Tool Bounds
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ not(exists()) -> forall()
, or(exists(), P) -> exists()
, and(exists(), P) -> exists()
, or(P, exists()) -> exists()
, and(P, exists()) -> exists()
, not(forall()) -> exists()
, or(forall(), P) -> forall()
, and(forall(), P) -> forall()
, or(P, forall()) -> forall()
, and(P, forall()) -> forall()}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ forall_0() -> 1
, forall_1() -> 1
, and_0(1, 1) -> 1
, or_0(1, 1) -> 1
, not_0(1) -> 1
, exists_0() -> 1
, exists_1() -> 1}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
not(delta, X0) = + 1*X0 + 0 + 2*X0*delta + 0*delta
exists(delta) = + 2 + 0*delta
or(delta, X1, X0) = + 1*X0 + 1*X1 + 0 + 2*X0*delta + 3*X1*delta + 0*delta
and(delta, X1, X0) = + 1*X0 + 1*X1 + 3 + 0*X0*delta + 1*X1*delta + 1*delta
forall(delta) = + 2 + 0*delta
not_tau_1(delta) = delta/(1 + 2 * delta)
or_tau_1(delta) = delta/(1 + 3 * delta)
or_tau_2(delta) = delta/(1 + 2 * delta)
and_tau_1(delta) = delta/(1 + 1 * delta)
and_tau_2(delta) = delta/(1 + 0 * delta)
Time: 0.066372 seconds
Statistics:
Number of monomials: 165
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ not(exists()) -> forall()
, or(exists(), P) -> exists()
, and(exists(), P) -> exists()
, or(P, exists()) -> exists()
, and(P, exists()) -> exists()
, not(forall()) -> exists()
, or(forall(), P) -> forall()
, and(forall(), P) -> forall()
, or(P, forall()) -> forall()
, and(P, forall()) -> forall()}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
forall() = [0]
and(x1, x2) = [1] x1 + [1] x2 + [1]
or(x1, x2) = [1] x1 + [1] x2 + [1]
not(x1) = [1] x1 + [1]
exists() = [0]
Hurray, we answered YES(?,O(n^1))Tool IDA
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ not(exists()) -> forall()
, or(exists(), P) -> exists()
, and(exists(), P) -> exists()
, or(P, exists()) -> exists()
, and(P, exists()) -> exists()
, not(forall()) -> exists()
, or(forall(), P) -> forall()
, and(forall(), P) -> forall()
, or(P, forall()) -> forall()
, and(P, forall()) -> forall()}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
forall() = [0]
and(x1, x2) = [1] x1 + [1] x2 + [1]
or(x1, x2) = [1] x1 + [1] x2 + [1]
not(x1) = [1] x1 + [1]
exists() = [0]
Hurray, we answered YES(?,O(n^1))Tool TRI
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ not(exists()) -> forall()
, or(exists(), P) -> exists()
, and(exists(), P) -> exists()
, or(P, exists()) -> exists()
, and(P, exists()) -> exists()
, not(forall()) -> exists()
, or(forall(), P) -> forall()
, and(forall(), P) -> forall()
, or(P, forall()) -> forall()
, and(P, forall()) -> forall()}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
forall() = [0]
and(x1, x2) = [1] x1 + [1] x2 + [1]
or(x1, x2) = [1] x1 + [1] x2 + [1]
not(x1) = [1] x1 + [1]
exists() = [0]
Hurray, we answered YES(?,O(n^1))Tool TRI2
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ not(exists()) -> forall()
, or(exists(), P) -> exists()
, and(exists(), P) -> exists()
, or(P, exists()) -> exists()
, and(P, exists()) -> exists()
, not(forall()) -> exists()
, or(forall(), P) -> forall()
, and(forall(), P) -> forall()
, or(P, forall()) -> forall()
, and(P, forall()) -> forall()}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
forall() = [2]
[0]
and(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
[0 0] [0 0] [0]
or(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
[0 0] [0 0] [0]
not(x1) = [1 0] x1 + [2]
[0 0] [0]
exists() = [2]
[0]
Hurray, we answered YES(?,O(n^1))