Tool Bounds
Execution Time | 4.2328835e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | Rubio 04 p266 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ b(X) -> a(X)
, f(a(g(X))) -> b(X)
, f(f(X)) -> f(a(b(f(X))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 3.
The enriched problem is compatible with the following automaton:
{ f_0(1) -> 1
, f_1(1) -> 4
, f_1(2) -> 1
, f_1(2) -> 4
, f_2(2) -> 7
, f_2(5) -> 4
, b_0(1) -> 1
, b_1(1) -> 1
, b_1(1) -> 4
, b_1(4) -> 3
, b_2(7) -> 6
, a_0(1) -> 1
, a_1(1) -> 1
, a_1(3) -> 2
, a_2(1) -> 1
, a_2(1) -> 4
, a_2(4) -> 3
, a_2(6) -> 5
, a_3(7) -> 6
, g_0(1) -> 1}
Hurray, we answered YES(?,O(n^1))Tool CDI
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
g(delta, X0) = + 0*X0 + 0 + 1*X0*delta + 2*delta
b(delta, X0) = + 0*X0 + 0 + 1*X0*delta + 2*delta
a(delta, X0) = + 0*X0 + 0 + 1*X0*delta + 0*delta
f(delta, X0) = + 0*X0 + 3 + 2*X0*delta + 2*delta
g_tau_1(delta) = delta/(0 + 1 * delta)
b_tau_1(delta) = delta/(0 + 1 * delta)
a_tau_1(delta) = delta/(0 + 1 * delta)
f_tau_1(delta) = delta/(0 + 2 * delta)
Time: 1.807852 seconds
Statistics:
Number of monomials: 290
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ b(X) -> a(X)
, f(a(g(X))) -> b(X)
, f(f(X)) -> f(a(b(f(X))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1) = [1 3] x1 + [0]
[0 0] [3]
b(x1) = [1 0] x1 + [1]
[0 0] [0]
a(x1) = [1 0] x1 + [0]
[0 0] [0]
g(x1) = [1 0] x1 + [2]
[0 0] [0]
Hurray, we answered YES(?,O(n^2))Tool IDA
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ b(X) -> a(X)
, f(a(g(X))) -> b(X)
, f(f(X)) -> f(a(b(f(X))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying and IDA(2)-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1) = [1 1] x1 + [0]
[0 1] [3]
b(x1) = [1 0] x1 + [1]
[0 0] [2]
a(x1) = [1 0] x1 + [0]
[0 0] [1]
g(x1) = [1 0] x1 + [3]
[0 0] [0]
Hurray, we answered YES(?,O(n^2))Tool TRI
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ b(X) -> a(X)
, f(a(g(X))) -> b(X)
, f(f(X)) -> f(a(b(f(X))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
f(x1) = [1 1] x1 + [0]
[0 0] [2]
b(x1) = [1 0] x1 + [1]
[0 0] [0]
a(x1) = [1 0] x1 + [0]
[0 0] [0]
g(x1) = [1 3] x1 + [2]
[0 1] [0]
Hurray, we answered YES(?,O(n^2))Tool TRI2
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ b(X) -> a(X)
, f(a(g(X))) -> b(X)
, f(f(X)) -> f(a(b(f(X))))}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
f(x1) = [1 1] x1 + [1]
[0 0] [2]
b(x1) = [1 0] x1 + [1]
[0 0] [0]
a(x1) = [1 0] x1 + [0]
[0 0] [0]
g(x1) = [1 3] x1 + [2]
[0 1] [0]
Hurray, we answered YES(?,O(n^2))