Tool Bounds
Execution Time | 60.031734ms |
---|
Answer | TIMEOUT |
---|
Input | SK90 2.09 |
---|
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ +(s(x), y) -> +(x, s(y))
, +(s(x), y) -> s(+(x, y))
, +(0(), y) -> y}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool CDI
Execution Time | 0.15515709ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.09 |
---|
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
s(delta, X0) = + 1*X0 + 2 + 0*X0*delta + 0*delta
0(delta) = + 0 + 0*delta
+(delta, X1, X0) = + 1*X0 + 1*X1 + 0 + 0*X0*delta + 1*X1*delta + 1*delta
s_tau_1(delta) = delta/(1 + 0 * delta)
+_tau_1(delta) = delta/(1 + 1 * delta)
+_tau_2(delta) = delta/(1 + 0 * delta)
Time: 0.113869 seconds
Statistics:
Number of monomials: 142
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
Execution Time | 0.261796ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.09 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ +(s(x), y) -> +(x, s(y))
, +(s(x), y) -> s(+(x, y))
, +(0(), y) -> y}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
0() = [1]
[0]
+(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
[0 1] [0 1] [2]
s(x1) = [1 0] x1 + [0]
[0 1] [2]
Hurray, we answered YES(?,O(n^2))Tool IDA
Execution Time | 0.465657ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.09 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ +(s(x), y) -> +(x, s(y))
, +(s(x), y) -> s(+(x, y))
, +(0(), y) -> y}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying and IDA(2)-non-satisfying matrix interpretation:
Interpretation Functions:
0() = [3]
[3]
+(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
[0 1] [0 1] [2]
s(x1) = [1 0] x1 + [0]
[0 1] [2]
Hurray, we answered YES(?,O(n^2))Tool TRI
Execution Time | 0.122430086ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.09 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ +(s(x), y) -> +(x, s(y))
, +(s(x), y) -> s(+(x, y))
, +(0(), y) -> y}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
0() = [1]
[0]
+(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
[0 1] [0 1] [2]
s(x1) = [1 0] x1 + [0]
[0 1] [2]
Hurray, we answered YES(?,O(n^2))Tool TRI2
Execution Time | 9.317207e-2ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.09 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ +(s(x), y) -> +(x, s(y))
, +(s(x), y) -> s(+(x, y))
, +(0(), y) -> y}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
0() = [1]
[0]
+(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
[0 1] [0 1] [2]
s(x1) = [1 0] x1 + [0]
[0 1] [2]
Hurray, we answered YES(?,O(n^2))