Tool Bounds
| Execution Time | 60.046097ms |
|---|
| Answer | TIMEOUT |
|---|
| Input | SK90 2.11 |
|---|
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ -(s(x), s(y)) -> -(x, y)
, -(x, 0()) -> x
, -(0(), y) -> 0()
, +(s(x), y) -> s(+(x, y))
, +(0(), y) -> y}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool CDI
| Execution Time | 0.18600917ms |
|---|
| Answer | YES(?,O(n^2)) |
|---|
| Input | SK90 2.11 |
|---|
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
-(delta, X1, X0) = + 1*X0 + 1*X1 + 0 + 3*X0*delta + 0*X1*delta + 2*delta
s(delta, X0) = + 1*X0 + 2 + 0*X0*delta + 0*delta
0(delta) = + 0 + 0*delta
+(delta, X1, X0) = + 1*X0 + 1*X1 + 0 + 0*X0*delta + 1*X1*delta + 1*delta
-_tau_1(delta) = delta/(1 + 0 * delta)
-_tau_2(delta) = delta/(1 + 3 * delta)
s_tau_1(delta) = delta/(1 + 0 * delta)
+_tau_1(delta) = delta/(1 + 1 * delta)
+_tau_2(delta) = delta/(1 + 0 * delta)
Time: 0.145503 seconds
Statistics:
Number of monomials: 187
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
| Execution Time | 0.39732814ms |
|---|
| Answer | YES(?,O(n^2)) |
|---|
| Input | SK90 2.11 |
|---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ -(s(x), s(y)) -> -(x, y)
, -(x, 0()) -> x
, -(0(), y) -> 0()
, +(s(x), y) -> s(+(x, y))
, +(0(), y) -> y}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
0() = [2]
[0]
+(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
[0 1] [0 1] [3]
s(x1) = [1 0] x1 + [0]
[0 1] [2]
-(x1, x2) = [1 2] x1 + [1 0] x2 + [2]
[0 1] [0 0] [0]
Hurray, we answered YES(?,O(n^2))Tool IDA
| Execution Time | 0.5759928ms |
|---|
| Answer | YES(?,O(n^2)) |
|---|
| Input | SK90 2.11 |
|---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ -(s(x), s(y)) -> -(x, y)
, -(x, 0()) -> x
, -(0(), y) -> 0()
, +(s(x), y) -> s(+(x, y))
, +(0(), y) -> y}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying and IDA(2)-non-satisfying matrix interpretation:
Interpretation Functions:
0() = [2]
[0]
+(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
[0 1] [0 1] [3]
s(x1) = [1 0] x1 + [0]
[0 1] [2]
-(x1, x2) = [1 2] x1 + [1 0] x2 + [2]
[0 1] [0 0] [0]
Hurray, we answered YES(?,O(n^2))Tool TRI
| Execution Time | 0.16571093ms |
|---|
| Answer | YES(?,O(n^2)) |
|---|
| Input | SK90 2.11 |
|---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ -(s(x), s(y)) -> -(x, y)
, -(x, 0()) -> x
, -(0(), y) -> 0()
, +(s(x), y) -> s(+(x, y))
, +(0(), y) -> y}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
0() = [1]
[0]
+(x1, x2) = [1 2] x1 + [1 3] x2 + [0]
[0 1] [0 1] [3]
s(x1) = [1 0] x1 + [0]
[0 1] [2]
-(x1, x2) = [1 2] x1 + [1 0] x2 + [3]
[0 1] [0 1] [3]
Hurray, we answered YES(?,O(n^2))Tool TRI2
| Execution Time | 0.11468387ms |
|---|
| Answer | YES(?,O(n^2)) |
|---|
| Input | SK90 2.11 |
|---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ -(s(x), s(y)) -> -(x, y)
, -(x, 0()) -> x
, -(0(), y) -> 0()
, +(s(x), y) -> s(+(x, y))
, +(0(), y) -> y}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
0() = [1]
[0]
+(x1, x2) = [1 1] x1 + [1 3] x2 + [0]
[0 1] [0 1] [3]
s(x1) = [1 0] x1 + [0]
[0 1] [1]
-(x1, x2) = [1 0] x1 + [1 2] x2 + [3]
[0 1] [0 1] [3]
Hurray, we answered YES(?,O(n^2))