Tool Bounds
Execution Time | 60.030903ms |
---|
Answer | TIMEOUT |
---|
Input | SK90 2.41 |
---|
stdout:
TIMEOUT
We consider the following Problem:
Strict Trs:
{ rem(g(x, y), s(z)) -> rem(x, z)
, rem(g(x, y), 0()) -> g(x, y)
, rem(nil(), y) -> nil()
, f(x, g(y, z)) -> g(f(x, y), z)
, f(x, nil()) -> g(nil(), x)
, norm(g(x, y)) -> s(norm(x))
, norm(nil()) -> 0()}
StartTerms: all
Strategy: none
Certificate: TIMEOUT
Proof:
Computation stopped due to timeout after 60.0 seconds.
Arrrr..Tool CDI
Execution Time | 0.46180487ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.41 |
---|
stdout:
YES(?,O(n^2))
QUADRATIC upper bound on the derivational complexity
This TRS is terminating using the deltarestricted interpretation
rem(delta, X1, X0) = + 0*X0 + 1*X1 + 0 + 1*X0*delta + 0*X1*delta + 2*delta
f(delta, X1, X0) = + 1*X0 + 0*X1 + 1 + 2*X0*delta + 1*X1*delta + 2*delta
g(delta, X1, X0) = + 0*X0 + 1*X1 + 1 + 1*X0*delta + 0*X1*delta + 0*delta
s(delta, X0) = + 0*X0 + 0 + 1*X0*delta + 1*delta
nil(delta) = + 0 + 0*delta
norm(delta, X0) = + 0*X0 + 0 + 2*X0*delta + 2*delta
0(delta) = + 0 + 0*delta
rem_tau_1(delta) = delta/(1 + 0 * delta)
rem_tau_2(delta) = delta/(0 + 1 * delta)
f_tau_1(delta) = delta/(0 + 1 * delta)
f_tau_2(delta) = delta/(1 + 2 * delta)
g_tau_1(delta) = delta/(1 + 0 * delta)
g_tau_2(delta) = delta/(0 + 1 * delta)
s_tau_1(delta) = delta/(0 + 1 * delta)
norm_tau_1(delta) = delta/(0 + 2 * delta)
Time: 0.420463 seconds
Statistics:
Number of monomials: 376
Last formula building started for bound 3
Last SAT solving started for bound 3Tool EDA
Execution Time | 0.5373192ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.41 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ rem(g(x, y), s(z)) -> rem(x, z)
, rem(g(x, y), 0()) -> g(x, y)
, rem(nil(), y) -> nil()
, f(x, g(y, z)) -> g(f(x, y), z)
, f(x, nil()) -> g(nil(), x)
, norm(g(x, y)) -> s(norm(x))
, norm(nil()) -> 0()}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:
nil() = [3]
[2]
norm(x1) = [1 0] x1 + [0]
[0 0] [0]
0() = [0]
[0]
g(x1, x2) = [1 1] x1 + [1 0] x2 + [3]
[0 1] [0 0] [2]
s(x1) = [1 0] x1 + [0]
[0 0] [0]
f(x1, x2) = [1 0] x1 + [1 3] x2 + [0]
[0 0] [0 1] [2]
rem(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
[0 1] [0 0] [2]
Hurray, we answered YES(?,O(n^2))Tool IDA
Execution Time | 0.8114481ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.41 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ rem(g(x, y), s(z)) -> rem(x, z)
, rem(g(x, y), 0()) -> g(x, y)
, rem(nil(), y) -> nil()
, f(x, g(y, z)) -> g(f(x, y), z)
, f(x, nil()) -> g(nil(), x)
, norm(g(x, y)) -> s(norm(x))
, norm(nil()) -> 0()}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following EDA-non-satisfying and IDA(2)-non-satisfying matrix interpretation:
Interpretation Functions:
nil() = [2]
[2]
norm(x1) = [1 1] x1 + [1]
[0 0] [0]
0() = [0]
[0]
g(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
[0 1] [0 0] [3]
s(x1) = [1 0] x1 + [0]
[0 0] [0]
f(x1, x2) = [1 0] x1 + [1 3] x2 + [0]
[0 0] [0 1] [3]
rem(x1, x2) = [1 3] x1 + [1 0] x2 + [0]
[0 1] [0 0] [2]
Hurray, we answered YES(?,O(n^2))Tool TRI
Execution Time | 0.22038603ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.41 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ rem(g(x, y), s(z)) -> rem(x, z)
, rem(g(x, y), 0()) -> g(x, y)
, rem(nil(), y) -> nil()
, f(x, g(y, z)) -> g(f(x, y), z)
, f(x, nil()) -> g(nil(), x)
, norm(g(x, y)) -> s(norm(x))
, norm(nil()) -> 0()}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
nil() = [0]
[1]
norm(x1) = [1 1] x1 + [0]
[0 1] [3]
0() = [0]
[3]
g(x1, x2) = [1 0] x1 + [1 1] x2 + [0]
[0 1] [0 1] [1]
s(x1) = [1 0] x1 + [0]
[0 1] [1]
f(x1, x2) = [1 3] x1 + [1 1] x2 + [0]
[0 1] [0 1] [3]
rem(x1, x2) = [1 1] x1 + [1 0] x2 + [3]
[0 1] [0 1] [0]
Hurray, we answered YES(?,O(n^2))Tool TRI2
Execution Time | 0.18457294ms |
---|
Answer | YES(?,O(n^2)) |
---|
Input | SK90 2.41 |
---|
stdout:
YES(?,O(n^2))
We consider the following Problem:
Strict Trs:
{ rem(g(x, y), s(z)) -> rem(x, z)
, rem(g(x, y), 0()) -> g(x, y)
, rem(nil(), y) -> nil()
, f(x, g(y, z)) -> g(f(x, y), z)
, f(x, nil()) -> g(nil(), x)
, norm(g(x, y)) -> s(norm(x))
, norm(nil()) -> 0()}
StartTerms: all
Strategy: none
Certificate: YES(?,O(n^2))
Proof:
We have the following triangular matrix interpretation:
Interpretation Functions:
nil() = [2]
[1]
norm(x1) = [1 2] x1 + [0]
[0 0] [0]
0() = [0]
[0]
g(x1, x2) = [1 0] x1 + [1 3] x2 + [0]
[0 1] [0 1] [2]
s(x1) = [1 0] x1 + [1]
[0 0] [0]
f(x1, x2) = [1 3] x1 + [1 2] x2 + [0]
[0 1] [0 1] [2]
rem(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
[0 1] [0 0] [0]
Hurray, we answered YES(?,O(n^2))