Problem Rubio 04 aoto

Tool Bounds

Execution Time60.031998ms
Answer
TIMEOUT
InputRubio 04 aoto

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  f(g(f(X))) -> f(g(X))
     , f(f(X)) -> f(g(f(g(f(X)))))}
  StartTerms: all
  Strategy: none

Certificate: TIMEOUT

Proof:
  Computation stopped due to timeout after 60.0 seconds.

Arrrr..

Tool CDI

Execution Time9.096001ms
Answer
MAYBE
InputRubio 04 aoto

stdout:

MAYBE

Statistics:
Number of monomials: 466
Last formula building started for bound 3
Last SAT solving started for bound 3

Tool EDA

Execution Time0.9150038ms
Answer
YES(?,O(n^2))
InputRubio 04 aoto

stdout:

YES(?,O(n^2))

We consider the following Problem:

  Strict Trs:
    {  f(g(f(X))) -> f(g(X))
     , f(f(X)) -> f(g(f(g(f(X)))))}
  StartTerms: all
  Strategy: none

Certificate: YES(?,O(n^2))

Proof:
  We have the following EDA-non-satisfying matrix interpretation:
  Interpretation Functions:
   f(x1) = [1 1] x1 + [1]
           [0 0]      [2]
   g(x1) = [1 0] x1 + [0]
           [0 0]      [0]

Hurray, we answered YES(?,O(n^2))

Tool IDA

Execution Time1.199034ms
Answer
YES(?,O(n^1))
InputRubio 04 aoto

stdout:

YES(?,O(n^1))

We consider the following Problem:

  Strict Trs:
    {  f(g(f(X))) -> f(g(X))
     , f(f(X)) -> f(g(f(g(f(X)))))}
  StartTerms: all
  Strategy: none

Certificate: YES(?,O(n^1))

Proof:
  We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
  Interpretation Functions:
   f(x1) = [1 2] x1 + [1]
           [0 0]      [1]
   g(x1) = [1 0] x1 + [0]
           [0 0]      [0]

Hurray, we answered YES(?,O(n^1))

Tool TRI

Execution Time0.21563601ms
Answer
YES(?,O(n^2))
InputRubio 04 aoto

stdout:

YES(?,O(n^2))

We consider the following Problem:

  Strict Trs:
    {  f(g(f(X))) -> f(g(X))
     , f(f(X)) -> f(g(f(g(f(X)))))}
  StartTerms: all
  Strategy: none

Certificate: YES(?,O(n^2))

Proof:
  We have the following triangular matrix interpretation:
  Interpretation Functions:
   f(x1) = [1 2] x1 + [1]
           [0 1]      [2]
   g(x1) = [1 0] x1 + [0]
           [0 0]      [0]

Hurray, we answered YES(?,O(n^2))

Tool TRI2

Execution Time0.2100811ms
Answer
YES(?,O(n^1))
InputRubio 04 aoto

stdout:

YES(?,O(n^1))

We consider the following Problem:

  Strict Trs:
    {  f(g(f(X))) -> f(g(X))
     , f(f(X)) -> f(g(f(g(f(X)))))}
  StartTerms: all
  Strategy: none

Certificate: YES(?,O(n^1))

Proof:
  We have the following triangular matrix interpretation:
  Interpretation Functions:
   f(x1) = [1 3] x1 + [0]
           [0 0]      [2]
   g(x1) = [1 1] x1 + [0]
           [0 0]      [0]

Hurray, we answered YES(?,O(n^1))