Tool Bounds
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ lessleaves(cons(U, V), cons(W, Z)) ->
lessleaves(concat(U, V), concat(W, Z))
, lessleaves(leaf(), cons(W, Z)) -> true()
, lessleaves(X, leaf()) -> false()
, concat(cons(U, V), Y) -> cons(U, concat(V, Y))
, concat(leaf(), Y) -> Y}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool CDI
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
true(delta) = + 0 + 0*delta
lessleaves(delta, X1, X0) = + 0*X0 + 0*X1 + 0 + 2*X0*delta + 2*X1*delta + 0*delta
false(delta) = + 0 + 0*delta
cons(delta, X1, X0) = + 1*X0 + 0*X1 + 2 + 0*X0*delta + 3*X1*delta + 0*delta
leaf(delta) = + 2 + 0*delta
concat(delta, X1, X0) = + 1*X0 + 1*X1 + 0 + 0*X0*delta + 1*X1*delta + 0*delta
lessleaves_tau_1(delta) = delta/(0 + 2 * delta)
lessleaves_tau_2(delta) = delta/(0 + 2 * delta)
cons_tau_1(delta) = delta/(0 + 3 * delta)
cons_tau_2(delta) = delta/(1 + 0 * delta)
concat_tau_1(delta) = delta/(1 + 1 * delta)
concat_tau_2(delta) = delta/(1 + 0 * delta)
Time: 0.340823 seconds
Statistics:
Number of monomials: 325
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ lessleaves(cons(U, V), cons(W, Z)) ->
lessleaves(concat(U, V), concat(W, Z))
, lessleaves(leaf(), cons(W, Z)) -> true()
, lessleaves(X, leaf()) -> false()
, concat(cons(U, V), Y) -> cons(U, concat(V, Y))
, concat(leaf(), Y) -> Y}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
leaf() = [0]
[2]
concat(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
[0 1] [0 1] [0]
cons(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
[0 1] [0 1] [2]
lessleaves(x1, x2) = [1 2] x1 + [1 2] x2 + [0]
[0 1] [0 1] [0]
false() = [3]
[1]
true() = [3]
[0]
Hurray, we answered YES(?,O(n^2))Tool IDA
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ lessleaves(cons(U, V), cons(W, Z)) ->
lessleaves(concat(U, V), concat(W, Z))
, lessleaves(leaf(), cons(W, Z)) -> true()
, lessleaves(X, leaf()) -> false()
, concat(cons(U, V), Y) -> cons(U, concat(V, Y))
, concat(leaf(), Y) -> Y}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying and IDA(2)-non-satisfying matrix interpretation:
Interpretation Functions:
leaf() = [0]
[2]
concat(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
[0 1] [0 1] [0]
cons(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
[0 1] [0 1] [2]
lessleaves(x1, x2) = [1 2] x1 + [1 2] x2 + [0]
[0 0] [0 0] [0]
false() = [3]
[0]
true() = [3]
[0]
Hurray, we answered YES(?,O(n^2))Tool TRI
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ lessleaves(cons(U, V), cons(W, Z)) ->
lessleaves(concat(U, V), concat(W, Z))
, lessleaves(leaf(), cons(W, Z)) -> true()
, lessleaves(X, leaf()) -> false()
, concat(cons(U, V), Y) -> cons(U, concat(V, Y))
, concat(leaf(), Y) -> Y}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
leaf() = [1]
[0]
concat(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
[0 1] [0 1] [0]
cons(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
[0 1] [0 1] [2]
lessleaves(x1, x2) = [1 2] x1 + [1 2] x2 + [0]
[0 0] [0 0] [1]
false() = [0]
[1]
true() = [0]
[1]
Hurray, we answered YES(?,O(n^2))Tool TRI2
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ lessleaves(cons(U, V), cons(W, Z)) ->
lessleaves(concat(U, V), concat(W, Z))
, lessleaves(leaf(), cons(W, Z)) -> true()
, lessleaves(X, leaf()) -> false()
, concat(cons(U, V), Y) -> cons(U, concat(V, Y))
, concat(leaf(), Y) -> Y}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
leaf() = [0]
[2]
concat(x1, x2) = [1 1] x1 + [1 0] x2 + [1]
[0 1] [0 1] [1]
cons(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
[0 1] [0 1] [3]
lessleaves(x1, x2) = [1 0] x1 + [1 3] x2 + [0]
[0 0] [0 0] [1]
false() = [1]
[1]
true() = [0]
[1]
Hurray, we answered YES(?,O(n^2))