(2(3(1(0(1(2(2(3(2(2(0(0(1(1(2(2(x1)))))))))))))))))
, 2(0(1(1(1(3(2(0(0(0(1(0(1(x1))))))))))))) ->
2(1(2(2(2(2(2(0(2(3(2(0(2(1(0(0(0(x1)))))))))))))))))
, 2(0(1(0(2(2(0(3(0(0(3(3(0(x1))))))))))))) ->
2(0(2(0(2(3(1(1(2(3(1(2(2(2(0(2(0(x1)))))))))))))))))
, 2(0(0(2(3(2(3(2(1(0(3(2(1(x1))))))))))))) ->
2(0(0(0(0(0(2(2(2(2(1(3(2(2(3(2(1(x1)))))))))))))))))
, 2(0(0(1(2(0(3(2(3(2(2(3(2(x1))))))))))))) ->
2(0(2(3(0(2(2(1(3(2(2(0(0(0(2(0(2(x1)))))))))))))))))
, 1(3(3(3(2(2(3(1(2(2(3(3(1(x1))))))))))))) ->
2(1(2(1(2(3(0(2(2(0(0(2(2(2(1(3(1(x1)))))))))))))))))
, 1(3(3(2(2(0(1(1(1(1(2(0(3(x1))))))))))))) ->
1(2(2(2(3(2(0(2(1(1(2(2(1(3(1(2(1(x1)))))))))))))))))
, 1(3(3(1(0(1(3(2(2(2(0(0(3(x1))))))))))))) ->
0(2(1(2(2(0(0(0(2(2(2(0(1(2(2(0(1(x1)))))))))))))))))
, 1(3(0(1(1(1(2(3(1(3(0(2(2(x1))))))))))))) ->
0(2(0(2(2(0(1(1(2(2(2(3(2(0(2(2(1(x1)))))))))))))))))
, 1(2(2(1(0(0(1(0(3(2(1(2(3(x1))))))))))))) ->
1(2(2(1(3(3(0(2(2(0(2(2(2(0(0(2(1(x1)))))))))))))))))
, 0(3(0(2(0(0(2(1(2(3(1(3(2(x1))))))))))))) ->
1(0(2(2(1(1(3(0(2(0(0(0(2(2(0(3(2(x1)))))))))))))))))
, 0(1(2(2(0(2(2(3(0(1(1(1(3(x1))))))))))))) ->
0(2(2(2(1(3(1(2(3(0(2(0(0(2(2(1(1(x1)))))))))))))))))
, 0(1(0(2(1(0(3(2(0(3(0(2(0(x1))))))))))))) ->
0(3(3(2(2(3(2(2(2(0(1(0(2(0(3(2(0(x1)))))))))))))))))
, 0(0(2(3(2(1(0(2(1(2(0(3(0(x1))))))))))))) ->
3(2(2(2(2(3(3(3(2(2(3(0(2(2(2(0(0(x1)))))))))))))))))
, 0(0(0(0(0(1(2(2(1(0(3(2(3(x1))))))))))))) ->
1(1(2(2(3(0(2(2(0(1(2(0(2(2(1(3(2(x1)))))))))))))))))}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..